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Abstract The part of the primate visual cortex responsible
for the recognition of objects is parcelled into about a dozen
areas organized somewhat hierarchically (the region is called
the ventral stream). Why are there approximately this many
hierarchical levels? Here I put forth a generic information-
processing hierarchical model, and show how the total number
of neurons required depends on the number of hierarchical
levels and on the complexity of visual objects that must
be recognized. Because the recognition of written words
appears to occur in a similar part of inferotemporal cortex
as other visual objects, the complexity of written words may
be similar to that of other visual objects for humans; for
this reason, I measure the complexity of written words, and
use it as an approximate estimate of the complexity more
generally of visual objects. I then show that the information-
processing hierarchy that accommodates visual objects of
that complexity possesses the minimum number of neurons
when the number of hierarchical levels is approximately 15.

Keywords Visual hierarchy · Number of visual areas ·
Sizes of areas · Optimization · Information theory · Object
recognition · Intermediate-level features · Visual object
complexity

1 Introduction

The mammalian visual cortex involved in object-recognition
is partitioned into multiple areas, and appears to be hierar-
chically organized (Rockland and Pandya 1979; Van Essen
and Maunsell 1983; Felleman and Van Essen 1991; Coogan
and Burkhalter 1993; Scannell et al. 1995), where “lower”
areas possess finer spatial feature specificity, and computa-
tions made there are subsequently used by “higher” areas pos-
sessing coarser spatial feature specificity, but finer “object”

M.A. Changizi
Sloan-Swartz Center for Theoretical Neurobiology,
MC 139-74, Caltech, Pasadena,
CA 91125, USA
E-mail: changizi@caltech.edu,
URL: http://www.changizi.com

specificity. One striking feature about visual cortical organi-
zation in animals like macaque and cat is that there are so
many hierarchical levels. Although current anatomical infor-
mation does not determine a unique hierarchy for these ani-
mals, candidate hierarchies typically consist of about 10–20
levels (Hilgetag et al. 1996, 2000). Here I ask, Why are there
approximately this many hierarchical levels? I put forth a
generic model of an information processing hierarchy for
vision, and derive a formula relating the total number of neu-
rons in the hierarchy to the complexity of visual objects it
must process, and to the number of hierarchical levels. I esti-
mate the complexity of visual objects for humans, and then
show that the total number of neurons in a hierarchy capa-
ble of processing such objects is minimized when there are
approximately 15 hierarchical levels.

2 Generic information-processing hierarchy for vision

I begin by considering a simple generic information-pro-
cessing hierarchy for vision, capturing just the bare essen-
tials of a (bottom-up) visual hierarchy (see Appendix A),
and making no specific assumptions about the computational
mechanisms. Each level is partitioned into modules (e.g., col-
umns, barrels, blobs), each module which consists of neurons
having the same receptive field which does not overlap that
of other modules, and the union of all the receptive fields
amounts to the entire visual field (or the entire retina). (The
main results we present here hold if there is receptive field
overlap, so long as the percentage of overlap does not vary
as a function of level.) Modules in higher levels have larger
receptive fields, and receive input converging from multiple
modules from the level below it; call this group of lower-level
modules a convergence zone. See Fig. 1a.

The activation pattern of an i+1-level module depends on
the state of the modules in its convergence zone, and there
must exist neurons encoding instructions, or commands, tell-
ing the i+1-level module how to activate depending on the
state of the convergence zone. This generic model assumes
that these “command neurons” are within the convergence



M.A. Changizi

Fig. 1 a Illustration of the model for visual representations. Two levels are shown, and each level consists of modules (the larger circles) built
from neurons (the tiny circles), each module representing a portion of the visual field. Multiple modules in level i (shown here sharing a gray-level)
converge into a single module in level i+1, where here the level–level convergence factor is µ = 4. This only illustrates the neurons responsible
for representing visual features, and does not show the neurons responsible for instructing the next level on how to activate. b Illustration of the
instructions required if only two levels – the top and bottom – are allowed. Because there is no intermediate level, there is just one convergence
zone in the bottom level, and so the level–level convergence µ = 4. For illustration-sake, I presume that each module (shown as circles) is capable
of only two states; I indicate the two module states possible for the bottom level an θ and ϕ (analogous to 0 and 1, but I want different binary
symbols for the different levels). The number of states possible for the zone is 24=16. For each of these 16 different convergence zone states,
the zone must cause a different sequential activation pattern in the top level module to which it converges, where such an activation pattern is a
sequence of four 0s and 1s. This is achieved with neurons coding up these 16 instructions, as shown, where for the illustration we assume that
one (binary) neuron is required per symbol shown. For example, the first instruction says, “If the convergence zone modules are all θs, then the
top-level module must sequentially activate in the pattern 1,0,0,1.” The total number of symbol tokens (or binary neurons) required for these
instructions, along with the four binary modules (each requiring just one binary neuron here), is 132. c Illustration of how adding an intermediate
hierarchical level can reduce the overall number of neurons required in the hierarchy. Suppose that one intermediate level is placed between the
bottom and top; it possesses two modules, and each module is capable of two states, a and b . There are, then, two convergence zones in level
0, and each is capable of 22 = 4 states. For each of these four different convergence zone states, the zone must cause a different sequential
activation pattern in the intermediate level module to which it converges, where such an activation pattern is now a sequence of two as and bs.
This is achieved with neurons coding up these four instructions, as shown. This requires 16 symbol tokens (or binary neurons) per zone, for each
of the two bottom level zones; for 32 symbol tokens in the bottom level, plus 4 tokens for the four binary modules. The same occurs for the
single zone in the intermediate level instructing the top level, where there are 16 symbol tokens for instructions, plus two new modules (each here
with just one binary neuron). In all, then, with three levels the number of symbol tokens required for the hierarchy is 54, which is 41% the size
required when there was no intermediate level, despite the two hierarchies being computationally identical. (Note that these hierarchies have no
redundancies, for the sake of the example, but real visual hierarchies certainly do, and the model accommodates this.)

zone of the i th level (but it makes no difference to my pre-
dictions if the commands are placed in the i+1st level). Con-
sider, for example, Fig. 1b, which shows four modules (the
four circles) in the single bottom level zone. Because each
module is capable of two possible states, θ or φ, the bottom
level zone is capable of 24 = 16 possible states. If the single
top level module (the single circle at the top) to which this
zone converges is (for example) to activate differently for
each of these 16 possible states, there must be instructions in
the hierarchy somewhere telling the top level module how to
respond for each of these 16 different possible zone states.
These instructions are shown as the list of 16 instructions in
the bottom zone as to how the top module should sequentially
activate conditional on the 16 different possible zone states.
This example assumes that the top module must discriminate
among all the different possible lower level zone states – i.e.,
it assumes no redundancy, or no loss of information – but
more generally the model allows redundancy, as discussed
later.

From this generic information-processing hierarchy for
vision it is possible to derive an equation for the total number
of neurons in the hierarchy (Eq. (6) in the Appendix):

Nreg (n, σ, µtot, dtot)≈ log(σ )×
[
1 + (dtot/µtot)

1/nσ d1/n
tot

]

×
[
µ

(n+1)/n
tot − 1

]
[
µ

1/n
tot − 1

] (1)

Actually, the equation shows the number of regularized neu-
rons, Nreg, which is the total number of neurons in the entire
hierarchy below a single module in the top level; i.e., it is
the sum of all the neurons in the hierarchy that are involved
in the information that eventually converges to one top-level
module. The (regularized) number of neurons is a function of
four parameters: n (the number of hierarchical levels above
the bottom level), σ (the number of visual representational
states a single module is capable of), µtot (the total conver-
gence factor over the entire hierarchy), and dtot (the total
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combinatorial degree over the entire hierarchy). In the fol-
lowing four sections (Sect. 3–6) I discuss the meaning of
these four parameters and how they may be determined. This
will involve the introduction of principles of optimization
and efficient coding, as well as empirical estimation.

3 Number of levels, n + 1: set to minimize the total
number of neurons in hierarchy

The first parameter in Eq. (1) is n, the number of hierarchi-
cal levels above the bottom (so that n + 1 is the total num-
ber of hierarchical levels). Recall the illustrative hierarchy
in Fig. 1b, where four modules in the bottom level converge
to one module at the top level. Consider what happens if an
intermediate level, with two modules, is allowed, as shown
in Fig. 1c. First, notice that the number of modules in a con-
vergence zone drops from 4 to 2. Athough two new modules
must be added, the total number of neurons required for the
commands is greatly reduced, achieving a significant savings
in the number of required neurons to implement the hierarchy.
More generally, as we will see later in Fig. 2, the (regular-
ized) number of neurons required from Eq. (1) tends to be
enormous when only two levels are allowed, and increasing
the number of levels above two tends to drastically reduce the
total number of neurons required for the hierarchy, often by
many orders of magnitude. Increasing the number of inter-
mediate levels still further leads to further reductions in the
number of neurons, up to a point after which the number
of neurons increases fairly slowly. [A similar phenomenon
may drive the large-scale organization of the natural language
lexicon (Changizi MA, in review).]

Evidence of volume-optimization in the brain has been
found in a variety of ways (Cajal 1995; Kaas 2000; Cowey
1979; Mead 1989; Durbin and Mitchison 1990; Mitchison
1991, 1992; Ringo 1991; Cherniak 1992, 1994, 1995;
Cherniak et al. 1999; Jacobs and Jordan 1992; Traverso et
al. 1992; Ruppin et al. 1993; Van Essen 1997; Chklovskii
and Koulakov 2000; Changizi 2001a,b, 2005; Changizi and
Shimojo 2005b), and central to my hypothesis is the follow-
ing principle of parsimony:

The number of hierarchical levels above the bottom,
n, has been selected by evolution so as to minimize the
total number of neurons, N, required in the hierarchy.

I will denote this optimal value of n as nopt. In other words,
given values for the other three parameters (σ, µtot and dtot),
determine the value of n that minimizes Nreg(n) from Eq. (1).
That value of n is called nopt, and is the predicted number of
hierarchical levels above the bottom. The number of hierar-
chical levels above the bottom, n, is, then, no longer a free
parameter, but is set to nopt. This leaves three parameters
which we discuss in the three following sections.

4 The total combinatorial degree, dtot: set to efficiently
code visual objects

To understand a second parameter in Eq. (1), the total combi-
natorial degree, dtot, it is helpful to first understand the total
convergence, µtot, which is the total number of modules from
the bottom level that eventually converge, over the entire hier-
archy, to a single top-level module. The total convergence can
be interpreted as the maximum possible number of degrees
of freedom a top level module might have to accommodate.
(We will discuss the total convergence more in Sect. 5.) But
actual visual objects that people recognize may well possess
redundancies (e.g., due to statistical regularities in the ecol-
ogy), so that the true number of degrees of freedom required
of a system is well below µtot. Let dtot be the total number of
degrees of freedom a top-level module is capable of, where
dtot = βtotµtot, and βtot is the total redundancy fraction.
I will refer to dtot as the total combinatorial degree of the sys-
tem (Changizi 2001c, 2003b; Changizi et al. 2002); it is the
entropy in base-σ of a top-level module. Total combinatorial
degree values can be as low as dtot = 1, intuitively meaning
that the µtot modules in the bottom level that ultimately con-
verge to a top level module do not interact combinatorially,
and as high as dtot = µtot, meaning that all the µtot potential
degrees of freedom are utilized. For example, although the
average English sentence may possess about 20 words – and
therefore the maximum possible number of degrees of free-
dom for a sentence is 20 – there are redundancies (e.g., due
to some words being highly predictive of adjacent words),
and so the total number of degrees of freedom is nearer to 5
(Changizi 2001c).

An efficient visual system (Attneave 1954; Barlow 1961;
Simoncelli and Olshausen 2001) is expected to be only as
complex as needed to accommodate the ecologically typical
visual objects, and one therefore expects that the total com-
binatorial degree, dtot, of the hierarchy has been selected by
evolution to roughly match the number of degrees of freedom
found in visual objects. For this reason, it would suffice to
acquire an estimate of the number of degrees of freedom in
visual objects, and then, on the basis of the “efficient visual
system” assumption, to infer that the ventral stream hierar-
chy has a total combinatorial degree, dtot, roughly matched
to this.

In an effort to estimate the number of degrees of freedom
for visual objects for humans, I will provide such an estimate
for human visual signs that are plausibly analogous to visual
objects: the written word. Written words are similar to other
visual objects in at least two respects. First, written words are
structurally somewhat analogous to other visual objects in the
sense that written words are composed of letters which are
analogous to object-junctions (Changizi et al. 2006), and let-
ters, in turn, are built from strokes which are analogous to con-
tours (Changizi and Shimojo 2005b). Second, written words
activate similar regions of the inferotemporal visual cortex
as other visual objects (Hasson et al. 2002). This latter phe-
nomenon is presumably related to the fact that words tend to
be the largest written linguistic entities that are recognizable;
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Fig. 2 The predicted number of hierarchical levels for the individual perturbation of each of the three parameters within its plausible range. The
plots are of the model’s regularized total number of neurons, Nreg (Eq. (1)), versus the number of hierarchical levels, n +1. Solid curves are within
the empirically plausible range for the parameter being varied, and solid arrows indicate the optimal number of hierarchical levels, Nopt + 1; the
bold curve and arrow indicate the best estimate of the parameter. Dotted curves and dotted arrows are for values of the varying parameter outside
of its empirically plausible range. a Plots of Nreg versus n for seven values of the total combinatorial degree, dtot. The optimal number of levels
for each curve are 2, 8, 15, 25, 32, 39 and 49, respectively, and the relationship between nopt and dtot is given by nopt = 24.0 log (dtot) − 0.2. For
the range of empirically plausible values of dtot (2–10), the number of hierarchical levels ranges from 8 to 25, with a “best” estimate of 15 levels
when dtot = 4. b Plots of Nreg versus n for five values of the total convergence, µtot . The optimal number of levels for each curve are 16, 15, 14, 13
and 12, respectively, and the relationship between nopt and µtot is given by nopt = −1.17 log(µtot) + 15.5. For the range of empirically plausible
values of µtot(4 to 100), the number of hierarchical levels ranges from 14 to 16, again with a “best” estimate of 15 levels when µtot = 20. c Plots
of Nreg versus n for four values of the number of module states, σ The optimal number of levels for each curve are 9, 15, 21 and 28, respectively,
and the relationship between nopt and σ is given by nopt = 3.15 log (σ) + 1.5. For the range of empirically plausible values of σ(102–106), the
number of hierarchical levels ranges form 9 to 21, again with a “best” estimate of 15 levels when σ = 104. Note that we are assuming neurons
are binary for the computation here, which affects only the overall height of the plots

i.e., other than a few highly stereotyped phrases, we do not
recognize written sentences, but, instead, must construct sen-
tences out of the recognized words.

It is possible that the complexity of written words has, in
fact, been culturally selected to match our visual processing
constraints. To understand this, it is important to realize that
the visual complexity of written words is not determined by

spoken language. This is for two reasons. First, there is the
choice of how or whether to visually represent the phonemic
constituents of a word; i.e., whether to use a writing system
that is logographic, a syllabary, an abugida, an alphabet, or
an abjad. Spoken language does not determine this choice,
and the outcome of this choice affects the visual complexity
of the written word. Second, even once this decision is made,
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there is the choice of how to visually represent the characters
themselves; e.g., whether to use color modulations or contour
modulations to code characters, how many strokes per char-
acter to use, how much redundancy, etc. (see Changizi and
Shimojo 2005a). This also is not a consequence of spoken
language, and strongly affects the visual complexity of writ-
ten words. Because the visual complexity of written words is
not determined by spoken language, it is possible that writ-
ing has been culturally selected in such a way that the visual
complexity of written words is approximately that of visual
objects. While this cultural selection hypothesis for written
words is a possibility, and is not contradicted by spoken lan-
guage, it is not my intent to defend such a hypothesis here; I
only mean to argue that it is a live possibility. My arguments
that the visual complexity of written words may be represen-
tative of visual objects is based on the two arguments in the
previous paragraph.

Because of the linguistic nature of this special kind of
visual object – written words – it is possible, as I show below,
to compute information theoretic quantities, in particular the
combinatorial degree (or the number of degrees of freedom),
something not at all easily done for visual objects generally.

Changizi and Shimojo (2005b) measured how strokes
combine to make characters in 115 writing systems over hu-
mans history, and found an average combinatorial degree for
strokes combining into characters of approximately
dstroke−char ≈ 1.5 (compared to 3 strokes per character on
average, meaning a redundancy of approximately 50%).
[Strokes are defined via visual discontinuities, so that “U”
possesses one stroke but “V” possesses two strokes (Changizi
and Shimojo 2005b; Changizi et al. 2006).] Shannon (1951)
found that the entropy for English words is approximately
11.82. Because there are 26 letters, the average combinato-
rial degree for characters combining into words is the base-26
entropy, which is dchar−word ≈ 2.5 (compared to 4.5 charac-
ters per word on average, meaning a redundancy of approx-
imately 50%). The total combinatorial degree for strokes
combining into words is the product of these two combi-
natorial degree values, and is dstroke−word ≈ dstroke−char ×
dchar−word ≈ 1.5 × 2.5 = 3.75.

In the empirical estimation of dtot thus far, I have been
treating strokes as the bottom-level symbols. Strokes them-
selves require recognition, however, and this may occur above
V1. How many degrees of freedom are there in possible
strokes? Here I examined the strokes found across the 115
writing systems of Changizi and Shimojo (2005b), and deter-
mined the number of distinct concavities for each stroke type
in each writing system; for example, a straight line has zero
distinct concavities, a “C” has one, and an “S” has two. I also
determined the frequency distribution of the stroke types as
they occur within the character types of the writing system.
For each writing system, I computed the frequency-weighted
average number of distinct concavities per stroke type. I then
averaged these values across the writing systems, obtaining
an average of 0.497 distinct concavities per stroke. Consid-
ering a straight stroke as having primarily just one degree
of freedom, namely orientation, and each distinct concavity

as adding another potential degree of freedom, the average
potential number of degrees of freedom is then 1.497 ≈ 1.5.
But just as there are redundancies in building words from
characters, and characters from strokes, there are probably
redundancies in building strokes from “distinct concavities.”
I do not have the ability to compute the redundancy for the
latter, however, because this would require some notion as
to what the set of symbol types are from which strokes are
built, something I do not have. The combinatorial degree
for the construction of strokes is, then, dbottom−stroke = 1–1.5
(recall combinatorial degree values are ≥ 1). The total com-
binatorial degree for a written English word would then be
dbottom−word ≈ dbottom−stroke × dstroke−char × dchar−word ≈
3.75–5.6.

Using this combinatorial degree measurement for writ-
ten words as an estimate of the combinatorial degree for vi-
sual objects more generally (as discussed earlier), we expect
that an efficient visual system will have a total combinatorial
degree, dtot, that approximately matches the combinatorial
degree of visual objects, and so dtot ≈ 3.75–5.6. I will some-
what arbitrarily choose dtot ≈ 4 as the “best” estimate, and
I will consider as empirically plausible values of dtot from
about 2 to 10.

5 The total convergence, µtot: empirical estimates

The total convergence, µtot, is the total number of modules
from the bottom level that eventually converge, over the entire
hierarchy, to a single top-level module. The total convergence
is the maximum possible number of degrees of freedom a top
level module might have to accommodate. Here I present two
very approximate estimates for µtot.

We saw above that although the number of degrees of free-
dom from strokes to words is dstroke−word ≈ 4, the average
number of strokes per word is Lstroke−word ≈ 3×4.5 = 13.5,
and thus dstroke−word ≈ 0.28 × Lstroke−word, and the redun-
dancy fraction is βstroke−word ≈ 0.28. Supposing for simplic-
ity that, at some hierarchical level, each stroke is recognized
in a separate module, then around 13.5 modules would be
needed, despite there being only about 4 degrees of freedom.
Therefore, this suggests a total redundancy fraction for the
visual system of βtot ≈ 0.28, and if we set dtot ≈ 4 (see
above), then the total convergence µtot = dtot/βtot ≈ 15.
Supposing that there are further redundancies in the con-
struction of strokes themselves, say 50% (as is the case for
strokes-to-letters and letters-to-words), the total convergence
may be double this, or 30.

We may also estimate µtot by considering the relative
receptive field size from V1 to a top level area in inferotem-
poral cortex. Receptive field sizes for inferotemporal modules
are on the order of 10◦ for natural stimuli (e.g., Rolls et al.
2003); meaning there are Pn ∼ (180◦)2/(10◦)2 modules in
an inferotemporal area. The receptive field sizes for the set of
modules from V1 that eventually converge to an inferotem-
poral module will depend on the range of eccentricities of
those modules (because receptive field size in V1 grows with
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eccentricity). Receptive field sizes in V1 vary eccentrically
from about a quarter of a degree to 10◦ (Van Essen et al. 1984;
Rosa 1997), with a (log-transformed) average of approxi-
mately 1.5◦. Using this average, the number of modules in
V1 is P0 ∼ (180◦)2/(1.5◦)2. Recalling that µtot = P0/Pn,
we have µtot ≈ 102/1.52 = 44.4.

I have just discussed two separate approaches to estimat-
ing the total convergence, µtot. The first used redundancy
estimated from visual objects and concluded µtot ≈ 15–30.
The second approach estimated the total convergence by uti-
lizing the relative receptive field size from top to bottom,
and concluded that µtot ≈ 50. I will accordingly set the total
convergence to be approximately within this range, and more
generally to consider as empirically plausible values of µtot
from 4 to 102 (the former being the “best” estimate for dtot dis-
cussed above, which would correspond to zero redundancy).
The logarithmically mid-way point within this range is 20,
which I will somewhat arbitrarily use as the “best” estimate
in what follows. Note that Fig. 2b shows that the predicted
number of hierarchical levels only negligibly depends on the
choice of µtot, varying by only several levels despite µtot
ranging over nearly four orders of magnitude.

6 The number of states per module, σ : approximate
range

Recall that modules are composed of neurons in the same
level who share the same receptive field. Let σ be the num-
ber of states a module is capable of. Intuitively, it is akin to
the “pixel depth” of a computer monitor, such as 16 bit color
per pixel versus 32 bit. The number of neurons required to
specify σ many states will be logarithmic in σ , and the total
number of neurons in the entire hierarchy will depend on
σ , as Eq. (1) shows. Empirically estimating σ is difficult,
but as we will see later (Fig. 2c), the predicted number of
hierarchical levels varies only weakly with σ .

As one attempt at an approximation, consider that at the
very top level there may be a relatively small number of mod-
ules (compared to V1), each with a much larger receptive field
size than that of lower levels, and each module capable of
responding to a large repertoire of visual objects. For exam-
ple, if the top level is deemed to be an object-recognition area
in the inferotemporal lobe such as human VOT (Malach et al.
2002; Hasson et al. 2003), then there still exists a large-scale
retinotopic map, with, for example, buildings more eccentric
than faces, and the total visual object repertoire is the union
of the repertoires across all these modules. Now consider that
humans have verbal vocabulary sizes of about 5 × 104, and
one might reasonably expect a total visual object repertoire
size around the same order of magnitude. Because the total
visual object repertoire is accommodated by the union of
the modules in the inferotemporal area (say, VOT), any one
module will have a lower visual object repertoire size. That
is, 5 × 104 provides a reasonable upper bound to the num-
ber of states for a module in a high-level object-recognition
area. In this light, I will suppose that, very approximately,

σ ≈ 104, but more weakly, I will assume that σ is in the
range of 102–106 . As mentioned above, the predicted num-
ber of levels will only weakly depend on the setting of σ ,
as Fig. 2c shows; for example, the predicted number of hier-
archical levels varies only by about a factor of three despite
varying σ over six orders of magnitude.

7 Main result: predicted number of hierarchical levels
in the ventral stream

In the previous sections I introduced the generic hierarchi-
cal information-processing model for vision, which captures
essential features of any visual hierarchy. I showed how the
total (regularized) number of neurons varies as a function of
four parameters, n, dtot, µtot and σ . The number of hierar-
chical levels above the bottom, n, was hypothesized to be
set by a principle of parsimony, namely set to minimize the
total number of neurons. The total combinatorial degree, dtot,
for human was presumed to match (for reasons of efficient
coding) the number of degrees of freedom found in visual
objects, and as an estimate of the latter I measured the num-
ber of degrees of freedom found in written words. I concluded
that the range of plausible values for dtot are from 2 to 10,
with a “best” estimate of dtot ≈ 4. The total convergence,
µtot, was estimated by two different techniques, and I con-
cluded that the range of plausible values for it are from 4 to
102, with a “best” estimate of µtot ≈ 20. And the number
of states per module, σ , was estimated to be in the range of
102–106, with a “best” estimate of σ ≈ 104.

It is now possible to examine the hypothesis’ predicted
number of hierarchical levels for the human ventral stream.
Figure 2 shows plots of the total (regularized) number of
neurons, Nreg, versus the number of levels, n + 1, (from Eq.
(1)). One can see that the total number of neurons precipi-
tously falls when increasing the number of levels above two,
in some cases falling by as much as ten orders of magnitude
at the minimum. After reaching the minimum, the number of
neurons increases relatively slowly. The three parts of Fig. 2 –
i.e., (a), (b) and (c) – differ in that in each one, one of these
three parameters is being varied around its “best” setting, and
plots of Nreg versus n+1 are shown for these varied values of
that parameter. Solid-line curves are cases where the varying
parameter is still within its “plausible” range, as discussed
in the previous sections, and the dotted-line curves are cases
where the parameter is outside this range. For each curve,
an arrow indicates the optimal number of hierarchical levels,
nopt + 1.

Using the previous sections’ “best” estimates of the three
parameters – dtot = 4, µtot = 20, σ = 104 – it is possible
to determine from Eq. (1) the predicted number of hierar-
chical levels, nopt + 1. The Nreg versus nopt + 1 curve for
these “best” parameter settings is shown in bold in each of
the three plots in Fig. 2, and the optimal number of hierar-
chical levels indicated with a bold arrow. In particular, the
optimal number of levels is 15. Perturbations of any one of
the three parameters – dtot, µtot, σ – within its “reasonable”
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range as discussed earlier lead to nopt +1 ∈ [8, 25] for dtot ∈
[2, 10], nopt + 1 ∈ [13, 15] for µtot ∈ [4, 102], and nopt +
1 ∈ [9, 28] for σ ∈ [102, 106]. That is, reasonable empirical
settings of these three parameters predicts between approxi-
mately 8 to 28 hierarchical levels, and a “best” prediction of
approximately 15. (See Fig. 3h in Appendix B for the pre-
dicted relative sizes of the areas as a function of hierarchical
level in the human ventral stream.)

8 Discussion

In this paper I have provided a framework that allows us to
quantitatively determine the optimal number of levels (i.e.,
the number of hierarchical levels that minimizes the total
number of neurons), and that, more generally, connects the
recognition demands of the visual system (i.e., the combi-
natorial degree, dtot) to the organization of the visual sys-
tem (e.g., the number of hierarchical levels and the number
of neurons per level). The main hypothesis was that actual
visual hierarchies will possess the number of hierarchical
levels that minimizes the total number of neurons required to
implement the hierarchy. To make quantitative predictions,
empirical estimates had to be made of three properties: the
number of states per module, σ ; the total convergence from
bottom to top, µtot; and the total combinatorial degree of
the system (or its “complexity”), dtot. As seen in Fig. 2, the
predicted number of levels (i.e., the optimal number of lev-
els) depends only weakly on the first two (σ and µtot), but
strongly on the last (dtot).

In order to estimate the total combinatorial degree, dtot,
I made an “efficient coding” hypothesis that dtot will be
roughly matched to the actual number of degrees of freedom
found in the visual objects encountered in natural scenes.
Because written words appear to possess similarities to other
visual objects – similar overall contour-junction-whole struc-
ture, and activation in similar parts of inferotemporal cortex
– as an estimate of the “complexity” of visual objects for
humans, I measured the number of degrees of freedom in
written words, a kind of visual object for which, because of
its linguistic nature, it is possible to estimate the number of
degrees of freedom (for which I utilized, in part, earlier work
on the complexity of writing systems (Changizi and Shimojo
2005a)).

With empirical estimates of the three parameters in hand,
the hypothesis predicts approximately 10–20 levels in the
human ventral stream, with a “best” estimate of approxi-
mately 15 levels. (The hypothesis also predicts exponential
decay of area size with hierarchical level, and level–level con-
vergence values of µ ≈ 1.24, as discussed in Appendix B.)

There are a number of reasons why this prediction cannot
be more than very approximate. (1) The empirical settings of
the three parameters – the total combinatorial degree, dtot;
the total convergence, µtot; and the number of module states,
σ – were only very approximate estimates (especially the lat-
ter two). (2) Furthermore, I have assumed – primarily for the

sake of simplicity – that the parameters (namely d , µ and σ ,
see Appendix A) are constant across the levels, something
that is certainly an idealization. (3) The Nreg versus n + 1
plots in Fig. 2 show that the minimum is fairly broad, and
increases much more slowly after nopt +1 than before it; this
means that the number of levels could deviate somewhat from
nopt +1 and still be near optimal. It is therefore expected that
even if one could confidently make precise predictions about
the optimal number of levels, there is “evolutionary wiggle
room” for the actual number of levels to deviate somewhat
from the optimal, and still be very near optimal. (4) I must
reiterate that the model is an extreme idealization of the hier-
archy, where for each level there is only one level above it. In
reality, areas connect to multiple levels above it (something
also found for the hierarchy for the English lexicon (Changizi
MA, in review)). (5) Finally, the economical principle stated
that the number of hierarchical levels is set to minimize the
number of neurons, but in reality the system may, in fact,
be selected to minimize the total amount of wire volume as
well. And, of course, selection acts at the level of the whole
animal, not just the brain (or the ventral stream). For all these
reasons, the hypothesis I have presented here can only hope
to explain the first order features of the visual hierarchy: the
approximate number of levels, and the approximate manner
in which the relative sizes of levels decrease with hierarchical
level (see Appendix B).

Note that the kind of explanation given here is “epiphe-
nomenal,” in that the visual system in the model would work
even if there were just two levels; it is only selection pressure
to minimize the total number of neurons that leads to parcel-
lating into multiple hierarchical levels. This explanation is
similar, then, in kind to past conjectures for why there are
so many visual areas (Kaas 1977, 1989, 1995, 1997b, 2000;
Cowey 1979, 1981; Barlow 1986), an explanation for why the
number of areas over the entire neocortex changes as it does
as a function of brain size (Changizi 2001b, 2003a, 2005;
Changizi and Shimojo 2005b), and why areas are positioned
where they are within the neocortex (Klyachko and Stevens
2003; Cherniak et al. 2004).

The question of why there are as many visual areas as
there are is inextricably connected to the question of why
there should be areas specialized for intermediate-level com-
plexity visual features. Some have suggested that informa-
tion maximization explains this (Ullman et al. 2002), and
my approach can be interpreted as a complementary sugges-
tion: rather than maximizing information for a given volume
of hardware, which may lead to areas specialized for inter-
mediate-level complexity, I have considered minimizing the
volume of hardware for a given load of information process-
ing that must be implemented, again concluding that this
leads to areas specialized for intermediate-level complexity.
My approach is on the “neuroanatomy” side of the coin, and
viewing the problem in this fashion allows me to predict the
number of hierarchical levels (and also the level–level con-
vergence as discussed in Appendix B). However, it is possible
that the causality is reversed. Rather than the organization of
the ventral stream being what it is because it has been selected
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to accommodate visual objects of a certain degree of com-
plexity, it could be that we recognize visual objects of that
degree of complexity because the organization of the ventral
stream is what it is, due to developmental constraints, and
information is maximized for the given hardware.

Finally, it is natural to ask what the model predicts for non-
human primates and other animals having smaller brains, and
probably fewer areas (Orban et al. 2004; Rosa and Tweedale
2005; Sereno and Tootell 2005; Changizi and Shimojo 2005b;
see Appendix Fig. 3 for summary information on non-human
ventral stream hierarchies). Although the model presented
here is potentially useful for answering this question, we are
not currently in a position to know how the three parameters –
the total combinatorial degree dtot, the total convergence µtot,
and the number of states per module σ – vary as a function of
brain size, or even whether there are scaling laws that describe
them. That is, for primates having a smaller ventral stream, we
do not know which of these three parameters is modulated. It
is useful, however, to note how the predicted (i.e., optimized)
total number of neurons in the ventral stream varies as these
parameters are varied. (1) Lowering the complexity of visual
objects (i.e., lowering the combinatorial degree, dtot) from
dtot = 100 to dtot = 1.1 reduces the predicted (regularized)
total number of neurons from about 109 to 106, as one can see
in Fig. 2a by looking at how the height of the minimum of the
curves (i.e., the optimal total number of neurons) falls as dtot
falls. (2) Lowering the total convergence, µtot, from 104 to 4
reduces the predicted total number of neurons from approx-
imately 1010 to 107, as shown in Fig. 2b. Although such a
modulation to the ventral stream would leave the complex-
ity (i.e., combinatorial degree) of visual objects intact, the
redundancy would decrease, and the ventral stream would
become more error-prone. (3) Lowering the number of states
per module, σ , from 108 to 102 reduces the predicted num-
ber of neurons from approximately 1013 to 105, as shown in
Fig. 2c. Again this modulation would not affect the complex-
ity of visual objects the ventral stream can accommodate, but
the representational power of each module would decrease,
and, intuitively, the “pixel depth” of a percept would deteri-
orate (akin to moving from 32 bit color displays to 16 bit).
(4) In addition to lowering any of these parameters, there
is another aspect that can vary, and thereby lower the total
number of neurons in the ventral stream. Recall that the total
number of neurons discussed in Fig. 2 is actually the regu-
larized total number of neurons, which is the total number
of neurons in the hierarchy below – or eventually converg-
ing to – a top level module. Two different primates having
the same settings for the three parameters mentioned above
can still differ in the number of modules in the top level.
Doubling the number of modules in the top level doubles the
number of modules at every level in the hierarchy, increasing
the resolution at every level, and doubling the total number
of neurons in the ventral stream. So, for example, macaque
could have the same settings for the three parameters as hu-
man, but have, say, 1/10 the number of modules in the top IT
level (corresponding, say, to a repertoire of top-level visual
objects that is one-tenth of what we have), and thereby have

1/10 the total number of neurons in the ventral stream. . . .
and yet still accommodate visual objects of the same com-
plexity as do we, have the same redundancy as do we, and
possess modules with the same representational power (or
pixel depth) as do we. Addressing these scaling questions
in regards to the ventral stream is the subject of continuing
work.

Appendix a: generic information-processing hierarchy

Here I describe a generic information-processing hierarchy
for vision, derive a general equation stating how the num-
ber of neurons in a level varies as a function of level, and
derive an equation stating how the total number of neurons
varies as a function of the complexity of visual objects it must
recognize, and the total number of hierarchical levels.

A.1 Modules, levels and convergence

Each level of the hierarchy is partitioned into modules (e.g.,
columns, barrels, blobs), each of which consists of neurons
having the same receptive field, and the union of all the recep-
tive fields amounts to the entire visual field (or the entire ret-
ina). We assume for simplicity that the receptive fields do not
overlap, but the main results will hold so long as the overlap
percentage itself does not vary as a function of level in the
hierarchy. Each module is capable of σ distinct states. Let
Pi be the number of modules in level i , where i = 0 is the
bottom level (i.e., V1), and i = n is the top level (e.g., some
IT area). There are therefore n + 1 levels in all. Levels above
the bottom progressively have fewer modules, but where each
module has greater receptive field size. See Fig. 1a in main
text. On average, one module in level i + 1 receives inputs
from µ modules from level i;µ is called the level-level con-
vergence. It follows that level i has µ times more modules
than level i +1, i.e., Pi+1 = Pi/µ. Therefore, Pi = Pnµn−i ,
and so P0 = Pnµ

n . The relationship between the level–level
convergence factor, µ, and the number of hierarchical levels
above the bottom, n, is, then,

µ(n) = (P0/Pn)
1/n = (µtot)

1/n, (2)

where µtot = P0/Pn is the total convergence over the entire
hierarchy. This equation indicates that the level–level con-
vergence, µ, depends on n, the number of hierarchical levels
above the bottom; namely, it falls and approaches 1 as the
number of hierarchical levels increases.

A.2 Instructions for the activation of the next level

The sequential activation pattern of a module in level i + 1
depends upon the activations of the µ modules in level i that
converge to it. These µ modules that converge to the same
i+1-level module are called a convergence zone. At any given
time, the zone is potentially capable of σµ states, where recall
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that σ is the number of potential module states; one may think
of a zone state at any given time as a “sentence” of length
µ, where each of the µ spots in the sentence can be filled
by one of σ many different module-words. More generally,
however, not all these σµ states of the zone may need to be
treated differently by the animal; there may, for example, be
redundancies among the µ modules due to statistical regular-
ities in the ecology. Although there are potentially µ degrees
of freedom in each possible zone state, there may in fact only
be d = βµ many degrees of freedom relevant for the i+1-
level module, where β is a fraction and is called the level-level
redundancy constant. d is called the level–level combinato-
rial degree (Changizi 2001c, 2003b; Changizi et al. 2002),
and is the entropy in base-σ ; d ≥1, and if d = 1 then the mod-
ule states in a zone do not interact combinatorially, whereas
greater values of d (until it reaches a maximum of µ) imply
that the modules in a zone act together more combinatorially
in the construction of zone states. The total number of states
per convergence zone is, then, Dz = σβµ(n) = σ d(n), where
I have explicitly noted the dependency of µ and d on the total
number of levels above the bottom, n.

Because the i+1-level module must, by assumption, acti-
vate differently for each of these Dz = σ d many states from
the zone that converges to it, and because the module is capa-
ble of only σ distinct instantaneous states, it follows that
the i+1-level module must encode these Dz many different
representations via its pattern of sequential activation. In
particular, I presume for simplicity that it carries this out
without redundancy, which means that the i+1-level mod-
ule is capable of σ d distinct sequential activation patterns,
each of length d, in response to the σ d many distinct con-
vergence zone states. How does the i+1-level module know
which activation pattern to carry out? There must exist neural
tissue encoding the instructions that tell the module how to
activate in each of the Dz many cases. These “neural instruc-
tions” for the i+1-level module are placed within the zone in
level i . See Fig. 1b. [It would make no substantive difference
to the model if we assumed that the neural instructions for
the i+1-level module are placed in the level i+1.]

A.3 Number of neurons per level

How many neurons are required in a zone to encode both
the visual representations (i.e., the modules) and the instruc-
tions? The visual representations are carried out by the Pi
many modules in a level, where each module is capable of σ
states. Let Npix be the number of neurons needed to accom-
modate the σ states of a module, which we assume to be log-
arithmic in σ ; i.e., Npix ≈ log (σ ). The number of module
neurons in a zone is, then, just µ log(σ ). For the instructions,
recall there are Dz = σ d many instructions, each which must
tell the i+1-level module how to activate in a sequence of
length d , and where each activation of the module is capable
of σ states. The number of neurons needed to specify one
of σ many states is logarithmic in σ , and so the number of
neurons required for the instructions in a zone is Nz,instr ≈
σ d × d × log (σ ). The total number of neurons in a zone is

therefore Nz = µNpix + Nz,instr = µ log (σ ) + dσ d log(σ ).
Because there are Pi/µ many zones per level, the total num-
ber of required neurons in level i is Ni = (Pi/µ)[µ log (σ )+
dσ d log(σ )]. Recalling that Pi = Pnµ

n−i and β = d/µ, we
may manipulate this into Ni = Pnµ

n−i log (σ )[1 + βσ d ].
We may therefore write

Ni ≈ [
Pn log (σ )

] ×
[
1 + βσβµ(n)

]
×

[
µ(n)n−i

]
(3)

where the explicit dependency of convergence, µ, on the
number of levels above the bottom, n, is shown here. One
consequence of this equation is that Ni ∼ µ−i .

A.4 Total number of neurons

The total number of neurons in the visual hierarchy is the
sum of these Ni . Only the last term in Eq. (3) depends on the
level, i , and using the geometrical progression identity, we
can derive that

N =
∑

Ni (n) ≈ [
Pn log(σ )

] ×
[
1 + βσβµ(n)

]

×
[
µ(n)n+1 − 1

]

[µ(n) − 1]
(4)

Recall from Eq. (2) that µ(n) = (µtot)
1/n , where µtot =

P0/Pn is the total convergence over the entire hierarchy. Also
let βtot = βn , which is the total redundancy constant over
the entire hierarchy, and dtot = βtotµtot, which is the total
combinatorial degree over the hierarchy. Then we may write

N ≈ [
Pn log(σ )

] ×
[
1 + (dtot/µtot)

1/nσ d1/n
tot

]

×
[
µ

(n+1)/n
tot − 1

]
[
µ

1/n
tot − 1

] . (5)

The total combinatorial degree of the system, dtot, measures
how many degrees of freedom there are in the construction of
top-level representations; it is the base-σ entropy of a high-
level representation. Intuitively, it is a measure of how com-
plex a high-level representation is, such as of a visual object.
If there were no redundancy – i.e., βtot = 1 – then dtot = µtot,
and the number of degrees of freedom would just be the
total number of bottom-level modules per top-level module
to which they ultimately converge.

It will be useful to define the regularized number of neu-
rons, Nreg = N/Pn , which is the total number of neurons in
the entire hierarchy below a single module in level n (the top
level); i.e., it is the sum of all the neurons in the hierarchy that
are involved in the information that eventually converges to
one top-level module.

Nreg (n, σ, µtot, dtot)≈ log (σ )×
[
1 + (dtot/µtot)

1/nσ d1/n
tot

]

×
[
µ

(n+1)/n
tot − 1

]
[
µ

1/n
tot − 1

] (6)
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Appendix B: summary of hierarchical levels and sizes
for non-humans

The estimates of the visual complexity of objects relied upon
written words, and for this reason the predictions in the main
text do not directly apply to non-human primates and other
mammals. Nevertheless, the model is expected to apply just
as well (or just as poorly) to the ventral stream of other
animals, supposing we can find estimates for the complexity
of visual objects (dtot), the total convergence (µtot), and the
number of states per module (σ ). We note in this appendix
that, although we must recognize that hierarchical orderings
are far from unambiguous, and that there is a tremendous
amount of arbitrariness in the determination of borders for
higher areas (and thus the relative surface areas are unreli-
able for higher areas), current estimates from different stud-
ies lead to the same conclusion that hierarchically higher
areas tend to be smaller than lower areas (Fig. 3). This is
true for three studies of the parcellation for macaque ven-
tral stream (Fig. 3a, b, c), and two studies of the parcellation
for owl monkey ventral stream (Fig. 3d, e). This also ap-
pears to hold for the macaque dorsal stream (Fig. 3f), and
even for the cat visuo-limbic system (Fig. 3g). These plots
are very likely to change considerably as greater knowledge
of the parcellation maps and connectivity are obtained, but
because these studies all conform to the higher-areas-are-
smaller rule, it seems reasonable to tentatively suppose that
this will remain to be true. In the future, the hope is that
the generic information-processing, hierarchical model can
be brought to bear on these other hierarchies, predicting not
just that higher areas should be smaller, but predicting the
rate of exponential decrease of the areas as a function of
level.

The predicted such plot for human – from the results of
this paper – is shown in Fig. 3h, and emanates from Eq.
(3). To understand why this is the predicted plot for human,
consider first that the predicted level–level convergence –
i.e., the convergence from one level to the next, or the num-
ber of modules in a convergence zone – is given by µopt =
(µtot)

1/nopt (see Eq. (2)). Given the “best” prediction for nopt
in the main text (namely nopt = 14), and recalling that the
“best” estimate of the total convergence was µtot ≈ 20, it
follows that the “best” prediction for the level-level conver-
gence is µopt = (20)1/14 = 1.24. Perturbations of any one of
the parameters within its “reasonable” range (as discussed in
Sect. 7 of the main text) lead to µopt ∈ [1.13, 1.65] for dtot ∈
[2, 10], µopt ∈ [1.10, 1.43] for µtot ∈ [4, 102], and µopt ∈
[1.16, 1.45] for σ ∈ [102, 106]. Therefore, the predicted
convergence, µopt, may range from about 1.1 to 1.65, with
a “best” prediction of 1.24. From Eq. (3) in Appendix A,
Ni,opt ∼ µ−i

opt, and thus I expect Ni,opt/Nopt ∼ (1.24)−i , and
this prediction for human is shown in Fig. 3. In other words,
I expect to find that the sizes of areas for the human ventral
stream should fall as approximately Ni/N ∼ µ−i , where µ
is approximately 1.24, ranging as low as perhaps 1.1 and as
high as 1.6.
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