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Abstract. There is a significant delay between the time when light hits the retina and the time
of the consequent percept. It has been hypothesized that the visual system attempts to correct
for this latency by generating a percept representative of the way the world probably is at the
time the percept is elicited, rather than a percept of the recent past. Here we show that such
a ‘perceiving the present’ hypothesis explains a number of classical geometrical illusions: the
Hering, Orbison, Miiller-Lyer, Double Judd, Poggendorff, Corner, and Upside-down-T illusions.
Each stimulus is perceived as it would project in the next moment were the observer moving
through the scene the stimulus probably represents. We also examine one general class of predictions
made by the hypothesis, and report psychophysical experiments confirming the predictions.

1 Introduction

One might expect that it would be advantageous for humans to have visual percepts
that accurately reflect reality. Such veridical perception is difficult to achieve, however,
because visual percepts are elicited on the order of magnitude of 100 ms after the
time light hits the retina (Lennie 1981; De Valois and De Valois 1991; Maunsell and
Gibson 1992; Schmolesky et al 1998), and by then the world or the observer’s position
within it has often changed. It has been hypothesized that the visual system attempts
to correct for this latency: rather than generating percepts of the way the world
probably was roughly 100 ms before, the visual system generates percepts represen-
tative of the way the world probably is at the time the percept is actually generated
(De Valois and De Valois 1991; Nijhawan 1994, 1997, 2001; Berry et al 1999; Khurana et al
2000; Schlag et al 2000; Sheth et al 2000; Changizi, in press; latency correction is under
debate: Baldo and Klein 1995; Khurana and Nijhawan 1995; Lappe and Krekelberg 1998;
Purushothaman et al 1998; Whitney and Murakami 1998; Krekelberg and Lappe 1999;
Brenner and Smeets 2000; Eagleman and Sejnowski 2000; Khurana et al 2000; Whitney
and Cavanagh 2000; Whitney et al 2000). Changizi (2001) used this ‘perceiving the
present’ hypothesis to explain some simple cases of misperceptions of projected angle
and projected size. Our primary goal in this paper is to demonstrate how the same
hypothesis explains many of the classical geometrical illusions, including the Orbison,
Hering, Poggendorff, Corner, Miiller-Lyer, Double Judd, and Upside-down-T illusions
(see figure 4). The paper is structured as follows. In section 2 we present a criticism
of the most widely accepted hypothesis used to explain the classical illusions; we refer
to this theory as the traditional inference approach. In section 3 we show how the
latency-correction hypothesis explains the classical geometrical illusions as well as
some predicted novel illusions. In section 4 we present a set of psychophysical pre-
dictions made by the theory, and report experimental results conforming well to the
predictions.
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2 The traditional inference approach

One of the most venerable and well-entrenched functional theories of the geomet-
rical illusions is what we will call the traditional inference approach (Helmholtz 1867/
1962; Gregory 1963, 1997; Rock 1975, 1983, 1984; Gillam 1998; Nundy et al 2000), also
sometimes referred to as constancy scaling (Gregory 1963, 1997). Before stating what
the general form of this kind of theory is, we must distinguish between two kinds of
perception. The first kind of perception concerns the properties of objects in the world
independent of the observer’s position, eg the perception of the angle between two
tree branches, or the perception of the height of a tree. The second kind of perception
concerns the manner in which objects in the world project toward the observer’s eye,
eg the perception of the angle that a pair of tree branches projects toward the eye,
or the perception of the projected size of (or how much of the visual field is filled by)
a tree. A number of terms have been used to mark this distinction, including ‘objective’
versus ‘projective’ (Gillam 1998), ‘pictured three-dimensional scene’ versus ‘picture
surface’ (Sedgwick and Nicholis 1993), ‘distal mode’ versus ‘proximal mode’ (Palmer
1999), ‘visual world’ versus ‘visual field’ (Gibson 1950), ‘constancy’ versus ‘proximal’
(Mack 1978), and ‘world’ versus ‘proximal’ (Rock 1983). We favor the first of these, and
will write ‘objective angle’ and ‘objective size’ to refer, respectively, to the real-world
angles and sizes of objects; and we will write ‘projected angle’ and ‘projected size’ to
refer, respectively, to the projected angles and projected sizes of objects.

By way of introducing the traditional inference approach to explaining the geomet-
rical illusions, consider figure 1, where observers perceive the bold vertical line on
the right to have greater projected size than the bold vertical line on the left; this is the
illusion. Note the observers also perceive the objective size of the line on the right to
be greater; that is, they perceive that it is a taller object in the depicted scene, when
measured by a ruler in, say, meters. But this latter perception of objective size is not
what is illusory about the figure: no one is surprised to learn that observers perceive
that the line on the right has greater objective size in the depicted scene. What is
illusory is that observers perceive the line on the right to have greater projected size—
to fill more of the visual field—than the line on the left, despite their projected sizes
being identical.

Figure 1. An illusion which is a variant of the Miiller-Lyer
illusion. The two bold vertical lines are the same pro-
jected size, but the right-hand one appears to have greater
projected size.
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The traditional inference explanation for this illusion states that the line on the
right is perceived to be longer because the cues suggest that it probably is longer.
Describers of the theory will usually also say that such a perception is useful for us in
the real-world scene version of figure 1 —ie when you are standing in front of a real
hallway—but when the stimulus is from a piece of paper as it actually is in this figure,
this perceptual strategy is said to become “inappropriate”. There is, however, a deep
conceptual problem with this explanation. To start, let us look again at the main
statement, which is along the lines of:
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The line on the right is perceived to be longer because the cues suggest that it probably

is longer.
What does the statement mean by ‘longer’? The first possibility is that it means
‘greater objective size’. That is, the statement would be:

The line on the right is perceived to have greater objective size (eg in meters) because
the cues suggest that it probably is greater in objective size.

The statement in this case would be fine, as far as it goes, since it is certainly useful
to perceive the objective size to be what it probably is. For example, if the line on
the right is probably 3 m high, then it is appropriate to perceive it to be 3 m high.
However, this interpretation is no longer relevant to the illusion, since the illusion
concerns the misperception of their projected sizes.

The second possible interpretation is that ‘longer’ means ‘greater projected size’, in
which case the statement becomes:

The line on the right is perceived to have greater projected size (measured in degrees)

because the cues suggest that it probably is greater in projected size.

This, however, is inadequate because the cues do not suggest that the line on the right
has greater projected size. The lines have, in fact, identical projected size, and unam-
biguously project with identical projected sizes onto the retina.

So far, the traditional inference explanation statement is either irrelevant (the first
interpretation) or false because the cues do not suggest that the line on the right has
greater projected size (the second interpretation).

The third and final possible interpretation we will consider is that the first occur-
rence of ‘longer’ is interpreted as ‘greater projected size’ and the second occurrence of
‘longer’ is interpreted as ‘greater objective size’. That is, in this possibility the statement
is equivocating between two meanings of ‘longer’. The statement is now:

The line on the right is perceived to have greater projected size (measured in degrees)
because the cues suggest that it probably is greater in objective size (bigger in meters).

This appears to be the interpretation that people actually have, at least implicitly, when
they state this view. It is sometimes even phrased as something along the lines of “the
perception of the projective properties of the lines are biased toward the probable
objective properties of the lines”. The statement is not irrelevant as in the first inter-
pretation; this is because the claim concerns the perception of projected size, which
is what the illusion is about. The statement also does not err, as in the second inter-
pretation, by virtue of claiming that the line on the right probably has greater projected
size. One preliminary problem concerns what it could possibly mean to bias a projective
property toward an objective property; how can something measured in degrees get
pushed toward something that is measured in, say, meters? Another issue concerns
how much the projected size should be increased in the probably-objectively-longer line;
there is no theoretical apparatus providing an answer to this.

We will focus on another problem, which concerns the supposed usefulness of
such a strategy for vision: of what possible use is it to perceive a greater projected size
merely because the objective size is probably greater? The goal of the visual system
according to these traditional inference approaches is to generate useful percepts,
and, in particular, to generate percepts that closely represent reality (because this will
tend to be useful). To represent accurately the projected sizes in figure 1 would be to
perceive them as being identical in projected size. The visual system would also want
to perceive them as having different objective sizes, but there is no reason—at least
none that this traditional inference explanation gives—for the visual system to misper-
ceive the projected sizes.
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It is sometimes said that the illusion is only an illusion because figure 1 is just on
a piece of paper. The inferential strategy of increasing the perceived projected size of
the line on the right because it is probably objectively longer is inappropriate in this
case because, it is said, the figure is just a figure on a page, where the lines in fact
have the same objective size. If, the argument continues, the proximal stimulus were,
instead, due to a real live scene, then the strategy would be appropriate. Unfortunately,
the strategy would be inappropriate in this latter scenario too. To see this, let us
imagine that the stimulus is not the one in figure 1, but, instead, you are actually
standing in a hallway of the kind depicted, and your eye position is placed in just such
a manner that the line on the right has the same projected size as the one on the left.
Is there anything ‘appropriate’ about perceiving the line on the right to have greater
projected size merely because its objective size is probably greater? It is not clear what
would be useful about it, given that its projected size is the same as that of the line
on the left, and perceiving their projected sizes to be equal does not preclude perceiv-
ing their objective sizes to differ. (For another example, hold your finger out until it
fills just as much of your visual field as a tree off in the distance. You now perceive
their projected sizes to be identical, but you also perceive the tree to be objectively larger.)

3 Explaining the geometrical illusions

In this section we explain how the latency-correction hypothesis explains the classical
geometrical illusions. In section 3.1 we answer the question: what is the probable scene
underlying each geometrical stimulus? This includes determining what the lines are
and where they are with respect to the observer’s direction of motion. In section 3.2
we look at the geometrical illusions that are misperceptions of projected angle, which
include the corner, Poggendorff, Hering, and Orbison illusions. In section 3.3 we
explain the illusions of projected size or projected distance, which include the Double
Judd, Miiller-Lyer, Hering, Orbison, and Upside-down-T illusions.

3.1 The probable scene and observer direction of motion
Recall that the latency-correction hypothesis is as follows:

On the basis of the retinal information, the visual system generates a percept representative

of the scene that will probably be present at the time of the percept.
[Note that we are not making any claim about sow the visual system might implement
latency correction. Also, note that there is no implication that observers should
actually perceive motion from a static stimulus; observers should just perceive the
scene that would probably be present by the time the percept occurs. If the stimulus is
unchanging, then the elicited percept will always be the same.] Changizi (2001) put
forth a ‘carpentered world model’ as a simplification which allowed us to make predic-
tions from the latency-correction hypothesis. The central assumption is that there are
predominantly the following three kinds of line in our experiences:

e x lines are the lines that lie parallel to the ground, and perpendicular to the
observer’s direction of motion.

e y lines are the lines that lie perpendicular to the ground, and are also perpendicu-
lar to the observer’s direction of motion.

e z lines are the lines that lie parallel to the ground, and are also parallel to the
observer’s direction of motion.

Such lines are called principal lines, and are depicted in figure 2. [Note that we expect
this model to apply only to people living in carpentered environments; those living
elsewhere do not, in fact, appear to experience the classical geometrical illusions in the
same manner (Segall et al 1966).]
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The manner in which principal lines project towards an observer was discussed in
Changizi (2001, pages 197-198), and may be understood by considering projection
spheres on which x, y, and z lines have been projected (see figure 3). From this it is
possible to determine several rules by which, given some projected line in a proximal

X

Vanishing \
point z
X
z x / z
¥ / y
y
y + y ¥
y
X
z Figure 2. A sample geometrical figure
Y5 showing the probable kind of source line
for each line segment in the stimulus. The
Y assumed observer direction of motion in
- such a stimulus is toward the vanishing
/ point. The classical geometrical figures
- will be interpreted in this fashion.
overhead overhead
right = left right L left
below below
x line projections y line projections
overhead
right left
below

z line projections

Figure 3. A projection sphere allows us to visualize the way things in the world project toward an
observer. Projections are, by definition, devoid of depth information; they possess only information
about the direction from which the stimulus was received. The set of all possible such directions
from the outside world toward the observer’s eye can be encapsulated as a sphere with the observer’s
eye at its center; each point on the sphere stands for a different projection direction from the outside
world. This figure shows how the three kinds of line may project toward the observer within our
simple model. Note that each of these figures depicts a sphere (even the z-line one), and the contours
are on the near surface. The three projection spheres show, respectively, how x lines, y lines, and
z lines project toward an observer. The focus of expansion is shown as the cross.
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stimulus or figure, the probable source line can be determined (see Changizi 2001,
page 198). Here we record these rules, but in more detail.

Rule 1: If there is a single set of oblique projected lines sharing a vanishing point,
then their sources are probably z lines.

Rule 2: A horizontal projected line that does not lie on the horizontal meridian is
probably due to an x line.

Rule 3: A horizontal projected line that does lie on the horizontal meridian may
be due either to an x line or to a z line.

Rule 4: A vertical projected line that does not lie on the vertical meridian is probably
due to a y line.

Rule 5: A vertical projected line that does lie on the vertical meridian may be due
either to a y line or to a z line.

Rule 6: When there are two sets of projected lines with different vanishing points,
the set with the more salient vanishing point probably consists of projections of
z lines, and the other of either x or y lines, depending on where they point.

Rule 7: The probable location of the focus of expansion is the vanishing point of
the projected z lines.

[One important aspect of the probable scenes that this simple model does not accom-
modate is distance from the observer. If all the probable sources were as in the model,
but were probably a mile away, then we can expect no change in the nature of the
projections in the next moment. It is reasonable to assume that latency correction will
be primarily tuned to nearby objects, objects that we can actually reach, or that we
might actually run into. Accordingly, it is plausible that the visual system interprets
these geometrical stimuli as scenes having a distance that is on the order of magnitude
of meters away, rather than millimeters of hundreds of meters (see also Cutting and
Vishton 1995).]

These rules can now be applied to the illusions from figure 4, both in determining
what are the probable sources of the stimuli, and in determining what is the probable
direction of motion for the observer. Each projected line in figure 4 has been labeled
with the probable kind of source line as determined by the rules. The explanations for
the probable sources are as follows.

e No vertical line in any of the illusory figures has cues suggesting it lies along the
vertical meridian, and thus each is probably due to a y line.

e Of all the horizontal lines, only the one in the Upside-down-T illusion possesses a
cue that suggests it might lie along the horizontal meridian. The cue is that there
is a T junction, and such junctions are typically due to three-dimensional corners
(ie x —y —z corners). The horizontal segment of the T junction is probably, then,
due to two distinct segments, one the projection of an x line, and one the projection
of a z line. That is, it is probably a corner that is being viewed ‘from the side’.
We have arbitrarily chosen the left segment to be the projection of an x line, but
the cues in the Upside-down-T illusion (which consists of just the upside-down T)
do not distinguish which is which.

e All the remaining horizontal projected lines are parts of stimuli without any cues
to suggest that they lie along the horizontal meridian, and so are thus due to
x lines.
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Figure 4. Eight classical geometrical illusions. Corner Poggendorff: the line through the corner
of the rectangle appears to be bent. Poggendorff: the line through the rectangle appears to be
two, parallel, noncollinear lines. Ponzo: the higher horizontal line appears to be longer than the
same-length lower one. Upside-down T: the horizontal bar appears to be shorter than the same-
length vertical bar resting on top of it. Hering (also a variant of the Zollner stimulus): the two
parallel lines appear to be farther apart as one looks lower. Orbison: the right angles near the
top appear to be acute, and the right angles at the bottom appear to be obtuse. Miiller-Lyer:
the vertical shaft on the left appears longer than the same-length one on the right. Double
Judd: the vertical shaft of the left figure appears higher than the same-height one on the right.
[See Coren and Girgus (1978) for references; see Greene (1988) for the Corner Poggendorff]
Also, for each projected line the probable kind of source line—x, y, or z—is shown, as well as
the approximate probable location of the focus of expansion (FOE).

e All that is left are the obliques. In the Hering, Orbison, Ponzo, Corner, and Poggendorff
illusions there exists just one set of converging obliques, and they are thus probably
due to z lines.

e In each of the Miiller-Lyer and the Double Judd illusions there are two sets of
converging projected lines: one set consists of the four inner obliques (the ones
in between the two vertical lines), and the other set consists of the four outer
obliques (the ones not in between the two vertical lines). The four inner obliques
are more salient and clustered, and appear to share a vanishing point more clearly
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than do the outer ones. The inner obliques are therefore probably due to z lines.
Since the outer obliques have a vanishing point horizontally displaced from the
vanishing point for the inner obliques, the outer obliques must be due to x lines.
[Although this serves as an adequate first approximation, greater analysis in fact
reveals that the outer obliques probably do not share a vanishing point at all (and
thus they cannot all be principal lines). Consider just the Miiller-Lyer figure for
specificity. Lines in the world project more obliquely as they near their vanishing
point (see figure 3). The two outer obliques on the left are far in the visual field
from the two outer obliques on the right; if they were projections of the same
kind of line in the world, then they would not project parallel to one another, one
pair being considerably closer to the vanishing point (for that kind of line) than
the other. But the outer obliques on the left are parallel to the outer ones on the
right, and thus they cannot be projections of the same kind of line, and they do
not point to a single vanishing point. Only the four inner obliques are approxi-
mately consistent with a single vanishing point.]

Now that we know what the probable sources are for the eight illusory proximal
stimuli, we can use the information about the projected z lines to determine the focus
of expansion. That is, the z line vanishing point is the focus of expansion. Figure 4
also shows where each stimulus probably lies with respect to the focus of expansion.

e For the Hering, Ponzo, Orbison, and Miiller-Lyer stimuli there is exactly one focus
of expansion determined by the projections of the z lines, and figure 4 shows this.
Also, figure 5 shows the key features of these figures embedded in a radial display
at the appropriate location with respect to the probable focus of expansion (ie the
vanishing point). Notice that for the Miiller-Lyer stimulus the fins act as cues as
to the location of the focus of expansion, and that in figure 5, where the radial display
does the cueing work, the fins are no longer necessary for the illusion.

e The projected z lines for the double Judd stimulus are so similar in orientation
that they may converge either up and to the right of the figure, or down and to the
left of it; that is, the focus of expansion may be in one of these two spots. Figure 4
shows just one of these. The fin-less version of the double Judd illusion has been
placed in figure 5 into these two positions with respect to the focus of expansion.
Note that the illusions are qualitatively identical in each case to the earlier one
(since the cues to the focus of expansion are provided by the radial display rather
than by the fins).

e The Corner and Poggendorff illusions could have the focus of expansion placed
anywhere so long as the projected z line is at the same angle; one spot has been
chosen arbitrarily in figures 4 and 5. Any conclusions drawn later will not depend
on this choice.

e The Upside-down-T illusion could be placed on either side of the vertical meridian
(with respect to the focus of expansion), so long as the horizontal segments lie
along the horizontal meridian. One spot has been arbitrarily chosen in figures 4
and 5. Any conclusions drawn later will not depend on this choice.

Recall that, under the latency-correction hypothesis, in addition to determining
the probable scene causing the proximal stimulus—which is what we have done thus
far—we must also figure out how that scene will probably change by the time the
percept occurs. Since we know the probable scene, and we know which direction
the observer is probably moving, all we have to do is to determine how the sources
will project when the observer is moved forward a small amount.
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Figure 5. The misperceived segments from the classical illusions in figure 4 have been placed in
a radial display in such a way that the center of the radial display is at the position of the prob-
able focus of expansion for each figure. Because the radial display is now serving to cue the
probable location of the focus of expansion, we expect, and indeed find, the same illusions as in
figure 4. This suggests that it is cues to the location of the focus of expansion that is of primary
importance in the illusions. In the case of the Double Judd and Miiller-Lyer figures, for example, the
radial display does the work that the fins did in figure 4. Note that because the Double Judd
stimulus is also consistent with being in the upper right quadrant, it has been placed there as
well as in the bottom left quadrant. The Corner and Poggendorff stimuli could be placed anywhere
in the radial display so long as radial lines traverse them in the appropriate fashion.

3.2 Projected-angle misperception

The Corner, Poggendorff, Hering, and Orbison illusions can be treated as misperceptions
of projected angle. In the Corner and the Poggendorft illusions the angles appear to
be nearer to 90° than they actually are. The same is true for the angle between the vertical
line and the oblique lines in the Hering illusion. In the Orbison illusion, the right angles
appear to be bent away from 90°. How do we make sense of these projected-angle
illusions? And why are some misperceived towards 90° and some away from it?

First, following Changizi (2001), let us distinguish between two kinds of projected
angle. Since there are just three kinds of line in the model, the only kinds of angle
are those that result from all the possible ways there are to intersect these kinds of
line. They are the x—y, x—z, and y—z angles; these are the principal angles. That is,
x —y angles are any angles built from an x line and a y line, and so on. The x —z and
y —z angles are actually similar in that, because they have a z arm, the plane of these
angles lies parallel to the observer’s direction of motion. We call x —z and y — z angles
‘xy — z angles’ The x — y angles, on the other hand, lie in a plane perpendicular to the
observer’s direction of motion, and must be treated differently.

3.2.1 Projected xy—z angles. Note that the Corner, Poggendorff, and Hering illusions
have angle misperceptions where the angles are xy—z angles (see figure 4), and the
misperception is that observers perceive the projected angles to be nearer to 90° than
they actually are. Why is this? The latency-correction hypothesis says it is because in
the next moment the angles will project nearer to 90°, and thus the misperception is
typically a more veridical percept (but is inappropriate in the case of a static stimulus
on the page). But do xy—z angles actually project closer to 90° in the next moment?
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Figure 6. (a) A projection sphere upon which x and z lines are projected; their intersections are
x —z angle projections. Notice how, along any radial line, the angles of intersection between x
and z lines become more like 90° in the periphery (see the asterisks); that is how they change
in the next moment, since the angles move radially toward the periphery as the observer moves
forward. (b) A projection sphere upon which y and z lines are projected; their intersections are
y —z angle projections. Notice how, along any radial line, the angles of intersection between y
and z lines become more like 90° in the periphery (see the asterisks); this is how they change
in the next moment. Thus, xy -z angles are predicted to perceptually ‘regress’ (Thouless 1931)
toward 90°.

Yes, and this was demonstrated in Changizi (2001), and can also be comprehended by
examining projection spheres upon which xy — z angles have been projected (see figure 6).

The Poggendorff stimulus has another salient illusory feature in addition to the
projected angles being perceived nearer to 90° than they are: the two oblique lines are
collinear, but do not appear to be. Each oblique line appears, intuitively, to undershoot
the other. Latency correction explains this illusory feature as follows. Suppose that a
single z line lies above you and to your left along the wall (perhaps the intersection
between the wall and the ceiling). Now also suppose that there is a black rectangle on
your upper left, but lying in your frontoparallel plane. That is, the rectangle is made
of x and y lines. Suppose finally that the rectangle is lying in front of the z line. The
projection of these objects will be roughly as shown by the Poggendorff illusion in
figure 4. We say “roughly” because the projection will not, in fact, be as in this figure.
Consider first the projected angle the z line will make with the right side of the rectan-
gle. Suppose it is 60°; that is, the (smaller) y — z angle on the right side of the rectangle
is 60°. What will be the projected angle between the same z line and the other vertical
side of the rectangle? The part of the z line on the other vertical side of the rectangle
is farther away from the focus of expansion and more in your periphery. Thus, this
more peripheral y —z angle will be nearer to 90°; let us say 63° for specificity. That
is, when the same z line crosses through or behind a rectangle as constructed, the
projected angles will not be the same on either side. Now, the two projected angles in
the Poggendorff figure are the same on either side, and thus the projected lines on
either side cannot be due to one and the same z line. Instead, the more peripheral y —z
projected angle, being farther from 90° than it would be were it to be the projected
angle made with the z line from the other side, must actually be due to a line that is
physically higher along the wall. The visual system therefore expects that, in the next
moment (ie by the time the percept is generated), the oblique projected line on the
left should appear a little higher in the visual field compared with the extension of
the oblique line on the right (since differences in visual-field position are accentuated
as an observer moves forward).
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3.2.2 Projected x — y angles. The Orbison illusion primarily concerns the misperception
of the four projected angles, each of which is 90°, but which observers perceive to be
greater or lower than 90°. The squares in the Orbison illusion are composed of x
and y lines (figure 4), and we must ask how the projections of x —y angles change as
observers move toward the focus of expansion (which is the vanishing point of the
projected z lines in the Orbison figure). Changizi (2001) demonstrated the manner in
which x -y angle projections change when an observer moves forward: x —y angles
project further away from 90° in the next moment; they are ‘repulsed’ away from 90°
instead of regressed toward 90° as in xy — z projected angles. Furthermore, the direction
in which a projected x — y angle will get pushed away from 90° depends on the orientation
of the angle and its position relative to the focus of expansion. This may also be under-
stood by examining a projection sphere on which x and y lines have been projected,
as shown in figure 7. The latency-correction hypothesis therefore predicts that if cues
suggest that a projected angle is due to an x —y angle, then observers will misperceive
the angle to be whatever it will probably be in the next moment (by the time the
percept is elicited). Figures 6 and 7 of Changizi (2001) show that observers misperceive
projected x — y angles as predicted, and the Orbison illusion is just a special case.

overhead

Figure 7. A projection sphere upon which x and y lines are
projected; their intersections are x-—y angle projections.

left Notice how, along any radial line, the angles of intersection
between x and y lines become less like 90° in the periphery
(see the asterisks and hash signs); that is how they change
in the next moment since the angles move radially toward the
periphery as the observer moves forward.

right

below
X — y angles

3.3 Projected size misperception

We have now seen that the illusions of projected angle—the Corner, Poggendorff, Hering,
and Orbison illusions—are just what we should expect if the visual system engages
in latency correction. We have not, however, touched upon the Double Judd, the
Miiller-Lyer, or the Upside-down-T illusions. Each of these illusions involves the mis-
perception of a projected distance or a projected size. Even the Hering illusion can be
treated as a misperception of projected distance, since the projected distance between
the two lines appears to be greater nearer the vanishing point. The Orbison illusion,
too, can be classified as a misperception of projected size since the sides of the squares
are not all perceived to be the same projected length. In this section we describe how
latency correction explains these projected size illusions.

3.3.1 Projected x and y lines. How do the projected sizes of x and y lines change as an
observer moves forward? Let us focus on how x projections change, and what we
learn will immediately apply to y line projections as well. Figure 8a of Changizi (2001)
demonstrates the manner in which a point in an observer’s visual field moves horizon-
tally away from the vertical meridian as the observer moves forward; it may also be
understood by examining the projection sphere in figure 8a here. There is one major
summary conclusion we can make concerning how projected x lines change as observers
move forward:

The projected distance between any point and the vertical meridian increases as observers
move forward. Furthermore, this projected distance increase is maximal for points
lying along the horizontal meridian, and falls off as the point gets farther away from the
horizontal meridian.



1252 M A Changizi, D M Widders

overhead overhead

x line change y line change

(@ (b)

Figure 8. Projection spheres with x, y, and z line projections. (a) This aids us in understanding
how projected sizes of x line projections change as an observer moves forward. The innermost
pair of squares and circles depict the sides of a doorway that is far in front of an observer, the
squares are at eye level (ie lying on the horizontal meridian) and the circles above eye level. The
projected distance between the two squares is about the same as that between the two circles.
But as an observer moves forward, in the next moment the sides of the door expand, the sides
at eye level project as the next-farther-out pair of squares, and the sides above eye level project
as the next-farther-out pair of circles. The horizontal projected distance between the squares is now
greater than that between the circles. (The horizontal projected distance between the circles is the
length of the great circle contour, a projected x line, connecting them on the projection sphere.)
Similarly, in the next moment the sides are depicted by the next pair of squares and circles.
(b) Identical to (a) but shows how vertical projected distances grow most quickly when they liec along
the vertical meridian.

This statement is just another way of saying that as you approach a doorway, its sides
bow out most quickly at eye level (and less and less quickly the further it is from eye
level). The analogous conclusion holds for y lines:

The projected distance between any point and the horizontal meridian increases as
observers move forward. Furthermore, this projected distance increase is maximal for
points lying along the vertical meridian, and falls off as the point gets farther away from
the vertical meridian.

These conclusions are sufficient to explain the projected size illusions shown in
figure 4, except for the Upside-down-T illusion (which we take up in the next section).
We will explain each in turn.

Double Judd. The Double Judd illusion consists of two projected y line segments,
projections that do not cross the horizontal meridian (see figure 4). It suffices to
treat each segment as if it were a point. We are interested in the projected distance
between each segment and the horizontal meridian. They are, in fact, the same in the
figure. However, the conclusion above states that in the next moment the segment
nearer to the vertical meridian—ie the inner segment in figure 5S—will have a greater
distance from the horizontal meridian than the other segment. The latency-correction
hypothesis therefore predicts that observers will perceive the segment that is nearer
to the vertical meridian to have greater projected separation from the horizontal
meridian. And this is just the illusion that occurs with the Double Judd stimulus: If
the focus of expansion is up and to the right of the figure, then the right y line segment
is nearer to the vertical meridian, and should be perceived to be lower (ie farther
from the horizontal meridian which is above) than the left y line. Alternatively, if the
focus of expansion is down and to the left of the figure, then the left y line segment
is nearer to the vertical meridian, and should be perceived to be higher (ie farther
from the horizontal meridian which is now below) than the right y line. [A similar
explanation would work if the Double Judd stimulus was rotated by 90°]
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Miiller-Lyer. The Miller-Lyer illusion consists of two projected y line segments,
projections that do cross the horizontal meridian. Consider just the tops of each pro-
jected y line. The top of the projected y line on the left in figure 4 is nearer to the
vertical meridian than the top of the other projected y line, and so it will move upward
more quickly in the next moment. Thus, the projected distance between the top of the
left projected y line and the horizontal meridian should appear to observers to be
greater than that for the right projected y line. The same also holds for the lower
halves of each projected line, and thus the total projected distance from the top to
the bottom of the left projected line will be greater in the next moment than that of the
right projected line, and thus should be perceived in that way if latency correction
applies. And, of course, this is the illusion in the case of the Miiller-Lyer stimulus.

Ponzo. The explanation for the Ponzo illusion follows immediately from the argument
for the Miiller-Lyer illusion, except that it concerns the distance from points to the vertical
meridian.

Hering. In the Hering illusion in figure 4, there are two projected y lines on either
side of the vertical meridian. The projected distance between the lines depends on
how high one is looking above or below the horizontal meridian. At the horizontal
meridian the perceived projected distance between the two projected y lines is greatest,
and it falls as one looks up or down. The conclusion concerning x lines above explains
this: points on one of the Hering lines nearer to the horizontal meridian will, in the
next moment, move away from the vertical meridian more quickly. [A similar explana-
tion would hold if the Hering stimulus had been presented as two projected x lines
lying on either side of the horizontal meridian.]

We see, then, that one simple latency-correction rule underlies these four, seemingly
distinct, classical geometrical illusions. The same explanation holds for any stimulus
for which the probable sources and the probable focus of expansion are as above; and
we may accordingly predict novel illusions. Figure 9 shows three such novel stimuli,
and, as predicted by the model, each of these stimuli lead to the same kind of illusion
(the last of which is contrary to the classical Miiller-Lyer illusion).

—

(@ (b) ©

Figure 9. Three predicted illusions. The projected size of the vertical bold lines are the same in
each figure, but the left one appears larger in each case because the cues suggest that the focus
of expansion is to the left, and thus the left one will grow more quickly in the next moment.
Note that in (c) the illusion is the opposite of the standard Miiller-Lyer: the fins-in line appears
longer than the fins-out line. This is because the entirety of cues suggests the focus of expansion
is nearer to the left vertical line.

3.3.2 Projected z lines. The projected size and distance illusions discussed above
concerned the projected sizes for x and y lines. What about the projected size of
z lines? Consider how projected z line segments change as an observer moves forward.
When the segment is very far away, it projects a small image, and as you get closer
it projects a larger image. This is no different from the behavior of x and y lines.
Consider, though, how a z line projection changes when you are already relatively
nearby. It still projects larger in the next moment. This is partly because it is closer,
but also partly because it begins to project more perpendicularly toward the observer.
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Consider, as a contrast, how an xline segment lying on the horizontal meridian and
to one side of the vertical meridian projects as an observer near it moves forward.
Eventually, the xline begins to project less perpendicularly toward the observer—ie less
of the line is facing the observer. When the observer passes the xline, its projected size
will have fallen to zero. For the z line segment, however, when the observer passes it,
its projected size will be at its maximum.

We can now ask and answer the question of how the probable source of the
Upside-down-T illusion will change in the next moment. Recall that the source of the T
is a corner made of x, y, and z lines, whose point lies on the horizontal meridian,
and thus so do the x and z lines. The probable focus of expansion is somewhere on
the same side as the z arm, but past the tip of the projected z arm (eg see figure 4).
The projected size of the horizontal bar is due to the sum of the projected sizes of the
x line and the z line, these lines being at right angles to one another in the world.
Suppose each line has a length L m. Its projected size could then be mimicked by a
single straight real-world line (it is not a principal line) going from the tips of each
line, and whose real-world length is (L> + L*)"/?, that is 1.414L. The yline must, then,
be approximately 1.414L m long as well, since it projects the same projected size
and is approximately the same distance away. Consider now what happens when the
observer is about to pass the corner. Since the xline is to one side of the vertical
meridian, its projected size has fallen to 0°. The projected size of the z arm is at its
maximum, however. The bottom of the yarm rests on the horizontal meridian, and
it will therefore not get smaller in the last moments before it is passed, but, instead,
will increase to its maximum. Since the z line is of length L and the y arm length
1.414L, and since each is about the same distance from the observer, the projected size
of the yarm will be about 1.41 times as large as the projected size of the z arm. This
is how the corner will project when the observer is just passing it, but the more
general conclusion is, then, that the total projected size of the bottom of the T grows
less quickly than does the projected size of the y line. Latency correction therefore
predicts that observers will perceive the vertical line to have greater projected size, as
is the case.

In the explanation of the Upside-down-T illusion, we learned that, when relatively
nearby, x line segments lying on the horizontal meridian and on one side of the
vertical meridian—Ilike the one in the Upside-down-T illusion—increase their projected
size more slowly than do z line segments lying in the same part of the visual field.
We can use this observation to predict a novel illusion. Figure 10 shows two identical

O

Figure 10. Two predicted illusions. First, the left horizontal line appears to have smaller
projected size than the right one, but they are identical. The reason is that the right one is
probably due to a z line (being part of the flag on the wall), whose projected size will increase
in the next moment more than that of the x line on the left. Second, and for the same reason,
the horizontal line on the right appears to have greater projected size than the adjacent vertical
line, but the two lines on the left appear roughly identical (and, the predicted perception on the
left is that the vertical line should be a little larger than the horizontal line).
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horizontal lines lying on the horizontal meridian, one on each side of the vertical
meridian. The one on the left has cues suggesting it is due to an x line, and the one on
the right has cues to suggest that it is due to a z line. Although they are at equal
distances from the vertical meridian, the z line appears to have greater projected size,
as latency correction predicts. (The bold vertical lines are also identical in projected
size to the horizontal lines.)

4 Psychophysical prediction and confirmation

Figure 11 shows how much a point in an observer’s visual field moves away from the
horizontal meridian in the next moment. The figure for movement away from the vertical
meridian is identical, but rotated by 90°. This figure encapsulates and greatly extends
most of the predictions and explanations the model of latency correction has made in
this paper (namely, all those illusions that did not rely on misperception of the projected
size of z lines).

overhead
90° from FOE

Figure 11. Change in projected distance from the horizontal meridian as a function of position
within the visual field. The rim of the circle is 90 deg from the focus of expansion. The plot has
a linear gray scale, with white representing 0 deg projected distance change, and black represent-
ing approximately 2 deg. The two dots are props referred to in the text. To help explain the
plot, suppose you are walking down a long corridor toward a doorway at the end. When you begin,
the top of the doorway is nearly at the focus of expansion (FOE), but just slightly above it. In the
plot, the gray scale is very white here, telling us that the top of the door does not move upward
in the visual field very much in the next moment. As long as you are far away, the top of the
doorway moves slowly upwards in your visual field. As you get nearer, though, the doorway is
high enough in your visual field that it is well within the darker regions above the focus of
expansion in the plot, and it thus moves upward in your visual field very quickly in the next
moment. As you begin to pass it, the doorway is nearly overhead, and slows down a bit before
it finally goes behind you. The plot was generated by simulating forward movement around a
point, starting at a z distance of 1 m, and moving with speed 1 m s™' for 100 ms. By rotating the
plot by 90°, one obtains the plot for the change in projected distance from the vertical meridian
as a function of position within the visual field.

We carried out experiments to test these predictions. With a computer, two dots
were placed on a radial display of black lines, and successively moved as a pair to each
of 300 different positions. For each position, the observer was asked to move the outer
dot up or down until its perceived projected distance from the horizontal meridian
was the same as that for the less-peripheral dot (see legend of figure 12 for methods).
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Latency-correction predictions
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Figure 12. (a) A stimulus similar to the one used in the experiments measuring perceived projected
distance from the horizontal meridian. The midpoint of the pair of dots was moved to 300 differ-
ent positions in the radial display (an 18 by 18 grid, minus 6 points in each of the four corners
which fell outside of the radial display) (the programming was done in Visual Basic). The
arrows here indicate that observers were able to manipulate the height of the more peripheral
dot by using a mouse to click up and down arrows; when the dots surrounded the meridian
symmetrically, one dot was arbitrarily chosen to be the movable one. The actual stimulus had
64 black radial lines; the horizontal meridian line was bold to make it easier for observers to
make their perceptual judgment of projected distance to the horizontal meridian. The two test
dots were small red squares, and had a diameter of 2 mm, and they were (for each position in
the display) initially set at the same projected distance from the horizontal meridian. The radial
display had a diameter on the computer screen of 23 cm, the distance between the dots was
2 cm, and observers freely viewed the screen from approximately 60 cm away. The smallest
allowable movement of a dot was 0.324 mm. (b) Same as (a) but for the purpose of measuring
perceived projected distance from the vertical meridian. (¢c) The predicted misperception (for the
latency-correction hypothesis) of projected distance from the horizontal meridian as a function
of position in the visual field with respect to the focus of expansion. It is computed from the
plot in figure 11 by computing the difference between two nearby dots in the amount of next-
moment change in projected distance from the horizontal meridian. White here means maximal
predicted illusion, black means zero predicted illusion. The actual magnitude of the predicted
illusion depends on the distance of the dots from the observer, and on their linear separation
(as well as on the observer speed and latency); for reasonable values of these parameters the
illusion magnitude is on the order of magnitude of a few deg (Changizi 2001), but here we will
only be interested in comparing the first-order shapes of the predicted plots and the experi-
mental plots. (d) Same as (c) but for the stimulus in (b).

The same experiment was run where the task was to judge the projected distance
from the vertical meridian.

Before presenting the experimental results, let us examine exactly what the theory
predicts. The data from observers in the above-mentioned experimental design are not
of a form directly predicted by the plot in figure 11 because the observers are judging
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the difference in projected distance from the horizontal meridian, whereas the plot
measures how much any given point will move upward in the next moment. Instead,
the predictive plot we want is the one that records, for each point in the visual field,
how much more the less-peripheral dot will move away from the horizontal meridian
than the more-peripheral dot. This plot can be obtained from figure 11 by simply
taking, for each point in the visual field, the next-moment projected distance of the
less-peripheral dot minus the next-moment projected distance of the more-peripheral
dot. This is shown in figure 12; this figure shows the predicted strength of the vertical
projected distance illusion as a function of position in the visual field. This one plot
encapsulates the predicted illusion magnitude for nearly all the illusions discussed in
this paper, as well as making many new predictions. If the visual system follows a
latency-correction strategy, then we expect it to approximate the predicted plot, at least
to first order; this plot is the fingerprint of latency correction. The predicted plot
assumes that all points are equidistant from the observer, whereas in reality it may be
that points at different positions in the visual field with respect to the focus of expan-
sion have different probable distances from the observer. However, the basic qualitative
features of the predicted plot are expected to be followed.

What are the basic features of the large-scale shape of the predicted plots? (1) The
first principal feature is that there is a single predicted peak in each quadrant. A priori,
this need not have been the case; there could, say, have been no illusion at 45 deg,
and two maxima per quadrant, or negative illusions in some places, and so on. (2) The
second main feature is that the predicted illusion magnitudes tend to be clumped
nearer to the meridian from which observers are judging projected distance. This, too,
need not have been the case. (3) The third general prediction we make is not explicitly
represented in figure 12, but can be reasonably expected. The focus of expansion
usually lies on the horizon, and there are more objects close to us—and thus moving
more quickly in the visual field—below the horizon than above it, especially outdoors.
We therefore expect that the probable distance from the observer is lower for dots
below the focus of expansion, and that the illusion magnitude should be greater in the
bottom half of the radial display, for either stimulus. We wish to compare the experi-
mental results with these three predictions.

Two non-naive observers (the two authors) and three naive observers were tested
on the stimuli shown in figure 12. Figure 13 shows the results for each individual on
the horizontal-meridian and vertical-meridian versions of the experiment, and figure 14
shows the results averaged across the naive observers, and averaged across the non-naive
observers. Qualitative features (1) through (3) may be readily seen in the experimental
results: (1) there is single-peaked hump in each quadrant, (2) there is a tendency for
the illusion magnitude to cluster toward the meridian from which observers judged
projected distance, and (3) in 9 of 10 cases, observers perceived greater illusion magni-
tudes in the lower half of the radial display (see figure 13 for details).

We finish this section by discussing the appropriate manner in which dynamic
stimuli may be used to test the latency-correction hypothesis. In one possible experi-
ment that naturally springs to mind the observer would be in (real or simulated)
motion in the vicinity of, say, the Ponzo illusion, and one might expect that the illusion
magnitude would predictably vary depending on the observer’s motion. This is, however,
an inappropriate test of the hypothesis, as we now explain.

First, any such dynamic-stimulus experiment would have to constrain the kinds of
motion to ecologically natural ones. It is plausible to expect that the visual system uses
rough-and-ready rules to determine its percept. If in nearly all of our experiences with
Ponzo stimuli we are in forward motion toward the vanishing point of the two obliques
(ie if the probable focus of expansion really is the vanishing point of the obliques as
the model entails), then it would be a reasonable strategy for the visual system to
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Figure 13. Experimental results for the two non-naive (MC and DW) and three naive observers
on the two versions of the experiment. The first column under each stimulus shows the ‘raw’
averages for each subject for that stimulus (the non-naive plots are averages of four experi-
ments, and the naive plots are averages over two experiments). Because nearly any a priori
theory will make symmetrical predictions for the left and right halves of the visual field, we
thought it reasonable to treat the left and right halves as replications of the same experiment.
Accordingly, the second column under each stimulus is the same as the first, but where the
results for the left and right halves of the visual field have been averaged together (labeled
‘mirror’). Zero illusion is represented by whatever the gray level of the meridians are. To the sides
of each experimental result are shown, for each of the upper and lower halves of the radial display,
(i) the range of illusion magnitudes for the raw results (measured in clicks, and displayed as
‘[min, max]’), and (ii) the number of bins with a positive illusion (counted as positive if the bin
value is greater than 10% of the maximum in the entire plot). Also shown in between the values
for the upper and lower halves is (iii) the average difference (in number of clicks) between a bin
in the lower half with its symmetrical bin in the upper half (with standard error in parentheses),
positive values meaning a greater illusion in the lower half.

generate a percept guided by this, even if 1% of the time this fails to be an accurate
representation owing to relatively infrequent observer motion. That is, there may be
no need—and no ability even—for the visual system to be able to perceive the present
for all possible observer motions. We should expect the efforts to be concentrated on
the usual observer motions. Furthermore, there are kinds of observer motion that, even
if they were common, do not as crucially need latency correction. For example, even if
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Figure 14. Experimental results averaged over the non-naive, and averaged over the naive observers.
Each observer’s plot was normalized before averaging. As in figure 13, the first column under each
stimulus shows the ‘raw’ averages, and the second column the ‘mirror’ averages. The numbers on
the sides are as in figure 13, except that the range values and average difference value are measured
not in number of clicks, but in percentages (since these plots are averages of normalized plots).
The predicted plots are shown again for comparison.

moving backward were a common activity, perceiving the present is less important
when moving backward since one is not about to run into the scene, and one can
more easily afford to have a less than fully accurate percept.

A second problem with such an experiment is that the dynamic stimulus resulting
from moving in the vicinity of a Ponzo (or any) figure is not ecologically appropriate,
for it is not the same dynamic stimulus that would result from moving in the vicinity
of the scene the figure depicts. A geometrical figure viewed statically causes a retinal
stimulus, R,, that mimics the retinal stimulus that would emanate from some real-
world source (or scene) S,. The visual system is thus expected to react to that stimulus
as if it is due to the probable real-world source (and that probable source may suggest
the direction in which the observer typically moves in the next moment, and so on).
Consider what happens, however, if the observer moves (in any direction). There will
be some new retinal stimulus, R,, but it will not be consistent with there being the
same real-world source, S,, as before. That is, how the figure projects as a function
of distance from it will be radically different from how the real-world source, S,, would
project as a function of distance from iz. Thus, the new retinal stimulus, R;, will not
be the stimulus that would occur had it been the case that the real-world source, S,, had
been doing the projecting onto the retina. The figure thus depicts a source, S, when the
observer is at one position, but depicts a different source, S;, when the observer is at
the new position. In short, movement in the vicinity of a static geometrical figure is
not consistent with the existence of a fixed real-world scene out there that the figure
depicts. Although a single retinal stimulus from a figure is ecologically valid, the
sequence of retinal stimuli caused by moving in the vicinity of the figure is not ecolog-
ically valid; rather, it produces a sequence of retinal stimulations that would never be
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encountered in the course of the observer’s ecological experiences (outside of a psychology
experiment). It is only reasonable to make predictions from ecologically valid stimuli—
what should occur for the infinitely many possible nonecological stimuli psychologists
may invent is entirely opaque.

One idea for avoiding the previous problem is to put the observer in motion, and
to have the Ponzo stimulus briefly flashed, and to see if the perception is as predicted.
Unfortunately, this proposal, too, has problems. The difficulty with this is that the
probable motion (relative to the observer) of a source can reasonably be expected to
depend on whether the stimulus is present the entire time the observer is moving, or
whether the stimulus is just briefly flashed. It seems plausible that the probable observer-
relative speed of the source of a briefly flashed stimulus is zero; ie without cues to the
contrary, it may be that a flashed stimulus is assumed to be due to an object that is
stationary relative to the observer, in which case no illusion would be expected. [We also
note that simply replacing the radial lines in the Ponzo illusion with radially outflowing
texture would not be an appropriate test either, since in that case the probable motion
of the two horizontal lines relative to the observer is again zero (lest the lines also be
flowing radially outward).]

What kinds of predictions can we make for the latency-correct hypothesis? One
obvious prediction that is ecological is to see whether illusions vary as a function of the
probable direction of observer motion. The psychophysical experiment we described
earlier did just this. If one wishes to carry out latency-correction experiments with
dynamic stimuli, one must either have the observer move in the vicinity of a real-world
source, or, equivalently, have a geometrical figure on a computer screen that changes
dynamically (so as to mimic a single ecological source changing in the manner it
projects because of distance or position in the visual field). One of the simplest ways
to carry this out on a computer would be to have a single dot moving radially outward
from a focus of expansion, and to test whether observers employ latency correction in
their perception of the dot’s perceived projected distance from the (say) vertical merid-
ian. When the dot is at some particular projected distance from the vertical meridian,
another dot could be flashed, above or below the moving dot, and at the same time
projected distance from the vertical meridian. Because the flashed dot has no cues
that it is moving relative to the observer, and because the moving dot does have such
cues, we expect observers to perceive the moving dot to have already achieved a
greater projected distance from the vertical meridian than the flashed dot. That is,
the prediction is that the flashed dot should lag behind the moving dot. But notice
that this kind of dynamic experiment falls exactly within the class of flash-lag experi-
ments, where something that is moving in a predictable fashion is perceived to lead
something that is flashed. Thus, if one wishes to carry out latency-correction experi-
ments with dynamic stimuli, one must engage in exactly the kinds of experiments that
those like Nijhawan and colleagues already have been engaged in for some years now.
In other words, the kinds of predictions made for dynamic stimuli have already been
tested by others, and although there is a lively debate surrounding the class of flash-lag
experiments, the existence of the effect is prima facie support for latency correction.

5 Conclusion
We have argued that, owing to serious conceptual difficulties, the traditional inference
approach cannot explain the illusions. The main problem is the supposed functionality
of the approach: under the most charitable interpretation, the theory provides no good
reason for the misperceptions of the projective properties.

We then fleshed out the consequences of the latency-correction hypothesis, and
showed how a wide variety of classical geometrical illusions may be derived from it.
We showed how each geometrical figure possesses cues concerning the kinds of real-world
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line segments it depicts, as well as cues as to the observer’s probable direction of
motion relative to the figure. And we found that the misperception in each case is
consistent with the manner in which the real-world line segments would project in the
next moment were the observer moving in that direction. We then used the hypothesis
to predict several novel illusions, namely some variants of the Miiller-Lyer illusion,
and some of the Upside-down-T illusion. Finally, we examined a general class of (300)
predicted illusions—each concerning the perceived relative positions of two dots in a
radial display—and found that the illusion magnitude varies in a manner consistent with
how the probable source would project in the next moment were the observer moving
toward the center of the radial display.

References

Berry M J 11, Brivanlou I H, Jordan T A, Melster M, 1999 “Anticipation of moving stimuli by
the retina” Nature 398 334338

Brenner E, Smeets J B J, 2000 “Motion extrapolation is not responsible for the flash-lag effect”
Vision Research 40 1645—1648

Changizi M A, 2001 “‘Perceiving the present’ as a framework for ecological explanations of the
misperception of projected angle and projected size” Perception 30 195208

Changizi M A, (in press) The Brain from 25,000 Feet: High Level Explorations of Brain Complexity,
Perception, Induction and Vagueness (Dordrecht: Kluwer)

Coren S, Girgus J S, 1978 Seeing is Deceiving: The Psychology of Visual Illusions (Hillsdale, NJ:
Lawrence Erlbaum Associates)

Cutting J E, Vishton P M, 1995 “Perceiving layout and knowing distance: The integration, relative
potency, and contextual use of different information about depth”, in Perception of Space
and Motion Eds W Epstein, S Rogers, volume 5 in Handbook of Perception and Cognition
(San Diego, CA: Academic Press) pp 69117

De Valois R L, De Valois K K, 1991 “Vernier acuity with stationary moving Gabors” Vision Research
31 16191626

Eagleman D M, Sejnowski T J, 2000 “Motion integration and postdiction in visual awareness”
Science 287 2036 —2038

Gibson J J, 1950 The Perception of the Visual World (Boston, MA: Houghton Mifflin)

Gillam B J, 1998 “Illusions at century’s end”, in Perception and Cognition at Century’s End
Ed. J Hochberg (San Diego, CA: Academic Press) pp 98— 137

Greene E, 1988 “The corner Poggendorff” Perception 17 6570

Gregory R L, 1963 “Distortion of visual space as inappropriate constancy scaling” Nature 199
678 — 680

Gregory R L, 1997 Eye and Brain fifth edition (Princeton, NJ: Princeton University Press)

Helmholtz H von, 1867/1962 Treatise on Physiological Optics volume 3 (New York: Dover, 1962);
English translation by J P C Southall for the Optical Society of America (1925) from the 3rd
German edition of Handbuch der physiologischen Optik (first published in 1867, Leipzig: Voss)

Khurana B, Nijhawan R, 1995 “Extrapolation or attention shift?” Nature 378 565 —566

Khurana B, Watanabe K, Nijhawan R, 2000 “The role of attention in motion extrapolation: Are
moving objects ‘corrected’ or flashed objects attentionally delayed?” Perception 29 675 —692

Krekelberg B, Lappe M, 1999 “Temporal recruitment along the trajectory of moving objects and
the perception of position” Vision Research 39 2669 —2679

Lappe M, Krekelberg B, 1998 “The position of moving objects” Perception 27 1437 — 1449

Lennie P, 1981 “The physiological basis of variations in visual latency” Vision Research 21 815824

Mack A, 1978 “Three modes of visual perception”, in Modes of Perceiving and Information Processing
Ed. M H Pick (Hillsdale, NJ: Lawrence Erlbaum Associates) pp 649 —655

Maunsell J H R, Gibson J R, 1992 “Visual response latencies in striate cortex of the macaque
monkey” Journal of Neurophysiology 68 1332—1344

Nijhawan R, 1994 “Motion extrapolation in catching” Nature 370 256 —257

Nijhawan R, 1997 “Visual decomposition of colour through motion extrapolation” Nature 386
6669

Nijhawan R, 2001 “The flash-lag phenomenon: object motion and eye movements” Perception 30
263282

Nundy S, Lotto B, Coppola D, Shimpi A, Purves D, 2000 “Why are angles misperceived?”
Proceedings of the National Academy of Sciences of the USA 97 5592 —5597

Palmer S E, 1999 Vision Science: Photons to Phenomenology (Cambridge, MA: MIT Press)



1262 M A Changizi, D M Widders

Purushothaman G, Patel S S, Bedell H E, Ogmen H, 1998 “Moving ahead through differential
visual latency” Nature 396 424

Rock I, 1975 An Introduction to Perception (New York: Macmillan)

Rock I, 1983 The Logic of Perception (Cambridge, MA: MIT Press)

Rock I, 1984 Perception (New York: Scientific American Library)

Schlag J, Cai R H, Dorfman A, Mohempour A, Schlag-Rey M, 2000 “Extrapolating movement
without retinal motion” Nature 403 38 -39

Schmolesky M T, Wang Y, Hanes D P, Thompson K G, Leutger S, Schall J D, Leventhal A G,
1998 “Signal timing across the macaque visual system” Journal of Neurophysiology 79
32723278

Sedgwick H A, Nicholis A L, 1993 “Interaction between surface and depth in the Ponzo illusion”
Investigative Ophthalmology & Visual Science 34(4) 1184

Segall M H, Campbell D T, Herskovits M J, 1966 The Influence of Culture on Visual Perception
(New York: Bobbs-Merill)

Sheth B R, Nijhawan R, Shimojo S, 2000 “Changing objects lead briefly flashes ones” Nature
Neuroscience 3 489 —495

Thouless R H, 1931 “Phenomenal regression to the real object. I” British Journal of Psychology
21 339-359

Whitney D, Cavanagh P, 2000 “Motion distorts visual space: shifting the perceived position of
remote stationary objects” Nature Neuroscience 3 954 —959

Whitney D, Murakami I, 1998 “Latency difference, not spatial extrapolation” Nature Neuroscience
1 656657

Whitney D, Murakami I, Cavanagh P, 2000 “Illusory spatial offset of a flash relative to a moving
stimulus is caused by differential latencies for moving and flashed stimuli” Vision Research
40 137-149

p © 2002 a Pion publication



	Abstract
	1 Introduction
	2 The traditional inference approach
	3 Explaining the geometrical illusions
	4 Psychophysical prediction and confirmation
	5 Conclusion
	References

