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Abstract. A simple, high-level wire-minimization model
appears to drive the relationship between animal limb
number and body-to-limb proportion in some animals
across at least seven phyla: annelids, arthropods, cnida-
rians, echinoderms, molluscs, tardigrades and verte-
brates. Given an animal’s body-to-limb proportion, the
model enables one to estimate the animal’s number of
limbs, and vice versa. Informally, the model states that a
limbed animal’s large-scale morphology is set so as to
maximize its number of limbs subject to the constraint
that there is not a more economical shape which reaches
out to the same places. A consequence of animals
conforming to the model is that their large-scale
morphology is “‘minimally wired.”” Just as wire minimi-
zation is important in artificial information processing
devices, it is hypothesized that one reason why animals’
large-scale morphologies conform to a save-wire princi-
ple is to minimize the system-wide information process-
ing times.

1 Introduction

Wire minimization is important in the engineering of
computers and other artificial information processing
devices, and has spurred within graph theory the
development of appropriate algorithms for determining
economical wiring layouts (Graham and Hell 1985;
Hwang et al. 1992; Sherwani 1995). Wire minimization
is important for such artificial devices for at least three
reasons. A first and most obvious reason is that using
less wire per device means saving money on purchasing
wire. A second reason is that less wire per device means
that a device of any given size can be made more
powerful, e.g. by fitting more silicon chips into the
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device. A third reason is that, all things being equal, a
device made with less wire will have shorter propagation
delays between its components, and thus the device will
process information more quickly.

Each of these three reasons to save wire in artificial
devices has an analogous reason in the context of bio-
logical information processing systems. The idea that
wire or volume optimization principles apply in biology
is not new. Such principles have been found to apply
well to the morphology of organisms at many levels of
anatomy: arteries and veins (Kamiya and Togawa 1972;
Zamir 1976; Woldenberg and Horsfield 1983; Schreiner
and Buxbaum 1993; Changizi and Cherniak 2000), tree
branches and roots (Cherniak 1992; Cherniak et al.
1999), dendrites and axons (Cherniak 1992; Cherniak
et al. 1999), and large-scale organization of nervous
systems (Durbin and Mitchison 1990; Mitchison 1991,
1992; Ruppin et al. 1993; Cherniak 1994, 1995; Van
Essen 1997; Changizi 2000). Save-wire principles have
not been studied at the level of entire organism shape,
however. There are at least three reasons for an organ-
ism’s large-scale morphology to be optimal (i.e. to use
the minimum amount of tissue), and the reasons are
analogous to those mentioned above for artificial in-
formation processing devices. First, all things equal, an
animal whose shape requires using less body material
will be better off because it has less body material to
maintain. Second, a more optimal large-scale morphol-
ogy means that, for any given size, the animal can be
“more powerful” because more energy can be devoted to
other adaptative components, e.g. thicker scales. Finally,
all things being equal, an animal with a more opti-
mally-wired large-scale morphology will have lower
propagation delays between its parts and thus process
information more quickly and react to the environment
more successfully.

In this paper I focus on the large-scale morphology of
limbed animals only, and I concentrate specifically on
only one salient aspect: the “body-limb structure,” by
which I mean the animal’s number of limbs and its
body-to-limb proportion. I show that a principle of the
rough form — “have as many limbs as possible subject to
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the constraint that the resulting shape cannot be made
more wire-minimal” — entails a particular relationship
between an animal’s number of limbs and its body-to-
limb proportion, and that limbed animals across seven
phyla conform to the predicted relationship despite the
wide diversity of limb functions. These animals’ large-
scale morphologies thus appear to be driven, in part, by
a wire-minimization principle (and, in part, by a need-
limbs-for-reaching principle). Note that the model can
only be expected to be a “zeroth order” approximation,
as there are surely many competing evolutionary pres-
sures on the large-scale morphology besides economy of
wiring. The model should be considered in the same light
as models for allometric scaling laws (Schmidt-Nielson
1984), where the aim is not to make accurate predictions,
but instead, to capture underlying biological principles.
Here we will be interested in how the number of limbs
scales as the body becomes larger compared to the limbs,
and we will capture principles underlying the body-limb
structure of limbed animals.

2 The model

In this section I develop the model, which consists of two
assumptions, or principles; I call the model the ‘“Max-
MST” (maximum degree minimal spanning tree) model.
Some preliminary definitions must be introduced first.

A network consists of nodes, and wires (or edges) may
be connected between them. Nodes can usually be viewed
as points and wires as lines drawn between nodes. A
limbed animal is modeled here as a type of network called
a “body-limb network.” In what sense is a limbed animal
a network? First, an animal’s body is treated as a node. It
is not necessarily a point-sized node, though, as we will
see later; differently shaped body nodes will allow us to
handle differently shaped animal bodies (e.g. circular
nodes). Second, we imagine that an animal’s limbs are
fixed in place in their “‘natural’ position, and the point at
each limb’s tip is treated as a node. The animals studied
here have limbs that are approximately uniform in
length, and so I assume that body-limb networks have
limb-tip nodes that are uniform in distance from the
body node. Finally, each limb is treated as a wire con-
necting the body node to its limb-tip node. In sum, a
body-limb network consists of: (i) a body node, (ii) limb-
tips placed uniformly distant from the body node, (iii)
wires connecting the body node to each limb-tip node,
and (iv) no other wires. Every limbed animal with uni-
form length limbs has, then, a corresponding body-limb
network defined in the manner just specified (see Fig. 1).
An animal’s body-limb network can be thought of as
characterizing the animal’s large-scale morphology.

An equidistance network is any network for which
there is one node — the body node — from which all other
nodes are equidistant. Body-limb networks are special
cases of equidistance networks. Other equidistance net-
works may have wires connecting any pair of nodes;
they are not confined, as are body-limb networks, to
wires connecting only the body node to other nodes. For
example, a single point in the plane with points placed

Fig. 1 a An example body-limb network with a circle-node, The Max-
MST model’s predicted “fractional” number of limbs N (see text) is
the greatest number of limb-wires that can be placed around the circle-
node while keeping the distance between the limb-tips greater than X.
The limb-tips must be separated by at least a distance X because,
otherwise, a cheaper wiring network can be constructed by deleting one
of the limb-wires and adding a wire between the limb-tip nodes. b An
example body-limb network with a stretched circle-node. I consider the
semicircular ends and straight sides separately. The two semicircular
ends are assumed to have the same predicted number of limbs as for a
single circle. For the straight sides, limbs on the same side cannot be
nearer than X lest it be possible to delete one limb-wire and add a wire
between the limb-tip nodes, thereby creating a cheaper wiring layout.
Thus there can be s= L/X limbs on each side, where s is the “stretch
ratio.” In 65 of the cases presented here s # 0, and to observe in a single
plot (see Figs. 2 and 3) how well the data conform to the Max-MST
model, the dependence on the stretched circle length can be eliminated
by “unstretching” the actual number of limbs as follows: (i) given the
limb ratio k and the stretch ratio s, the percent error E between the
predicted and actual number of limbs is computed; (ii) the predicted
number of limbs for a circular body is computed by setting s = 0 (and
keeping k the same); and (iii) the “unstretched actual number of limbs”
is computed as having percentage error from the predicted number of
limbs for a circular body. This rids of the dependence on s while
retaining the percentage error. [An interactive program may be
accessed on-line at http://www.erols.com/ebolz/mst/mst.html allowing
one to visualize the large-scale morphology of animals with given
values for the limb ratio and stretch ratio.]

around it on a circumference comprises an equidistance
network, no matter which pairs of points have wires
connecting them. An X-D-equidistance network is an
equidistance network for which all nodes lie in dimen-
sion D and the distance from the body node to the other
nodes is X. A network is a spanning tree if: (i) between
any two nodes there is a path, possibly indirect, from
one to the other along wires in the network (i.e., the
network is connected), and (ii)) when one leaves a node
along a wire, the only way back to that node is along the
same wire (i.e. the network has no cycles). Informally, a
spanning tree is just a way of connecting up the nodes
using wires such that there are no loops. Body-limb
networks are spanning trees, but some other types of
equidistance network are not; e.g. one in which every
pair of nodes has a wire directly connecting them (i.e. a
fully-connected network). There are also non-body-limb
equidistance networks that are spanning trees: for ex-
ample, where a single limb wire emanates from the body
node to a limb-tip node, and a wire emanates, in turn,
from this limb-tip node and successively connects, one
by one, all the limb-tip nodes along the perimeter.

If an animal’s actual body-limb network is in di-
mension D and has limb wires of length X, then the set
of all spanning tree X-D-equidistance networks with the



same body node can be thought of as the set of all
possible large-scale morphologies for that animal. That
is, the set of all spanning tree X-D-equidistance networks
with a given body node is, intuitively, the set of all
possible ways for that body to reach out to distances X
within dimension D. My model, below, says that of all
these possible ways — i.e. of all these possible animal
large-scale morphologies — one of them, in particular, is
actual. One might complain that many of these “possible
large-scale morphologies” are implausible as they pos-
sess a wire between limb tips (i.e. many of them are not
body-limb networks). Real limbs will surely, the com-
plaint might go, travel straight from body to limb tip.
However, it is not obvious a priori that this should be
the case. A limb whose limb-tip has wires to, say, the
two nearest limb-tips would be a sort of branched limb
structure, something seemingly not discountable via
a priori considerations alone. Nevertheless, the model
will do more than conclude the — let us assume obvious —
point that an animal’s large-scale morphology is a body-
limb network. It will tell us which of all possible body-
limb networks is the actual one.

A network is a minimal spanning tree (MST) if it is a
spanning tree that, over all possible spanning trees on
those nodes, uses the least amount of wire. Informally, a
MST is an optimal way of connecting up the nodes with
wires. While body-limb networks are spanning trees,
they need not be MSTs. For example, a body-limb
network with a point-sized body node and one million
limb-tip nodes is not a MST since there are less costly
ways of spanning those nodes (see the “‘six-wire result”
in Materials and methods). My model’s first principle, or
assumption, is that animals have optimally wired large-
scale morphologies; that is, animal body-limb networks
are MSTs.

A node’s degree is the number of wires touching it in
the network. For example, in a body-limb network the
body node’s degree is equal to the number of limbs, and
each limb-tip node’s degree is one. An X-D-equidistance
network has maximum degree if its body node has the
maximum degree over all X-D-equidistance MST net-
works with that body node. Informally, an X-D-equi-
distance network has maximum degree if its body node is
the most well-connected it can possibly be in any opti-
mally wired large-scale morphology. My model’s second
(and last) principle, or assumption, is that animals have
large-scale morphologies with maximum degree; that is,
animal body-limb networks have maximum degree.

Now I may state the Max-MST model in full: an ani-
mal’s body-limb network is a maximum degree minimal
spanning tree. Crudely, the model states that a limbed
animal has as many limbs as possible while still being
optimally wired. We will see in the next section that the
Max-MST model predicts a certain relationship between
the number of limbs and the body-to-limb proportion.

3 Materials and methods

In this study limbs are assumed: (a) to intersect the
animal on a single plane (the “limb plane”), (b) to
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project out from the animal along the limb plane, (c) to
be uniform in length, (d) to be uniform in diameter (i.e.
uniform “‘cost” per unit length), (e) to be straight, (f) to
be perpendicular to the perimeter, and (g) to be
uniformly distributed around the body node. It is rare
that an animal strictly satisfies all of these assumptions,
but the animals examined here come close to satisfying
them, and for each I assume that all the assumptions
hold. A note on (b): Animal limbs are rarely fixed in
place, and they very often move out of the plane.
However, I consider an animal to satisfy requirement (b)
if the limbs are capable of lying in the plane. For
example, sea stars (Asteroidea) can move their limbs out
of the plane, but I treat them as if they are always flat.
And an octopus (Cephalopoda), although satisfying (a),
usually has its limbs out of the plane; nevertheless, it is
able to have its limbs along the plane and so I consider it
to satisfy (b). Note that most mammals do not satisfy
requirement (b), since their limbs are projected ventrally
(i.e. projecting down toward the ground). There is a
reason besides simplicity for this supposition that the
number of limbs is set as if the limbs are always in the
plane: over all angles for which the limbs may uniformly
be directed out of the plane, the convex hull of the limb-
tips (i.e. the geometric figure created by consecutively
drawing lines from limb-tip to nearest limb-tip) has the
greatest perimeter when the angle is 0°. Thus, it is when
the limbs are in the limb plane that, all things being
equal, there is the greatest number of limbs needed.

Body-limb networks, and equidistance networks more
generally, have been confined to have limb-tip nodes that
are points. The body node, however, has not been re-
quired to be a point; the body node is free, in fact, to be
any shape. In order to apply the Max-MST model to a
real limbed animal, assumptions must be made about the
animal’s body shape, and the body node’s shape must be
set accordingly. The cross-section of an animal on the
plane where the limbs emanate is the only aspect of an
animal’s shape we are interested in with respect to the
Max-MST model; it is this cross-section that is to be
modeled by the body node. I will call this cross-section
the “body.” We wish to allow the body node to vary in
shape so as to capture a range of animal bodies.

Let us begin with an animal whose body size is very
small compared to the limb length. We can treat such a
case as if the body node is a point. Of all possible planar
MSTs to which a point-sized node may belong, the
maximum number of wires at that node is well-known to
be six; this is the Max-MST model’s predicted number of
limbs for this case. The reason for the number six is that
if there are more than six wires, then two must have an
angle between them of less than 60°, in which case the
distance between the limb tip nodes is less than the
length of the limbs, and a less costly spanning tree can be
built by deleting one of the limb wires and adding a wire
between the limb tip nodes [such a six-wire result applies
to some types of neurons (Cherniak et al. 1999)].

Alternative assumptions about an animal’s body
shape lead to alternative predictions by the Max-MST
model. I consider a class of body shapes for which the
one above (the point-sized one) is a limit case. I will
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introduce the class in two steps that progressively gen-
eralize the six-wire case. In all cases the limbs will be
assumed to have length X.

The first step is to allow the node representing the
body to be a circle with radius R rather than a point
(Fig. 1a). This allows for the fact that animal body size
is sometimes not negligible compared to the limb length.
For example, a sea star (Asteroidea) may be idealized to
have a body that is a circle (and limbs that project ra-
dially and symmetrically around it in a plane). Under
this circle-node body shape assumption, the Max-MST
model’s predicted fractional number of limbs is given by
the continuous function Ngae(k) = 2m/arccos(l — k?/
2), where k = X/(R + X) is the “limb ratio,” the ratio
of the limb length to the total length from circle center to
any limb-tip. As the body becomes small compared to
the limb length (i.e. as k approaches unity), N ap-
proaches six as in the six-wire case. As the body becomes
large compared to the limb length (i.e. as k approaches
7ero), Neicle approaches infinity.

The second step is to allow the node representing the
body to be a “‘stretched” circle, where the circle-node is
cut in half, the two semicircles moved apart a distance L,
and two straight lines “stretched out” to form the sides
of the animal body (Fig. 1b); this collapses to the circle-
node case above when L = 0. This allows the accom-
modation of animals whose bodies are extended in
length rather than circular. For example, a centipede
(Myriapoda) may be idealized to have a body that is a
stretched circle (and limbs that project perpendicular to
and uniformly distributed along the perimeter). The
Max-MST model’s predicted fractional number of limbs
for the stretched circle-node body shape is given by the
continuous function Ny eiched(k,8) = Neircte(k) + 2s,
where s = L/X is the “stretch ratio,” the ratio of the
stretched length L to the limb length X. Note that
spherical nodes can in principle be studied using math-
ematics in Coxeter (1962).

Note that the model does not apply to animals
without limbs. The model states that there is a rela-
tionship between an animal’s number of limbs and its
body-to-limb proportion. Without limbs, the model can
say nothing. Or, if having no limbs is treated as having
limbs with zero limb ratio, then the model predicts in-
finitely many non-existent limbs. Snakes and other lim-
bless organisms are therefore not counterexamples to the
Max-MST hypothesis.

What counts as a limb? ‘Limb’ is being used here in a
general sense, applying to “appendages that reach out.”
This covers, for example, legs, digits, tentacles, oral
arms, antennae and parapodia. Although for any given
organism it is usually obvious what appendages should
count as limbs, a general rule for deciding which ap-
pendages to count as limbs is not straightforward. Some
ad hoc decisions were required. For vertebrate legs only
the those of Amphibia were studied, as their legs are the
least ventrally projected of the vertebrates. For am-
phibians, the head and tail were included in the limb
count because there is an informal sense in which the
head and tail also “reach out”. Thus, amphibians have
six “limbs” in this study. For insects (and other inver-

tebrates with antennae studied here), antennae appear to
be similar in “limb-likeness™ to the legs, and so were
counted as limbs unless they were very small (less than
around 1/3) compared to the legs. The head and abdo-
men of insects were not counted as limbs (i.e. they were
treated as part of the body) because, in most cases
studied, they are well inside the perimeter of the legs and
antennae, and thus do not much contribute to “reaching
out.” The overall fit of the Max-MST model to the data
is robust to these where-to-draw-the-line decisions. That
is, the Max-MST model is expected only to explain the
broad trend in the relationship between limb number
and body-to-limb ratio, and not generally to be predic-
tive of the exact number of limbs in any given organism
(it is predictive, perhaps, of the logarithm of the number
of limbs). Adding or taking away a leg or two here and
there does not affect the results.

Digits are treated in the same manner as other types
of limbs, the only difference being that only a fraction of
the body (i.e. hand) perimeter has limbs (i.e. digits).
Digits were studied only in cases where the “hand” is a
stretched circle with digits on roughly one half of the
stretched circle. For these cases hands may be treated as
if the digits emanate from only one “‘side” of the node.
Digits like those on a human foot are, for example, not
studied because the foot is not a stretched circle for
which the toes are distributed along one half of it.

From published sources (Agur 1991; Barnes 1963;
Bishop 1943; Brusca and Brusca 1990; Buchsbaum 1956;
Buchsbaum et al. 1987, Burnie 1998; Downey 1973;
Hegner 1933; Netter 1997; Parker 1982; Pearse et al.
1987; Pickwell 1947; Stebbins 1954) I measured the
number of limbs, limb ratio (k = X/(R + X)) and
stretch ratio (s = L/X) for 190 cases over 15 classes in 7
phyla. Measurements were made on the photographs
and illustrations via a ruler with half millimeter preci-
sion. The classes were included in this study if six or
more data points from within the class had been ob-
tained. Species within each class were selected on the
basis of whether usable data could be acquired from the
above sources (i.e. whether the limb ratio and stretch
ratio were measurable).

4 Results

The number of limbs ranged from 4 to 426. Figure 2
shows a scatter plot of the unstretched (see legend of
Fig. 1b) actual number of limbs N versus the body ratio
(definedash = R/(R + X)or,equivalently,b = 1 — k).
One can see that there is a clear trend for a greater
number of limbs as the body ratio increases; i.e. more
limbs correlates with shorter limbs relative to the body.
And as the body ratio approaches zero, the number of
limbs tends toward around six, which is what we would
expect from the six-wire result. Figure 3 shows a plot of
average log(N) versus —log(k), along with the best-fit and
predicted lines, which can be seen to match closely.
Table 1 shows overall percent error values between
the predicted and actual number of limbs. The mean
error for all 190 animals is 17.80% (SD + 58.29%).
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Fig. 2. The unstretched actual number of limbs as a function of the
body ratio. In order that the digit cases be treated in the same manner
as the limbs, the actual number of digits is multiplied by two; i.e. digit
cases are plotted as if hands have digits distributed all the way around
them rather than half way. The Max-MST model’s predicted curve
Neirate(k) = 2mfarccos(l — k?/2) is shown

Histograms (not shown) of the frequency-distribution of
percent error values demonstrate that the values are
skewed and that the (natural) log errors better approx-
imate a normal curve (as confirmed by linear regression
analysis of a Q-Q normality test). An inverse of the
mean of the log errors (the “log transformed mean™) is
thus a better representative of the mean. The log trans-
formed means can be found in Table 1, and for all 190
animals is 8.79% (SD =+ 42.00%). This lower overall
error value is reinforced by the similarly sized overall
median of 8.85%.

The variance is large in all the analyses just discussed,
and is due to two main factors besides measurement
error (which is not a significant source of the variance).
First, the stretched circle-node characterization of ani-
mal large-scale morphologies is an extremely crude ap-
proximation. Animal bodies are not exactly stretched
circles (neither in shape nor in planarity), their limbs are
often not of equal length, they are often not uniformly
distributed around the body, and so on (see Materials
and methods). Richer and more realistic ways of char-
acterizing animal large-scale morphologies would be
expected to lower the variance. Second, an animal’s
large-scale morphology is a result of many evolutionary
pressures in addition to the pressure for a wire-eco-
nomical shape. We should therefore not be surprised at
the large variance, but surprised at the degree to which
the Max-MST model’s signal can be seen through the
“noise.”

The Max-MST model’s low error values for limbs
may be contrasted with high errors in cases of ciliary
rings: for 11 cases (among annelids, molluscs and si-
punculans) ranging in cilia number from 14 to 211, the
mean error is 90.00% (SD =+ 132.36) and log trans-
formed mean error is 85.26% (SD =+ 90.96%). The
Max-MST model therefore does not appear to apply to
cilia, although the trend still seems to exist for a greater
number of cilia as the body ratio increases.
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Fig. 3. The average of log;o(NV) values versus —log;o(k), where the
—log;(k) values are binned with width 0.01. N is the unstretched actual
number of limbs. Error bars indicate standard deviation (for points
obtained from bins with two or more cases). The points plotted in this
fashion are expected, according to the Max-MST model, to increase in
a nearly linear fashion. The reason is as follows: the Max-MST model’s
formula Ngqe(k) = 2m/arccos(l — k2/2) is closely approximated by
Napprox = 2m/k. The percentage difference between them is around
4.72% when k = 1 and falls linearly toward zero as k approaches 0.
Napprox 18 linear when graphed here, as its equation is 10g;o(Napprox) =
—logo(k) + logio(2m). Thus, the Max-MST model predicts a line
roughly with equation y = x+0.798. How do the plotted points fit
with this predicted line? They indeed appear to be linear (> = 0.777,
n =52, p <0.001), and the best-fit line, computed using linear
regression, is y = 1.206x + 0.787; this y-intercept corresponds to 6.12
limbs when k& = 1, fitting well with the six-wire expectation. The
percent error of the slopes is 20.60%, and the percent error of the y-
intercepts is 1.38%. The three rightmost data points exert a
disproportionate influence on the best-fit line, and removing them
results in the equation y = 1.112x+0.807 (> = 0.631, n = 49,
p < 0.001), a percentage error of 11.2% for the slopes, and a
percentage error of 1.13% for the y-intercepts. All 190 cases plotted
without binning leads to y = 1.171x+0.795 (> = 0.647, n = 190,
p<0.001), a percentage error of 17.1% for the slopes, and a percentage
error of 0.38% for the y-intercepts. (Digits are treated as in Fig. 2.)

5 Discussion

Whereas there are ontogenetic explanations for why
organisms have the number of limbs or digits they do
(Shubin et al. 1997), there are few adaptation-based
explanations for this (Gans 1975; Lande 1978; Gould
1993). The discovery of polydactylous (having more
than five digits) tetrapods (four-legged animals) (Coates
and Clack 1990) makes the search for an adaptation-
based explanation for the pentadactyl (five digit) limb
more pressing (Gould 1993). My Max-MST model
neither provides an adaptation-based explanation for
the pentadactyl limb nor for the number of limbs or
digits of animals, generally. Rather, it provides an
adaptation-based explanation for the relationship be-
tween this number and the relative sizes of the body (or
hand) and the limb (or digit). However, if an adaptation-
based explanation could be given for an organism’s
body-to-limb proportion, then my model may fill the
gap in explaining the number of limbs.

My main points are the following: (i) the large-scale
morphology is near-optimal, in the sense of minimally-
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Table 1. Summary statistics for max-MST hypothesis, showing
percentage errors between the unstretched actual number of limbs
and the Max-MST model’s predicted number of limbs, where the
error is computed as 100(actual — predicted)/predicted. Since the
predicted limb numbers tend to be less than the actual numbers,
having the predicted number in the denominator increases the er-

ror. The log transformed mean percentage errors were obtained by
adding 100% to each error (to ensure that it is greater than unity),
taking the natural logarithm of each, computing the mean of the
logs, computing the exponential of this mean, and finally sub-
tracting 100%. For digits the number of digits is half of what is
shown (see legend of Fig. 2)

Phylum Class n Number of Percentage error Log-transformed
limbs (N) percentage error
Min Max Mean SD Median  Mean SD
Class by class
Annelida Polychaeta 8 30 426 39.10 50.29 25.79 32.77 42.02
Arthropoda Myriapoda 7 28 56 71.75 66.53 48.05 60.82 65.16
Insecta 8 6 8 -20.57 14.06 -17.65 -21.73 14.65
Pycnogonida 6 8 12 36.79 26.97 30.41 34.72 25.56
Chelicerata 24 8 12 18.09 13.71 15.73 17.30 14.10
Malacostraca 13 8 10 15.64 11.34 12.93 15.12 11.44
Cnidaria Hydrozoa 21 4 68 59.83 106.40 28.71 37.07 78.57
Scyphozoa 18 4 368 30.54 98.08 5.12 10.67 62.65
Echinodermata Holothuroidea 7 8 18 32.23 27.79 40.98 29.46 29.89
Asteroidea 22 5 34 8.03 51.09 0.69 -1.76 45.08
Mollusca Cephalopoda 10 8 8 8.34 10.04 7.49 7.91 10.19
Vertebrata Amphibia 10 6 6 —38.87 2.74 —38.33 -38.92 2.76
Tardigrada (digits) 8 6 16 3.94 21.20 3.80 2.21 19.81
Vertebrata (digits) Mammalia 6 10 10 0.08 8.02 -2.81 -0.17 7.72
Reptilia 7 8 10 13.37 12.14 10.99 12.83 11.87
Amphibia 15 8 10 -10.44 12.13 —12.58 -11.22 12.31
Phylum by phylum
Annelida (parapodia) 8 30 426 39.10 50.29 25.78 32.76 42.02
Arthropoda (legs) 58 6 56 20.62 35.38 14.62 16.41 3091
Cnidaria (tentacles or oral arms) 39 4 368 46.31 102.40 11.56 24.17 71.30
Echinodermata (arms) 29 5 34 13.88 42.27 10.30 5.00 45.03
Mollusca (arms) 10 8 8 8.34 10.04 7.49 791 10.19
Vertebrata (limbs, head and tail) 10 6 6 —-38.87 2.74 -38.33 -38.92 2.76
Tardigrada (digits) 8 6 16 3.94 21.20 3.80 2.21 19.81
Vertebrata (digits) 28 8 10 -2.23 14.92 -1.33 -3.34 15.00
All cases 190 4 426 17.80 58.29 8.85 8.79 42.00

wired, in many animals over seven phyla; (ii) these
animals’ bodies have the maximum number of limbs
possible in any such optimal body plan; and (iii) animals
with such optimal large-scale morphologies satisfy a
relationship between the number of limbs and the body-
to-limb proportion, so that given one we can approxi-
mate the other.
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