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At the global aswell aslocal scales someof the geometryof typesof neuronarbors—bothdendritesand
axons—appear® be self-organizing:Their morphogenesibehavedike flowing water,thatis, fluid dynami-
cally; waterflowin branchingnetworksin turn actslike a treecomposedf cordsundertension thatis, vector
mechanicallyBranchdiametersaandanglesandjunction sitesconformsignificantlyto this model. Theresultis
that suchneurontree samplesglobally minimize their total volume—rathethan,for example surfaceareaor
branchlength. In addition, the arborsperformwell at generatinghe cheapestopology interconnectingheir
terminals:their large-scaldayoutsareamongthe bestof all suchpossibleconnectingpatternsapproaching%
of optimum. This modelalso appliescomparablyto arterialandriver networks.[S1063-651X99)16205-6
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Brains do not grow like crystals.However,someof the
architecturef a variety of typesof neuronarborsseemto
be similarly self-structuring.This can be predicted by a
simple fluid-mechanicalmodel, where the neural treesare
representedn terms of a laminar flow of fluid througha
correspondindgube network. The modelapplieswell, for ex-
ample,to planararborsof mammalianretinal ganglionand
amacrinecell dendrites,and of both intrinsic and extrinsic
thalamicaxons.Local branch-junctiorgeometryconformsto
a fluid-dynamicalmodel, with branchdiameterssetto mini-
mize the internalwall drag of the fluid flow, which in turn
setsbranchangles.The completetree structuretherebycon-
forms to a fluid-static model, as if its hypotheticalbranch
tubes were all “inflated,” with the resulting vector-
mechanicalsystembehavinglike a network undertension.
This fluid-mechanicamodelpredictsthata giventreewill be
stretchedor embeddedn the minimum-volumeconfigura-
tion connectingits terminals;neuroanatomicabbservations,
in fact, support this conclusion. Furthermore,among the
manyalternativepossibletopologiesthe actualtopologiesof
thesearborsare closeto the minimum-volumeones.

The neuronarborsfit this large-scalemodel almost as
well asnonliving tree structuressuchasriver drainagenet-
works, andalsoblood vesselanatomy(Ref. [ 1] reviewedthe
wide rangeof non-neuralarborizationsoccurringin nature.
This “neural fluid mechanics”providesa first approxima-
tion of anexplanationof how a “save wire” generativeule
[2] for network wiring optimizationin the brain is in fact
implementedfor one aspectof neuroanatomySomeof the
significanceof suchan account,for instance,concernshow
complexbiological structurecanemerge“‘for free” directly
from simple physical phenomena[1-5. Such self-
optimizing tree structuresmight provide an enrichedmilieu
for “neuromorphs”—artificial neuronlikesignal processing
elementq 6]—that could grow their own networks.

STEINER TREE

The simplestforms of the core tree-optimizationconcept
here have beenstudiedat leastsince Fermatand Torricelli
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(see,e.g., Ref. [7]). The relevantclassicalversion of the
Steinertree problemis the following: Given a set of fixed
nodes find the setof arcsor branchsegmentshatintercon-
nectsall nodesandhasthe shortestotal length. Theresulting
networkwill alwaysconstitutea tree.Whenit is permittedto
have branchjunctions only at node sites, it is a minimal
spanning tree; when branchingsmay also occurat loci that
arenotnodesjt constitutesa Seiner tree. Thetotal lengthof
the Steinertreefor a setof nodesis equalto or lessthanthe
length of the minimal spanningtree for the nodes(with a
maximumpossibleimprovementof about13%[8]). For ex-
ample, Figs. 1(A) and 1(B) show, respectively,a minimal
spanningreeanda Steinertreefor five nodeson a plane;the
Steinertree hasthreeinternodaljunctionsj, andis about4%
shorterthanthe minimal spanningtree.

Steinertreeis a combinatorialoptimizationproblem:The
exactsolution of a probleminstancein generalrequires(a)
generatingall possiblealternativeconnectingpatternsor to-
pologies,amongthe given nodes(see,e.g., Fig. 6 below);
and (b) for eachtopology, finding its minimum-costembed-
ding, thatis, the bestpositioningof its internodaljunctions.
Steiner tree—unlike minimal spanning tree—has been
proven to be an NP-completeproblem, indeed, NP hard
[9,10]. The conceptof NP completenes§‘nondeterministic
polynomial-time completeness)’ neednot be definedhere,
but it is strongly conjecturedto be linked with a problem
beingintrinsically computationallyintractable,i.e., not gen-
erally solvablewithout an exhaustivesearchof all possible
solutions.Becausethe numberof possibilities—topologies,

A B

FIG. 1. Two classicalmodelsof tree optimality: (A) Minimal
spanningtree,and (B) Steinertree, for five nodeson a planesur-
face. The Steinertree has internodal junctions j; it is therefore
shorterthan the minimal spanningtree, but much more computa-
tionally costly to construct.The Steinertree conceptin fact applies
to neuronarbors but with the costmeasurasthetotal treevolume,
ratherthanthe total treelength.
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FIG. 2. Optimizationanalysisof a five-terminalsubtreefrom the dendriticarborof an & ganglioncell in rabbitretina.(A) A quadranbf
the original cameraucidadrawingcontainingthe subtree(after Ref.[13], p. 29); somais in the upperright corner.”“Leaf terminals” of the
analysisare boxed(notethat one of themis not a branchterminatior); the “root terminal” is at soma.(B) Wireframerepresentatiownf the
actualtree,with branchsegmentstraightenedetweenoci of terminalsandinternodaljunctions.The labelsgive the diametersassignedo
the branchsegmentsvia the power law for the laminar-flow value p=3.00 (with correctionfor branchbendin; seetext). (C) Optimal
(relembeddingof the topologyof the actualtree,with respecto the total volume cost,via the STRETCHalgorithm. This minimum-volume
embeddingf theactualtopologyis 1.06%cheapethanthevolumeof theactualtreein (B). (D) Optimalembeddingf the optimaltopology
for the giventerminalloci, with respecto volumecost.It canbe seento differ from the actualtopologyof (A)—(C). It is 2.64%cheapein
volumethanthe actualtopologyin its actualembeddingn (B). (E) Optimal embeddingof the optimal topology,with respecinsteadto the
total tree surfacearea. The actualvs optimal error is now 27.22%, much greater.(F) Optimal embeddingof the optimal topology, with
respecto thetotal treelength. The actualvs optimalerroris now 60.58%,evengreater| Somejunctionsitesof (E) and(F) areidenticalwith

terminal sites] Thusthis dendriticarbor bestfits a minimum-volumemodel.

in the Steinertreecase—combinatoriallgxplodesasthe size
of a problem-instancgrows (e.g., a ten-nodetree hasover
two million Steinertopologies, such brute-force searches
are extremely computationallycostly. The largest uncon-
strainedclassicalSteinertree problemssolvableat the endof
thelastdecadehadonly 30 nodeq 11], andtodayhaveabout
100.

The basic questionof the goodnesof fit of the Steiner
tree conceptto actual neuroanatomyis the following: Do
dendritesor axonsform optimizedSteinertreesinterconnect-
ing the cell bodywith a setof synapticloci [1,12]? However,
atypical dendriticor axonicarborhasthousandsf synapses,
a node set of unfeasiblesize. Instead,the analysisbelow
treats the hierarchically next-highest-levelarbor elements,
the branchterminationsasthe “leaf nodes” to be economi-
cally interconnectedvith eachother,andthe “root node” or
origin (e.g.,thecell body): for example Fig. 2(A) showsone
“bough” portionof the dendriticarborof an & ganglioncell
in rabbit retina [13] with three such branch-termination
leaves.It shouldbe notedthat the fluid-mechanicalccount
hereimplies that the leaf nodesare not targetsitesfixed in
advancerather,asthe systemis “inflated,” positionsof the
branch terminations shift into vector-mechanicalequilib-
rium. The optimizationthesisis that the resultingarboris a
Steinertree. Theaccounthereis thusconsistentvith conven-
tional conception®f dendriticarborstructureasmainly “in-
trinsically” driven [14]—yielding, in effect, the most eco-
nomical “synapserack’ to receiveconnectionsin contrast,
accordingto the conventionalconception typical axonsare
more “extrinsically” driven as their growth tips home on
their synapseargets[15]. It is interesting therefore thatthe
fluid-mechanicahccounthereturnsoutto apply equallywell
to sometypesof axon(e.g.,of the reticularformation; pos-

sibly theseparticular axonsalso are laid out by similarly
intrinsic processes.

Becauseoptimizationof two-dimensionakrborsis much
better understoodthan that of three-dimensionabnes,the
analysisbelow concentratesn the former. The dendriteand
axontreesselectedasdatafor analysisare of highly regular
types,with relatively straightbranchesandno branchcross-
overs[e.g., the boughof Fig. 2(A), as opposedto the tree
consistingof that boughwith the boughto its right]. One
observationregardingnetwork optimizationis immediately
salient:A classicatheoremfor minimal spanningreesstates
that no branchjunction can have an angle of lessthan60°,
from which it follows that no node can have more than six
brancheslf the somaof planarneuronarbortypessuchas
retinalganglioncellsis treatedassucha node,andexamples
areselectedvith approximatelysymmetricaldendriticarbors
and with boughs of approximatelyequal size, this *six-
branchrule” can be tested.Peichl, Ott, and Boycott [16]
includesrelevanta ganglioncells of 13 mammalianspecies;
all somatareceivesix or lessdendritebrancheswith mean
5.15(*=0.80. The six-branchrule was similarly confirmed
without exceptionby the « ganglioncells from rabbitretina
by Peichl,Buhl, and Boycott[13].

LOCAL Y TREES

Fluid dynamics. The classicalSteinertree conceptcannot
be appliedfurther to naturaltree structuresbecausewhile
the usualSteinertreeformalismtreatsall segmentasequal,
typically trunksof naturaltrees—livingandnonliving—have
greaterdiameterthantheir branchesThe conceptof a vari-
ably weighted Steinertreeis thereforerequired,where seg-
mentsneednot haveuniform costper unit length. We begin
with the local analysisof single internodal junction “Y
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FIG. 3. Bifurcating junction in a neuronarbor:t, trunk; b; and
b,, branchesj, internodaljunction; 6, internal branchangle. The
“Y"-tree diagramis superimposedipon a simplified outline of a
junctionin the datasetfrom the dendriticarborof a & ganglioncell
in catretina. The neuronarborjunctiontrunk andbranchdiameters
conformto the powerlaw tP=Db%+b8, with p==3; this is a fluid-
dynamicmodelfor the minimuminternalwall dragof pumpedflow
underalaminarregimethrougha pipejunction.In turn, theinternal
branchanglesof the neuronjunctionsconformto the “triangle of
forces” law cosf=(WZ—W&; —W2,)/2Wy, Wy, , With weightsw,, cor-
respondingo cross-sectiorareasof respectivetrunk andbranches;
this vector-mechanicamodel yields minimum volume of a Y-tree
junction.

trees,” the componentf complextrees.First, a model of

the relation of branchcoststo their trunk costis necessary.

One promisingly generalcandidatecan be drawn from fluid

dynamics:Originatingwith Murray’s [17] work on vascular
arbors,the “cube law” statesthat, for diverging flow from

trunk to branchest anarterialjunction, tube-walldragof the
moving fluid is minimized if inside diametersof the trunk
andbranchesdit arelationshipthatthe cubeof trunk diameter
equalsthe sumof cubeddiametersof all branchegseeFig.

3). This derivationholdsfor laminarflow, thatis, typically,

fluid moving smoothlyin tubesof onemillimeter diameteror

less, at velocities low enoughnot to induce eddy distur-
bances[18]. In general,it has beenwell confirmed[19].

Murray’s law generalizego a powerlaw

tP=pP+bl 2<p=<3. 1)
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Qualitatively,this law expressethatthe greatethe exponent
value,the lessthe requiredtrunk diameter relativeto branch
diametersFor the greaterflow ratesand pipe diametersof
the turbulentflow regime,p can be derivedas 2.33, again
with empirical confirmation [19]. Although constructed
originally for diverging flow at a branching,the modelalso
canapproximatethe caseof convergingflow. For turbulent
flow in the openchannelsof river drainagesystems(again,
bothfan-outandfan-in) the powerlaw (1) is derivable,with
simplifying assumptionsfor p=2.17[20].

Flow phenomenaave long beenobservedin both den-
dritesand axons[21], particularlyduring their development,
althoughof coursethey havehighly complexinternal struc-
ture, not an unobstructedumen. We evaluatedhe goodness
of fit of the powerlaw for the trunk andbranchdiametersof
the 217 neuronarborjunctionsreportedby Cherniak{1]. The
neuronal‘tubes” areof 1-10-um diameterange;hencethe
predictedexponentvalue for the power law would be the
laminarregimep=3.00.As Fig. 4 shows thedataarein fact
consistentwith that prediction. With mean (b3+b3)/t3
=1.12 (+0.46), the neuron branch-junctiondata fit the
laminar power law almostaswell asthe mousecortex 10—
100-um-diameter arteriole branch-junctiondata of Wang
et al. [22], wheremean(b3+b3)/t>=1.08 (£0.05). In ad-
dition, the neurondata consistentlyconform to the power
law betterfor p=3.00thanfor p=1.50; the latteris in fact
identicalwith the “ 5 rule” for motor neurondendritetrunk
and branchdiameters,derived from an electrotonusmodel
[23]. The powerlaw showsa lower error with p=3.00than
with p=1.50 for each of 17 of the 20 dendrite-junction
groupsof Cherniak[1], which is significant(p<<0.01) by a
sign test. (The three groupsthat are exceptionsfall into no
particularpattern,but it shouldbe notedthat noneof the 20
groups consistedof spinal motor neuron dendrites. The
laminar value of p=3.00 also outperformsa “conservation
of cross-sectiomrea” valueof p=2.00[24] for 16 of the 20
groups(p<<0.02).

Fluid statics. Without referenceto a fluid-mechanical
model, a generallocal optimizationlaw can be derivedthat
relates weights of a trunk and its two branchesto the

Frequency
o

. i

0 02 04 06 08 1
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FIG. 4. Bestfit of thefluid-dynamicmodelfor dendriteandaxonY trees.Thefluid-dynamicpowerlaw relatingbranchdiameterso trunk
diameterfor minimal wall dragof pumpedflow at a junction, is t?="hbf+ b5 (for the laminarflow regime,p= 3.00). The histogramsarefor
the frequency distribution of values of the best-fit exponentp for 217 neuron junctions. (A) The raw data are skewed. (B) The
log,-transformeddatabetterapproximatea normal distribution (as confirmedby linear regressioranalysisof a Q-Q normality tesd; the
inverseof the meanof log-transformedbest-fitexponentss 3.09 (+1.61), which approacheshe laminarregimevalue of p. For the 173
dendritejunctionsof the total dataset,p=2.96 (= 1.54). (The neuronjunction datawere describedn Ref.[1].)
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FIG. 5. (A) Combined“fluid dynamicandstaticmodel” appliedto isolateddendriteY trees(junctionsfrom Ref.[1], p. 506). (1) The
fluid dynamicpowerlaw relatingbranchandtrunk diametersfor minimizationof the wall dragof pumpedflow is tP= b+ b5 (seeFig. 4).
(2) Thefluid-staticlaw for the minimal tree costis cose=(vvt2—vvf,1—wﬁ2)/2wblwb2, with w,, the costper unit length of a branchor trunk;
this is equivalentto the triangle of forceslaw of vectormechanicsThe combined” d? & cos#’ modelemploysobservedoranchdiameters
atajunctionto derivethe predictedtrunk diameter thenusesthosethreevaluesto derivethe optimal branchangle.In the aboveplot, there
is a minimum-volume-cosipoint within the interpretable2.00-3.00 range;for a cost=volume assumptionthe best-fit p value of the
combinedmodelfor 173 dendritejunctionsis at p=2.70.At the bestfit p, the meanerror (of 0.209 betweenactualobservedvs predicted
optimal branchanglesis in fact slightly lessthan the meanerror of the fluid-static model alone using directly observedtrunk diameters
(0.509. (B) The samecombinedmodel, extendedto dendrite“triads” of threeinterconnectedy trees(seeTablel), via the STRETCH
embedding-optimizealgorithm.For cost=volume, the best-fitvaluefor five dendritesamplegroupswith 72 triadstotal is at p=2.90,with
ameanactualtopologyerrorof 4.50%betweerthe actualtriad volumeandminimal triad volume.The modelfor triadsincludesa correction
for the observedbend-inof branchef eachtype (the modelfor Y treesdid not). Seetext for branchandtrunk costingprocedures.

minimum-costangle 8 betweenthe branchedor connecting
the trunk origin to the branchterminationsites:

cosf= ————. (2)

(SeeFig. 3.) An immediatequestionis, what is the weight
w—the cost per unit of length—tobe minimized?As dis-
cussedn Ref.[1], the hypothesighat the total volume of Y
junctionsis minimized,ratherthanthe surfaceareaor length
of the tree structuresjs strongly confirmedfor a variety of
dendritesand axons.The cosinelaw (2) is identical to the
“triangle of forces” law of vectormechanicsexpressinghe
least-energystateof threecordsfastenedogetherat a com-
mon junction, with actualweightspulling eachof them.If a
Y treeis interpretedas a fluid-static systemof flexible but
relatively inelastic-walledtubes “inflated” at an arbitrary
pressurethenthe forcesexertedon the cross-sectionatlisks
of eachtube will in fact drive the junction to an energy-
minimizationanglethatis identicalwith the anglefor mini-
mization of volume (but not of surfaceareaor of length.
Thus, via a tug of war process,fluid statics provides a
mechanisnfor the local optimizationof arborvolume.
Sincetreevolumeis a function of branchandtrunk diam-
eters,thefluid-dynamicpowerlaw andthe fluid-staticcosine
law can be linked in a single fluid-mechanicalmodel. In
effect,a‘‘dP & cos#” local modelacceptsthe two branch
diametersat a junction and outputsthe trunk diameterand
the volume-minimizingbranchangle. The combinedmodel
also implies, qualitatively, that the smallerthe p value, the
smallerthe branchangle 6. Figure5(A) showsthatthe com-
bined model performsat leastas well at predictingdendrite
junctionanglesasthe cosinelaw alone(reportedin Ref.[1]),
with quitelow meanerrors.A discrepancynay be perceived
betweenthe bestfit p=2.96 of the power law to the den-
drites (Fig. 4), versusthe best-fitvalue p=2.70 of the com-

binedmodelin Fig. 5(A); the combinedmodelp valuefalls
virtually in the middle betweenthe 3.00 laminar regime
value and the 2.33 turbulentvalue. One explanationof the
lower p value of the combinedmodelis branchbend-in:As
discussedelow, almostall typesof naturallygeneratedree
structuresshow someinward curvatureof branchesas they
leave the immediatejunction zone. Branch anglesof the
Cherniak[1] datawere measuredt approximatelyonetrunk
diameterfrom the junctionzone,andsoreflectsomeamount
of branchbend-in; observedangleswill thereforebe some-
what lower than the mostimmediatelylocal ones.As indi-
catedabove the bestfit p will correspondinglype decreased.
An estimateof the extentof branchbend-infor the Cherniak
[1] data,derivedfrom the “true” local 2.96 p valuedirectly
basedon the power law alone,andthe 2.70 p value of the
combinedmodel,is 7.1°, which is consistenwith the much
greaterbend-inobservedor branchesat rangesfurther from
the junction.

MULTIJUNCTION TREES

TheY treesof the aboveanalysiscanbe viewedascom-
ponentsof more complextrees,suchas “triads” consisting
of threeinterconnected trees.However,local optimization
doesnot entail global optimization.In particular,the termi-
nal setof a Y tree hasonly one possibletopology, while
larger terminal setshave an exponentiallygrowing number
of alternativetopologies(seeRef[7], Table1.1). The cosine
law above expresse®nly the minimum-costlocal embed-
ding or “stretching” of the Y-tree topology. First, the em-
beddingconceptmustbe generalizedo the globaltopologies
of more complextrees,with brancheof varying weight, or
costper unit length.

Embedding a topology. Optimization of large-scaleem-
beddingcanagainbe conceivedof in termsof the ideaof a
tree as a system of laminar-regimetubes in a vector-
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mechanicakug of war. Vector-mechanicalreatmentof tree
networksof weight-loadedcordswith asmanyasfive inter-
nodal junctionsappearedn work by Varignon[25]. Huang
and Kahng[26] developedor us an algorithmto derivethe
minimum-total-cost embedding of a variably weighted
Steinertree, with affinities to a conceptby Gilbert [27]. We
employedthis algorithmin a tree embedderSTRETCH: A
treesuchasin Fig. 2(B) is representedsaninputfile, speci-
fying its topology (i.e., the connectionsamong node and
junction siteg, with coordinatesof the root and leaves,and
of the observedinternodaljunctions, and weights of each
branch.STRETCH proceeddrom junction-linkedleaf pairs
inward. Using the cosinelaw above, STRETCH finds the
minimum-costsite of the internodaljunction for eachleaf
pair. It then in turn treats these internodal junctions as
second-ordefeaves,and finds the minimum-costjunction
sitesfor thesenew “leaves.” The algorithm continuesback
in this way, also testing junction mergings,until it reaches
the root. The outputis the optimal embeddingof the tree,
representedsloci of the internodaljunctions;Fig. 2(C) de-
picts a typical minimum-cost embedding, for volume.
STRETCHcanbe setto minimize the total volume, surface
area,or branchlengthof a tree.

Neuron arbor data were scannedfrom published Golgi
and HRP cameraucida drawings.The spanof completear-
borsrangeswell abovel00 um; sincebranchdiametersare
below 10 um, theseimagesrarelyincludeaccurateepresen-
tations of branchdiameter[see,e.qg., Fig. 2(A)]. Given the
goodconfirmationdescribedaboveof the laminarpowerlaw
for the neuronY trees,we insteademployedit to estimate
diameter costs of triad branches.Like STRETCH, the
“coster” algorithmproceedd$rom theleavesinward: Branch
tips are assigneda uniform costof 1; at their junctions,the
powerlaw is usedto assigncostto thetrunks.Thus,for p set
at 3.00,theassignedrunk costis not 2, but 1.26.The costing
procedureprogressegteratively backto the root node.

Observedbranchbend-inwas also incorporatedinto the
model: For naturally occurring trees, if branchanglesare
measuredit the maximumdistancefrom the junction site—
that is, with eachbranchdefinedby the segmentfrom the
junction out to its termination(eitherat a leaf site or a next
outermostjunction—the anglesare consistentlyless than
anglesmeasureds close as feasibleto the junction point.
While branchesvary in sinuosity,suchbend-inappearsvir-
tually as ubiquitousamongdendritesand axons,living and
nonliving naturaltrees,as conformanceo the powerlaw or
the cosinelaw: We haveobservedt for arteriesand veins,
plant arbors,river drainagenetworks (both fan-in and fan-
out), and electric dischargetree patterns.The meanbranch
bend-in for the 72 dendrite triads analyzedhere is 24.3°
(£19.3; for the 32 axon triads, it is 12.9° (+24.4. (One
possiblegeneralexplanatiorfor all of thesecaseds in terms
of a constantmodulusof elasticity for branchwalls.) Since
the power and cosinelaws only apply locally, in the imme-
diate junction neighborhoodthe observedneanbend-infor
eachclassof dendritesand axonswas usedto correct—i.e.,
decrease—thdaminar p value of 3.00 for predicting the
angleof the full length of the branches[The labelsin Fig.
2(B) showthe assignedoranchcoststo a triad, with correc-
tion of p=3.00by the meanbranchbend-inof 25.9°for the
classof rabbit & gangliondendrites]

LARGE-SCALE OPTIMIZATION OF NEURON ARBORS

6005

At p=3.00, the observedembeddingf the 104 actual
neuron triads have a mean volume cost that is 5.40%
(+=3.80 greaterthan the minimum costof the optimal em-
beddingsof their actualtopologies[ Theaxonerrorof 5.78%
(+4.56 runs somewhatgreaterthan the dendrite error of
5.05% (+3.07).] For p insteadset at the turbulent-flow-
regimevalue of 2.33,the meanneuronerror risesto 6.31%
(+4.96. This differenceis small but consistentThe error at
3.00runsbelowthe error at 2.33for sevenof the eight neu-
ron groups;of the 104 individual triads,68 showlesserror at
3.00thanat 2.33, a highly significanteffect (p<<0.001,r,
>0.31). For comparison,the correspondingmean embed-
ding erroris similar, 4.42%,for eight triadsfrom artificially
generatedstreamq 28] and eight triads from the Mississippi
River delta[29], with p at the 2.17 value derivedfor turbu-
lentflow in openchannelsasexplainedearlier.With p atthe
2.33 turbulentvalue, 24 humancoronaryartery triads [30]
(having a 2.45-mmmeantrunk diametey showa meanem-
beddingerror of 4.49%;20 of 24 betterfit the turbulentthan
laminar p value, which is again significant (p<<0.01). As
noted by Cherniak[1] for local junction geometry,these
comparablesrrorsare consistenwith the hypothesighatthe
global neuronarbors,like the fluid networks,are createdby
simplefluid-mechanicaprocesses.

Tablel showsthe meanbest-fitvalue of p for eacharbor
class,thatis, the p value (with correctionfor meanbranch
bend-in atwhich the embeddingrolumeerror of the topolo-
giesof the setof actualarbors(“VL error”) is minimized.
The first observationis that every triad group, living and
nonliving, hasa best-fitvalue p, 2<p<4; thatis, thereex-
ists a minimum-volume cost point above 2.00 and below
4.00 (for the dendritegroup, seeFig. 5). The meanembed-
ding error for neuronsdropssometo 4.80%,with the mean
best-fit value p at 2.92—agreeingwell with the fluid-
mechanicalhypothesisthat the neuron arbors behavelike
laminar-flow-regimepipe networks. Furthermore the lami-
nar behavioris consistentas canbe seen,the meanbest-fit
value p is closerto 3.00 than 2.33 for sevenof the eight
neurongroups.Finally, the volume-costhypothesisoutper-
forms both the surfaceareaandthe lengthhypothesesor all
eightneurongroups.Similarly, for 95 of the 104 triads, their
individual best-fitminimum-errorvaluesfor volume costing
arelower thanthe best-fiterrorvaluesfor surfaceareaor for
length.

To provide measuref variance,correspondingmeans
for the pooledindividual triad dataare:for the 72 dendrites,
a best-fit value p of 3.38 (=1.39, with a volume error of
3.58%(+2.82); for the 32 axons,a best-fitvalueof p of 3.20
(£1.17), with a volumeerror of 3.97%(*+3.33; andfor all
104 neuronarborsa best-fitvalueof p of 3.33(=1.33, with
avolumeerrorof 3.70%(*=2.99. While the variancehereis
appreciableconformanceto the laminar over the turbulent
modelis consistentindependentines of evidenceconverge
in supportingthe laminar model—in particular, both local
and direct measurementsf branch diametersat junctions
(Fig. 4), as well asthe global arboranalysishere.

Searching topologies. Finding the minimum-costlarge-
scaleembeddingof a given tree connectinga nodesetdoes
not sufficefor finding the optimal treefor the nodeset. The
best embeddingof the given tree topology may in effect
constituteonly a local minimum trap on the optimization
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TABLE I. Global optimization of neuronaland non-neuronalarbors. Each arbor sampleis a “triad,” a tree with three internodal
junctions;seeFig. 2. The meanpercenterror of a triad groupis in termsof the costof eachactualtree comparedwith its corresponding
optimizedtree[expresseds “ (Actual-Optima)/Optimal”]. All actualvs optimal tree errorsarefor the best-fitvalue of exponentp in the
fluid-dynamicpower-lawmodelrelatingbranchandtrunk diametersat junctions:thatis, the p valueat which the meanembeddingerrorsof
the actualtrees,for the volume cost,are lowest. That best-fitvalue of p, with a correctionfor the observedbranchbend-inangle,is given
for eachtriad group.Next listed is the meanpercenterror of eachtriad’s actualtopologyin its actualembeddingys the actualtopologyin
its cheapesvolume-costembeddingln addition, the performanceof actualtreesrelative to the correspondingninimum-costtopology is
evaluatedor the hypotheseshatminimizedcostis equalto total volume (VL ), surfacearea(SA), andlengthof arbor(LG). To find optimal
treetopologies,all 15 possibletriad topologies(seeFig. 6) were searchedThe meanvolume cost-rankof the actualtree’stopologywhen
the optimally embeddedTopol rank), in comparisonwith the volume costsof every other topology optimally embeddeds given. All
sampleonformbestto a volume-minimizatiormodel.River networktriadsalsominimize volumecomparablywhichis consistentith the
idea that both neuronsand water networks achieve such optimization by fluid-mechanicalprocessesin addition, optimization of the
topology gainslittle, comparedwith optimizationof the embedding.

Actual topology Optimal topology
Triad Best- VL Topol VL SA LG
set fit p? error rank error error error
Neutronarbors
Dendrites
Alpha ganglion,
rabbit (n=23) [13] 2.58 4.22 3.39 4.92 22.68 52.57
SD *2.96 *2.54 +3.30 *12.52 *26.61
Alpha ganglion,
cat(n=12) [32] 2.83 6.09 3.58 7.64 17.64 36.15
SD *+3.94 *2.71 *3.84 *6.62 +17.00
Delta ganglion,
cat(n=38) [32] 2.94 5.86 2.88 7.36 16.31 33.30
SD *3.72 *+2.42 +4.00 *7.05 +14.54
Parasol,
human(n=21) [33] 3.33 4.45 1.43 4.59 7.25 12.42
SD +2.86 +0.81 +3.03 +5.51 +8.10
Starburstamacrine,
rabbit (n=28) [34] 2.72 1.68 3.63 1.86 2413 63.70
SD *1.03 *1.92 *0.93 *11.77 *28.02
Dendritegroupmeans(n=72) 2.90 4.50 2.82 5.21 16.79 37.22
Axons
Intrinsic, thalamus,
mouse(n= 8) 3.65 5.18 1.63 5.88 8.27 12.58
SD *3.02 *1.77 *4.48 +5.87 *11.12
Extrinsic, thalamus,
mouse
Cortical (n=19) 2.72 5.11 2.11 5.40 11.63 19.87
SD +4.48 *1.79 *4.45 *7.41 +11.87
AscendingRF (n=5) [35] 2.88 7.29 1.60 7.92 15.84 31.17
SD +5.58 *0.55 *5.40 +8.04 *17.52
Axon groupmeans(n=32) 2.98 5.47 1.91 5.92 11.45 19.81
Neurongroup means(n=104) 2.92 4.80 2.54 5.43 15.15 31.86
Non-neutronarbors
Humancoronaryarteries
(n=24) [30] 2.44 4.55 2.00 4.85 21.45 52.93
SD *3.54 *1.41 *3.51 +9.83 *22.15
River drainagenetwork,
artificial (n=8) [28] 2.54 3.87 1.38 3.94 12.19 28.85
SD +2.58 *0.52 +2.58 *6.57 *12.34
River delta,
Mississippi(n=38) [29] 2.12 3.41 4.25 3.55 27.15 69.86
SD *3.77 +1.83 +3.82 *11.37 *+25.42
Weight-tablenetwork
(n=24) 3.00 0.06 1.25 0.21 3.53 17.34
SD *0.04 +0.85 *0.21 *1.29 *7.03

aSinceeachtriad groupp is the best-fitvaluefor thatarborgroup,thesep valueshaveno SD. Dendrite,axon,andneuronp valuemeansare
weightedaverage®f the best-fitp valuesof their respectivegroups(seetext for meansof pooledindividual data.
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FIG. 6. The 15 alternativepossibletopologies,or connecting
patterns,for a “triad,” a five-terminaltree with three internodal
junctions.Steinertree optimizationof an arborrequiresnot just (a)
the bestembeddingof the arbor’s actualtopology/i.e., the lowest-
costpositioningof its internodaljunctions,asin Fig. 2(C) vs 2(B)],
but (b) an exhaustivesearchof all possibletopologiesconnecting
the terminalsto find the onethatis cheapestvhen bestembedded
[asin Fig. 2(D) vs 2(C)].

landscapgcompare for example Figs. 2(C) and2(D)]. Un-

der the standardconception,a topology is the structurethat
remainsinvariant under continuousstretching transforma-
tions (i.e., without tearing or joining); two topologiesare
distinct if one cannotbe convertedinto the other by any
embeddingoperation. Therefore,to find the global mini-

mum, everypossiblealternativetopologyinterconnectinghe
node set must be generatedand then embeddedFigure 6

showsthe 15 possibletopologiesfor the nodesetof a triad.

(The triad dataof Table| were sampledacrossall the main
typesof topologies)

We constructeda “TG —Coster-STRETCH"” package:
First, TG is given a tree input file like that describedfor
STRETCH, and generatesachpossiblealternativefull to-
pology for the given nodeset. Once TG hascreateda par-
ticular such connecting pattern, the Coster program de-
scribed above assigns branch weights according to a
specifiedexponentsetting of the power law. The resulting
treefile is thensentto STRETCHto find its optimal embed-
ding. Statisticsareaccumulatean both optimal and*“pessi-
mal” optimally embeddedopologies,that is, the cheapest
and costliesttopologiesafter their embeddingshave been
minimized.

Performanceof the optimal topologiesclosely parallels
that of the actualtopologies.Again, for everyneurongroup,
the volume-costerror is always considerablylessthan sur-
facearea-coserror,which in turnis alwayslessthanlength-
costerror;the neuronsstill appearto be minimizing volume.
As can be seenin Table |, the meanvolume error (at the
best-fitvalue p) for actualneurontopologiesof 4.80%only
increasego 5.43% for the optimal topology. [Correspond-
ingly, meansfor pooledindividual neurontriad data show
the samepattern,increasingfrom 3.70% (+2.99 to 4.53%
(+£3.62.] That is, perfectingthe embeddingof the actual
topology gainsconsiderablymore in volume costthan per-
fecting the topology itself. While thereare only 15 alterna-
tive treetopologiesfor a five-nodeset, the same"unimpor-
tance” of topology selectionrelative to embeddingalso
appliesfor larger node setswith much greaternumbersof
alternativetopologies—e.g.for eight-nodesets,which have
10395 alternative topologies; and nine-node sets, which
have 135135 topologies(see,e.g., Figs. 7 and 8). In addi-
tion, performanceof the actual neurontopology, optimally
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FIG. 7. Eight-terminalarborof extrinsicaxon(ascendingeticu-
lar formation, mousethalamus(from Ref. [35]). (A) Wireframe
representationf the observedarbor. The actualtopology,with the
observedembeddingof thattopology,appearsn brokenlines. The
optimal embeddingwith respectto volume minimization of the ac-
tual topologyis superimposedh solid lines. [Branchcostingis via
the powerlaw, with p setat the best-fitvalue (with a branchbend-in
correction for this arborgroupin Tablel.] The costin volume of
the actualarborexceedghat of the optimal embeddingof its topol-
ogy by 2.20%.(B) “Best of all possibletopologies” connectinghe
given terminalloci: the optimal topology with respectto volume,
optimally embeddedThe costin volume of the actual arbor ex-
ceedghatof the optimaltopologyby 2.47%.0nly tenof the 10395
possiblealternativetopologieshavelower total volume costs,when
optimally embeddedthanthe actualtopology.

embeddedrelative to all othertopologiesappeargo be in-
variantacrosghethreecostmeasuresthe meanrelativerank
of the actualtriad topology variesonly slightly for the dif-
ferentcostmeasure$2.84for volume,2.55for surfacearea,
and 2.62 for length. Finally, their similar actual topology
ranks in Table | suggestthat neuron arbors are not
“smarter” than the nonliving river networksat finding the
cheapest-voluméopology, this despitethe well-known re-
modelingprocesseactinguponmanytypesof dendritesand
axons,suchas synapseand branchpruning.

Benchmarks. Thusneurontriadsminimize their volumeto

40x10°
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FIG. 8. Distribution of volume costsof all possibletopologies,
eachoptimally embeddedpf a nine-terminalextrinsic axon arbor,
mousethalamus(from Ref. [35]). The histogramshowsthe usual
patternfor natural arbors, living and nonliving: the more costly
topologiesaremorecommon the cheapesbnesaretherarest.Con-
sequently the goodtopology selectionof the naturalarborscannot
result merely from a confoundthat the least costly layouts occur
most frequently. The histogramwas compiledfrom an exhaustive
searchof all 135135 alternative topologiesfor a nine-terminal
Steinertree,requiringaboutfive dayson a P6 400-MHz computer.
The mostcostly optimally embeddedpessimal” layoutshaveonly
about12% greatervolumethanthe cheapesbne;in this sensefor
optimization,“topology doesnot matter.”
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within about5% of the correspondingptimal trees.For so-
ciological comparison, rectilinear Steiner trees for very
large-scaleintegratedmicrocircuit chip layout are regarded
in the industrytoday aswell minimizedif they comewithin
10% of optimum length (see,e.qg., Ref. [7], pp. 221-242).
We havealsonotedthatriver networkstypically area couple
of percentcloserto optimum than the neurons;since the
river branchdatarangesabovel-km scale,while the neuron
dataareatthe 1-um scale simplemeasuremergrror may be
responsiblefor the somewhatgreaterneuron optimization
error.Tablel includesa benchmarkdatafor a setof weights
and pulleys tree networks constructedwith interconnected
force tables. In effect, these triads are “pure” vector-
mechanicaltrees, as in Varignon [25]—a type of analog
computingdevicefor the embeddingproblem.Their branch
loadings were set for “volume” minimization, with p
=3.00for the powerlaw relatingbranchandtrunk costs;the
loci of the internodaljunctions were than “read out.” A
variety of topologiesand leaf loadingswere sampled.The
optimal-topologyvolume error dropshby an order of magni-
tude, to 0.21%; however,the topology rank improvesonly
moderatelyover someneuronandriver groups.

The force-tabletriads also serveas a calibration of the
optimization assessmenprocedureshere. The best-fit p
value for their internodaljunction loci doesindeedturn out
to be at 3.00; also, surfaceareaand length errorscomeout
much greaterthan the volume-costerror. In addition, four
triads of conventionalminimum-lengthSteinertrees (from
Refs.[9,11]) were scannedn and evaluatedwith the TG-
STRETCH package.For the optimal topology, the mean
lengtherror for the actualtriadswas 0.22%,aboutthe same
as the force-tableerror. In addition, these “near-perfect”
minimum-lengthtreeseachshowedmarkedlyworsevolume
andsurfaceareaerrors(for example,at p=3.00,the respec-
tive meanerrorswere 7.42% and 1.56%). Thus the proce-
duresheredid in fact detectthat thesetest sampleswere
minimizing length,not volumeor surfacearea.Anothercali-
bration strategyis to generatethe “perfect” minimum sur-
faceareatreefor the nodesof someactualtriad, thenin turn
testthe assessmemtrocedure®n this optimumactualtreeas
an input. For one such minimum surfaceareadendritetree
(at p=3.00,with 16° bend-in, the optimal-topologysurface
areaerror was indeedonly 0.000005%, while the volume
errorwas 1.61%,andthe length error was 0.92%.

In judging how good is “good,” benchmarksrom the
otherextremeare usefulcomparisonsMeanoptimal volume
embeddingof the “pessimal” topology for neurontriads—
the topology that is costliest when minimum-cost
embedded—costenly 1.81% more than the corresponding
actualtopologiesin their actualembeddingswhile the opti-
mal embeddingof the optimaltopologycostss.43%less.So,
again,topology makedlittle difference.For largernodesets,
for example,nine-nodetrees,a histogramshowsthe distri-
bution of costsof all 135135 topologies,optimally embed-
ded (seeFig. 8): The cheapestss costliesttopologiesdiffer
by only ~13%, a strikingly narrowrangeover so many al-
ternativetopologies.A next questionconcernshow muchis
at stakeinsteadwith embedding.Bad embeddingsof four
neurontriad node setswere constructed‘by hand,” under
the constraintsof no branch crossoversand no internodal
junctions outside the convex hull of the terminals, with a
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junction costing at p=3.00 (corrected for the observed
branchbend-in; eachcostabouttwice asmuchin volumeas
the correspondingctualneurontriad. Evensuchaninformal

approachindicateshow much embedding,unlike topology,

canmatter.

Finally, is the optimizationbehaviorof larger-sizedneu-
ron treessimilar to that of triads, i.e., five-nodetrees?.The
size limit of currently feasible topology searchess nine
nodes;a ten-nodetree has 2027025 alternativetopologies.
As for triads,volumeminimizationdominatedor largertrees
(meanoptimaltopologyerrorsfor nine-nodeneurontreesare
10.28%volume, 14.86% surfacearea,and 23.07%length.
As for triads, an optimal topology gainsrelatively little im-
provementover the actualtopology (for the nine-nodetrees,
the actualtopologyvolumeerroris 8.19%,only slightly less
thanthe optimal-topologyerron. Largertreesdo showa pair
of salientdifferencesfrom triads: The embeddingvolume-
minimization error tendsconsistentlyto increasewith node-
set size, from 4.80% for triads to ~8% for the nine-node
arbors.Converselythetopologyrank error of the actualtree
dropssharply,from the top 10.93%for triadsto 1.02% for
the nine-nodearbors.

The basic point here has beenthat major neuronarbor
structureappearsto be self-organizing,with both dendrite
and axon morphogenesibehavinglike flowing water. Neu-
ron arboranatomyfits a global volume-minimizationmodel
nearlyaswell asnonliving treestructuresuchasriver drain-
age networks.Rama y Cajal observedthat a developing
axontendsto grow in a straightline, aslong asit doesnot
encounterinterfering environmentainfluences 21,31]. The
accountof neuronarbor morphogenesiferecan be viewed
asa generalizatiorof this idea: The defaultaxodendriticar-
bor pattern, when external cues do not intervene,is the
volume-minimizingembedding.This optimal-volumestruc-
tureis conceivedo be a basicgroundplan,anur arboroften
modified in complexways—for example,as manifestedin
the tortuositiestypical of intrinsic cortical axons.

The simple “neural fluid mechanics” describedabove
generateghis default arbor structure,in particular, branch
diameterspranchangles,andjunction sites.Sinceriver net-
works performaswell at topology optimizationasdendrites
and axonshere,DNA-basedmechanismslo not seemto be
required.The significantrole of basicpropertiesof micron-
scalefluid flow behaviorin neuronarbor formation draws
attentionto the ideathat modulatorsof the fluid-mechanical
milieu of the nervoussystemmay governaspectsf its nor-
mal developmentModification of suchpropertiesasviscos-
ity or surfacetensionthereforemaybe worth investigation—
for example,toward promoting connectionregrowth after
injury.
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