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Abstract. The neocortex undergoes a complex transfor-
mation from mouse to whale. Whereas synapse density
remains the same, neuron density decreases as a function
of gray matter volume to the power of around —1/3,
total convoluted surface area increases as a function of
gray matter volume to the power of around 8/9, and
white matter volume disproportionately increases as a
function of gray matter volume to the power of around
4/3. These phylogenetic scaling relationships (including
others such as neuron number, neocortex thickness,
soma radius, and number of cortical areas) are clues to
understanding the principles driving neocortex organi-
zation, but there is currently no theory that can explain
why these neocortical quantities scale as they do. Here |
present a two-part model that explains these neocortical
allometric scaling laws. The first part of the model is a
special case of the physico-mathematical model recently
put forward to explain the quarter power scaling laws in
biology. It states that the neocortex is a space-filling
neural network through which materials are efficiently
transported, and that synapse sizes do not vary as a
function of gray matter volume. The second part of the
model states that the neocortex is economically orga-
nized into functionally specialized areas whose extent of
area-interconnectedness does not vary as a function of
gray matter volume. The model predicts, among other
things, that the number of areas and the soma radius
increase as a function of gray matter volume to the
power of 1/3 and 1/9, respectively, and empirical support
is demonstrated for each. Also, the scaling relationships
imply that, although the percentage of the total number
of neurons to which a neuron connects falls as a function
of gray matter volume with exponent —1/3, the network
diameter of the neocortex is invariant at around two.
Finally, I discuss how a similar approach may have
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promise in explaining the scaling relationships for the
brain and other organs as a function of body mass.

1 Introduction

Large airplanes are not simply bigger versions of small
airplanes; while a large plane has longer wings, its pilot
seat is essentially no different in size than that of a small
plane. There is a good reason for this: planes are for flying
and thus the wing length must increase as a function of
the plane’s mass in order to get sufficient lift, but planes
are piloted by people who are the same size no matter
whether piloting a small or large plane, and thus the pilot
seat size must stay the same. The way that wing length
and pilot seat size scale with plane weight, then, helps to
indicate why planes are built the way they are. An
analogous point can be made about mammalian neocor-
tex: whale neocortex is not simply a bigger version of
mouse neocortex. Whereas the neocortex of a whale has
more neurons, greater thickness, greater surface area,
and more white matter than that of a mouse, whale
neocortex has lower neuron density and the same synapse
density. Furthermore, of those neocortical quantities just
mentioned that increase with neocortical gray matter
volume, none increase in proportion to gray matter
volume. Just as wing length and pilot seat size scaling can
help one understand principles underlying why planes are
built the way they are, how these neocortical quantities
scale may indicate principles underlying why the neocor-
tex is built the way it is.

Neocortical quantities Y have been found to change
as a function of neocortical gray matter volume Vyray

with allometric scaling laws of the form Y = Yngbray,
where b is the scaling exponent and Y is a constant
characteristic of the kind of mammal (it is said that Y is
invariant with respect to Vgmy if b = 0). Scaling expo-
nents in biology are often simple fractions resulting from
underlying mathematical and physical principles, such as

the exponent 2/3 for the scaling of organism surface area
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against volume and the exponent 3/4 for the scaling of
organism metabolism against body mass (Schmidt-
Nielson 1984). Measurements of scaling exponents for
neocortical quantities go back at least to Tower (1954),
who measured a neuron density scaling exponent of
around —1/3. Since then many other scaling exponents
have been measured; for example, synapse density has
been found to be invariant, neocortical thickness (from
pia to white matter) has been measured to be around 1/
9, neocortical total convoluted surface area has been
measured to be around 8/9, and white matter volume
has been measured to be around 4/3 (see Table 1 for
references). No prior theory explains these scaling laws
satisfactorily. My model explains these exponents, and
consists of two parts. The first part of the model ema-
nates from a recent physico-mathematical model of
West et al. (1997) that is used to explain, among other
things, the 3/4 scaling exponent for metabolic rates of
organisms as a function of body mass. Their model
concerns the efficient distribution of materials through
space-filling branching networks whose terminal seg-

Table 1. Predicted and measured scaling exponents for neocortical

variables against gray matter volume Vy,,. The measured ex-

ponents are in most cases acquired from scaling data against brain
volume. To obtain exponents against Vg, I have assumed that
Varay is proportional to brain volume. This proportionality is em-

pirically justified, as measured exponents for Vg, to brain volume

ments are not a function of body size. Their hypothesis
can be applied to neural networks, and is a key part in
the explanation of the neocortical scaling exponents.
The second part of the model concerns the large-scale
organization of the neocortex, claiming that it is com-
posed of functionally specialized areas whose extent of
area interconnectedness (to be defined later) is invariant,
and whose connection costs are minimized.

2 Synapse density

Nearly all explanations for neocortex scaling laws
depend on the fact that synapse density is independent
of brain size (Abeles 1991). Little attention has been
given to explaining this invariance, however, perhaps
because investigators are typically more interested in
trends than non-trends. Synapse density invariance is
explained by the model mentioned above from West
et al. (1997). The model is recorded in more detail here as
Model 1, which has three assumptions, or principles.

are close to one: 0.983 (Prothero 1997a), 0.982 (Hofman 1991),
1.054 (Hofman 1989), 1.04 (Prothero and Sundsten 1984), 1.06
(Frahm et al. 1982), and 1.08 (Jerison 1982). “i.d.” means that
there are insufficient data to compute a scaling exponent, although
the prediction is broadly consistent with the data

Variable description Variable Predicted Measured References
exponent exponent
Synapse density Psynapse 0 = 0.00 0 Abeles 1991
Neuron number N 2/3 = 0.67 0.62 Jerison 1973
0.67 Passingham 1973
Neuron density Preuron -1/3 = -0.33 -0.312 Prothero 1997b
—-0.28 Prothero 1997b
-0.28 Tower 1954
-0.32 Tower 1954
Number of synapses per neuron K 1/3 = 0.33 id.
Number of areas A 1/3 = 0.33 0.40 This paper (see Fig. 3)
Thickness T 1/9 = 0.11 0.092 Prothero 1997a
0.115 Prothero 1997a
0.129 Hofman 1991
0.197 Hofman 1989
0.08 Prothero and Sundsten 1984
0.17 Jerison 1982
Total surface area S 8/9 = 0.89 0.905 Prothero 1997a
0.893 Prothero 1997a
0.922 Prothero 1997a
0.901 Hofman 1991
0.899 Hofman 1989
0.89 Hofman 1985
0.91 Prothero and Sundsten 1984
0.91 Jerison 1982
Soma radius Ry 1/9 = 0.11 0.10 This paper (see Fig. 4)
Axon radius R, 1/9 = 0.11 id.
Volume of white matter Vwhite 4/3 = 1.33 1.318 Allman 1999
0.985 Prothero 1997b
1.28 Hofman 1991
1.37 Hofman 1989

1.31 Frahm et al. 1982




Assumption 1.1 states that the neocortical neural net-
work has space-filling branching patterns, each neuron
filling its own portion of the gray matter. That neurons
are space-filling has empirical support (Porter et al. 1991;
Panico and Sterling 1995), and the reason the neocortical
neural network is space-filling is presumably in order to
minimize the total volume required for the network.
Assumption 1.2 says that synapse size (e.g., terminal
bouton diameter) is invariant. It is empirically supported
because while synapses do vary in size within the
neocortex, they do not vary in size as a function of
Varay (Abeles 1991). Assumption 1.3 is that neuron arbor
diameters follow Murray’s Law (Murray 1926), which
states that the cube of the parent segment’s diameter is
equal to the sum of the cubes of each daughter segment’s
diameter. Neuron arbor diameters for many varieties of
neurons including pyramidal cells have been shown to fit
Murray’s Law (Cherniak et al. 1999). One explanation
for why Murray’s Law applies to neuron arbors is that
neuron arbor diameters are set in such a way as to
minimize the power required to distribute materials via
laminar fluid flow throughout the network (Cherniak
et al. 1999). In fact, it is well known that there is fluid
flow in neural arbors (Lasek 1988), and that the fluid flow
is laminar follows from the facts that fluid flow in pipes of
diameter less than one millimeter tends to be laminar
(Streeter and Wylie 1985), and that neural arbors have
diameters on the micron scale. West et al. (1997, p. 124)
show that in a tree satisfying Model 1 the number of
leaves is proportional to the body volume. “Number of
leaves’ becomes, for our network, ‘““‘number of synapses
per neuron.” “Body volume” becomes ‘““volume of cortex
filled by the neuron.” Thus, the number of synapses per
neuron is proportional to the volume of the cortex filled
by the neuron. Since synapse density is proportional to
the number of synapses per neuron divided by the
volume of gray matter the neuron fills (because of
Assumption 1.1), synapse density is invariant.

3 Neuron number and density

Neocortical neuron density has been found to have an
exponent around —0.3, and neuron number N an expo-
nent around 0.65 (see Table 1). The speculation since
Tower (1954) has been that the exponents are, respective-
ly, —1/3 and 2/3. Because about 85% of neocortical
neurons are pyramidal cells (Schiiz 1998), and only
pyramidal cells significantly change in their degree of
arborization from mouse to whale (Deacon 1990), it is
changes to pyramidal cells that must account for the
decreasing neuron density. Accordingly, neuron number
and density will refer to pyramidal neurons. Also, because
most (over 90%) of the neocortical connections are from
one part of neocortex to another (Braitenberg 1978), the
other neocortical connections are probably not the
principal drivers of neocortical scaling; I will therefore
concentrate on the cortico-cortical connections only.
What explains the neuron density scaling exponent of
—1/3? The only attempt at a quantitative explanation of
the neuron density scaling exponent has been Prothero’s
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repeating units model (Prothero 1997a). His model
possesses, however, the assumption that the number of
“repeating units” — a hypothetical piece of neocortex
spanning the thickness of neocortex and having a fixed
number of neurons, possibly much like a minicolumn or
radial unit (Rakic 1995) — is proportional to the visible
outer surface area of the brain (as opposed to the total,
convoluted surface area). Because the outer, visible
surface area scales as the 2/3 power of brain volume, and
the number of neurons per unit is invariant, it easily
follows that neuron number scales against brain volume
with an exponent of 2/3. This is unsatisfying, however,
because why repeating units should scale in proportion
to the outer surface area rather than the total convoluted
surface area is just as mysterious, and is in need of just as
much explanation as why neuron number should scale
with brain volume to the 2/3 power.

My model’s second part, Model 2, explains the neuron
density scaling law, and is comprised of four assump-
tions, or principles. The neocortex is parcelled into
functionally specialized areas (Kaas 1987; Northcutt and
Kaas 1995). My model defines areas as groups of neurons
for which inter-area connections are made using pyra-
midal neurons via the white matter, and intra-area con-
nections are made locally. Assumption 2.1 states that a
single pyramidal neuron’s axon can innervate only one
area. An area connects to a certain percentage of the
other areas. This percentage is the percent area-inter-
connectedness. Assumption 2.2 states that the average
percent area-interconnectedness remains roughly con-
stant whatever the total number of areas. The motivation
for this is that each area has its own specialized task it
carries out, and in order for an area’s efforts to be useful
it must make its results known to an invariant percentage
of the areas in the neocortex (see Fig. 1). Areas are
composed of many neurons, and thus a connection from
one area to another is always from a neuron in the first
area to a certain percentage of the neurons in the second
area. This percentage is the percent area-infiltration. As-
sumption 2.3 states that whatever the neocortical gray
matter volume, the average percent area-infiltration stays
roughly the same. The motivation for this is that when an
area tells another area about its efforts, it must tell a
certain invariant percentage of the neurons in the area in
order for the area to understand and appropriately re-
spond to the news (see Fig. 2). All things being equal, it is
advantageous for a central nervous system to use less
neural wiring, and certain aspects of neuroanatomy and
structural organization have been found to be consistent
with wire-optimization hypotheses (Durbin and Mitchi-
son 1990; Mitchison 1991, 1992; Jacobs and Jordan 1992;
Cherniak 1992, 1994, 1995; Ruppin et al. 1993; Van Es-
sen 1997; Cherniak et al. 1999). Under a save-wire de-
sideratum we would expect that the neocortex would
satisfy Assumptions 2.1, 2.2, and 2.3 in a fashion sensi-
tive to the connection costs. In particular, we would
expect that the average number of neurons to which a
neuron’s axon connects — the average neuron degree, 6 —
will not be much greater than that needed to satisfy these
other hypotheses. Why? Because connecting to more
neurons requires a greater number of synapses per
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Fig. 1a,b. The invariance of percent area-interconnectedness. The
average percent area-interconnectedness in a small and large
neocortex; Assumption 2.2 states that it is invariant. The outer part
of each ring depicts the gray matter, the inner part the white matter.
Each neocortex has multiple areas. a Each of the four areas in this
small neocortex connects to one other area. The average percent area-
interconnectedness is thus 1/4. b Each of the eight areas in this large
neocortex connects to two other areas. The average percent area-
interconnectedness is thus 2/8 = 1/4, the same as for the small brain
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Fig. 2a,b. The invariance of percent area-infiltration. The average
percent area-infiltration for small and large areas; Assumption 2.3
states that it is invariant. Each rectangle depicts an area, and each
small circle a pyramidal neuron. a Each of these two areas has four
neurons, and the left area connects via a pyramidal axon to two
neurons in the right area. The percent area-infiltration is 2/4 = 1/2.
The other neurons’ connections are not shown. b Each of the two
areas has eight neurons, and the left area connects to four neurons in
the right area. The percent area-infiltration is 4/8 = 1/2, the same as
for the small area

neuron, and this, in turn, requires greater arborization —
more wire. In terms of scaling, this save-wire expectation
can be weakened to the expectation that the average
neuron degree scales no faster than needed to satisfy the
first three hypotheses; this comprises Assumption 2.4.
Informally, Model 2 says that no matter the neocortex
size, an area talks to a fixed fraction of all the areas, and
when an area talks to another area it informs a fixed
fraction of the neurons in that area; furthermore, this is
done in an efficient manner. Note that, unlike in Model 1
where there is independent evidence supporting each
hypothesis, there does not yet exist independent support
for the hypotheses in Model 2 (especially Assumptions
2.2 and 2.3); these hypotheses are assumptions of the
model. Also, it should be recognized that from these
assumptions we cannot make predictions concerning the
large-scale organization of any particular neocortex;

these assumptions are “‘zeroth-order” approximations,
and only touch on how neocortical quantities change,
across animals, as a function of Vyy.

From Model 2 we may derive the neuron density and
other scaling exponents. Some notation is required: let 4
be the total number of areas, D be the average number of
areas to which each area connects, and W be the average
number of neurons per area; also recall that ¢ is the
average neuron degree (i.e., the average number of neu-
rons to which a neuron’s axon connects). D/4 is the
average percent area-interconnectedness, and by As-
sumption 2.2 it is invariant, so D ~ 4. 6/ W is the average
percent area-infiltration, and by Assumption 2.3 it is also
invariant, so 6 ~ W. There must be sufficiently many
neurons in an area to connect to D areas, so it must be
that W > D (via Assumption 2.1). Because 0 ~ W and
because Assumption 2.4 says that ¢ scales no faster than
necessary, W must scale no faster than necessary, thus
W ~ D. Putting things together, we now have
0~W ~Dn~A. Since the total number of neurons
N ~ AW, it follows that § ~ W ~ D ~ A ~ N'/2. Schiiz
(1998) argues that, to a good approximation, a pyrami-
dal neuron connects to almost as many different neurons
as its number of axon synapses (an ‘“‘axon synapse’ is a
presynaptic terminal from an axonal arbor), which
strongly suggests the much weaker proposition that ¢ is
proportional to the average number of axon synapses per
neuron, s. Although there is no measured scaling expo-
nent for s, it can be computed using the neuron density
exponent as follows (where pgypanse a0d preyron are the
neocortical synapse and neuron densities, respectively):
§= psynapse/pneuron' Thus, 0~ psynapse/pneurons and since
Psynapse 18 invariant, 6 ~ 1/pyeiron. AlSO, preyron is defined
as N /Vgray, S0 0 ~ Vgray/N. Since we have seen just above
that 6 ~ N'/2, it follows that Vgay /N ~ N'/2. Solving for
N we have N 0 ngrfy. Dividing each side by Vay, we have
Pneuron ™~ Vgray

Note that it also follows that the total number of
areas scales as gray matter volume to the power of 1/3;
1.e., 4~ Vglrai. This is consistent with currently available
data, as can be seen in Fig. 3. This suggests that the
number of areas increases in neocortex not because of a
selective pressure for greater modularity and specializa-
tion, but because of the requirement that the neocortex
arrange itself so as to economically achieve an invariant
degree of well-connectedness. While my model explains
the quantitative increase in the number of cortical areas,
it does not explain why there are areas in the first place;
that is, my model presumes there are areas. It has been
argued that the fact that there are areas at all may, itself,
be due to a pressure to optimize volume (Durbin
and Mitchison 1990; Mitchison 1991, 1992; Ringo 1991;
Jacobs and Jordan 1992; Ringo et al. 1994).

4 Surface area, thickness, axon diameter, soma
diameter, and white matter volume

Neocortical total surface area and thickness scaling
exponents were computed first by Jerison (1982), and
have since been measured by others (see Table 1). The
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Fig. 3. Logarithm (base 10) of the number of cortical areas versus
logarithm of brain volume. Best-fit line via linear regression is
y = 0.4032x — 0.4988 (R> = 0.8197, n = 11, p < 0.001), the slope of
which is not significantly different from 1/3 (p > 0.2). Counts of
cortical areas taken from Kaas (1987), Krubitzer (1995), and
Krubitzer et al. (1997). There are disagreements on how to distinguish
and count areas, but while different methodologies are likely to lead to
different constants in the scaling law, they are unlikely to lead to
different scaling exponents. By confining area counts to within a single
methodology (i.e., that of Kaas and colleagues), we expect a
reasonable estimate of the exponent. Brain volumes are taken from
Frahm et al. (1982), Haug (1987), Hofman (1982a,b, 1983, 1985),
Hrdlicka (1907), and Stephan et al. (1981). The x-axis is brain volume,
but since it scales proportionally to gray matter volume (see caption of
Table 1), the slope of the line in the plot gives the best-fit exponent for
the number of areas as a function of gray matter volume. Log-log
(x, y) values plotted are: star-nosed mole (3.15, 0.60), hedgehog
(3.53, 0.78), tenrec (2.79, 0.78), echidna (4.04, 1.00), opossum (3.89,
1.00), quoll (3.67, 1.04), squirrel (3.88, 1.15), marmoset (4.60, 1.34), cat
(4.49, 1.38), owl monkey (4.81, 1.45), and macaque (4.97, 1.45). Note
that if we add a point for human, somewhat arbitrarily using 50 as the
number of areas (log-log point = (6.13, 1.70)), the slope becomes 0.34
(R? = 0.8429)

scaling exponent for surface area S has hovered around
0.9, and that for thickness 7 around 0.1. Rockel et al.
(1980) have shown that the number of neurons along a
thin line through the thickness of the cortex is invariant.
Assuming that the neuron density decrease is isotropic,
the line density decrease along a line through the
thickness of the cortex will scale at (—1/3)/3=—1/9
(Prothero 1997b). Since the number of neurons along
this line is invariant, 7' ~ Vgréy Also, ST = Vgray, and so
S~ Vggrg These are in close agreement with the
measured exponents shown in Table 1.

There has been some confusion concerning how the
results of Rockel et al. (1980) should be considered in
light of the, at first glance, contradictory conclusion by
Haug (1987) that the number of cortical neurons beneath
a square millimeter of cortical surface decreases in larger
gray matter volumes. Prothero (1997b) examines and
resolves this seeming paradox: the counts of Rockel et al.
(1980) are of the number of neurons along a thin line
through cortex (although from this they invalidly ex-
trapolate an invariant neuron density), whereas Haug’s
values (Haug 1987, Fig. 13) are of the number of neurons
under a square millimeter of cortex. The former is a
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measure of the number of neurons from pia to white
matter and is unaffected by the decreasing neuron den-
sity, whereas the latter is affected by the decreasing neu-
ron density. In short, the results of Rockel et al. (1980)
and Haug (1987) tell us distinct, compatible things.

A scaling exponent for white matter volume was
computed first by Frahm et al. (1982), and has since
been measured by other investigators (see Table 1). Al-
most all the scaling exponents are around 1.3, and one
conjecture has been that the exponent is 4/3 (Allman
1999). White matter volume, then, scales dispropor-
tionately fast compared to Vyray.

White matter consists of myelinated pyramidal axons,
and one might expect that white matter volume scaling
depends in part on how axon radius scales. Axon radius
Ry can be derived from the model as follows. West et al.
(1997) show that a tree satisfying Model 1 possesses a
first segment, or trunk, whose radius scales in propor-
tion to the number of leaves on the tree to the power of
1/3. We may treat each white matter axon as the trunk
of the axonal tree that reaches back into the gray matter.
Thus, axon radius R; scales as the average number of
axon synapses per neuron, s, to the power of 1/3; i.e.,
Ry ~ s// 3. We saw earlier that s = pgnanee/ Preuron> and 0
5~ Vgray (this utilized Model 2). Therefore, the model
predicts that R; ~ Vgr{l(é Under the model belng pro-
posed, then, axon radius increases with increasing gray
matter volume not because of transmission time
considerations, but because of the need to efficiently
distribute materials via a laminar fluid through a space-
filling branching network whose terminal segments are
not a function of body size, i.e., because of the physico-
mathematical Model 1. However shorter transmission
times will be a fortunate consequence of increased axon
radius (Rushton 1951).

Is there any evidence to confirm the prediction that
Ry ~ Vglr/z" First, note that the prediction that axon ra-
dius increases as the number of axon synapses per neuron
increases (but less quickly) should not be at all surprising:
in natural tree structures (e.g., arteries, veins, plants, river
drainage networks, and river deltas), if a segment sup-
ports a greater number of leaves, then, all things being
equal, the segment has greater radius. This is no less true
of neurons (Cherniak et al. 1999). Thus, if we are confi-
dent that the number of axon synapses per neuron in-
creases as a function of gray matter volume (i.e., if we are
confident that synapse density is invariant but neuron
density decreases), then we must also be confident that
axon radius increases as a function of gray matter vol-
ume. There currently are, however, insufficient data to
test this directly. The only comparitive data on pyramidal
axon radius of which I am aware are from Jerison (see
Schiiz and Prei31 1996, Fig. 3) for just two animals
(mouse and monkey): the frequency distributions for
myelinated fiber cross-sectional area in each animal
overlap a great deal, but about 20% of the fibers in
monkey form an extended tail in the distribution into
fiber cross-sectional areas up to around two to three times
the maximum found in mouse. There is an indirect way of
testing the prediction if axon radius can be assumed to
scale in proportion to the soma radius Ry. In fact, a
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consequence of Model 1 is that a parent segment radius
scales in proportion to any of its immediate daughter
segment radii (West et al. 1997); so, if the soma can be
treated as the parent segment of the myelinated white
matter axon, we would expect soma radius to scale pro-
portionally with axon radius. Haug (1987, Fig. 8) finds a
small but significant (p =0.05) correlation between soma
size for cortical neurons and brain volume (but insignif-
icant correlation when confined to just to primates); no
scaling exponent is given and the data presentation is not
susceptible to my own attempts to compute it. A scaling
exponent for soma radius versus gray matter volume can
be computed using data from Purves (1988): the soma
radius scaling exponent was computed to be 0.10 (see
Fig. 4), in close agreement to the predicted 1/9. However,
these data are for spinal motor neurons, not cortical
neurons (see the legend of Fig. 4).

The white matter volume scaling exponent is derived
as follows. White matter volume, Vypite, 1S proportional
to the number of white matter axons, Nyhiteaxon, tIMES
the volume of a white matter axon, Vypiteaxon; 1.€.,
Vimite ~ Nwhiteaxon Viwhiteaxon - Consider Nyhiteaxon first.
Nyhiteaxon, 18 proportional to the number of areas, A4,
times the average number of areas to which each area
connects, D; i.e., Nyhijteaxon ~ AD. In the derivation of the
neuron density exponent we had shown that
A~D~NY2 Since N~ Vé;@, it follows that
A~Dn~ Vglré; Therefore, Nyniteaxon ~ ngrai- Now con-
sider the volume of a white matter axon, Vynitaxon-
Vhiteaxon 18 proportional to the length of a white matter
axon, L, times the square of its radius, R;; i.e.,
Vihiteaxon ~ LRZ Ry ~ Vglrz/lgy from above. Since white
matter axons must travel a distance proportional to the
diameter of the white matter volume, and because white
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Fig. 4. Logarithm of soma radius versus logarithm of brain volume.
Best-fit line via linear regressionis y = 0.102x + 1.527 (R*> = 0.9773,
n =15, p < 0.001), which has a slope very near the predicted exponent
of 1/9. Soma radii taken from Purves (1988, p. 65) and brain volumes
from Haug (1987, p. 128). Soma radii are from spinal motor neurons,
and are directly relevant to pyramidal neurons under the assumption
that each kind of neurons scales similarly (e.g., that, for each neuron
kind, the number of synapses per neuron scales the same, from which
we can derive (see main text) identical scaling for soma radius). Log-
log (x, y) values plotted are: mouse (—0.52, 1.47), rabbit (1.05, 1.61),
dog (1.80, 1.75), horse (2.71, 1.79), and elephant (3.62, 1.89)

matter appears to enlarge proportionally in all three

. . 13 1/3 7,2/9
dimensions, L ~ V.. Therefore, Vynitcaxon ~ Vypite Veray-

Putting these scaling relations together we get that
Vinite ~ Nwhiteaxon Pivhiteaxon ~ ngr{lil V“l,ﬁiie ngré?/ SOIVing for
Vihites We have Vypite ~ ;@, in close agreement with
most of the measured exponents (Table 1).

Note that if axon radius were invariant, the volume of
a white matter axon would be proportional to the white
matter volume to the power of 1/3. The resulting
proportionality equation would instead be Vypie ~
Nyhite Vvhiteaxon ~ gzrg V\;ﬁe, and the resulting scaling ex-
ponent for the volume of white matter against gray matter
volume would then be one. Therefore, the reason white
matter volume scales disproportionately quickly com-
pared to gray matter volume is not because of a dispro-
portionate increase in the number of white matter axons,
but, instead, because of the increasing axon radius due to

the physico-mathematical constraints on the network.

5 Neuron interconnectedness and network diameter

Using these scaling relationships we may examine the
consequences of how neuron interconnectedness scales.
One way to measure neuron interconnectedness is via
the average percent neuron-interconnectedness of neu-
rons, where a given percent neuron-interconnectedness of
a neuron is the percentage of all neurons to which it
connects; i.e., average percent neuron-interconnected-
ness is equal to /N, where N is the total number of
neurons and ¢ is the average neuron degree (i.e., the
average number of neurons to which a neuron’s axon
connects). To calculate how the average percent neuron-
interconnectedness scales it is necessary to estimate the
scaling exponent for the average neuron degree 6. Recall
from Sec. 3 that 0 ~ 1/pcuron- SINCE Ppcuron ~ Vg;lly3, it
follows that 6 ~ Vglr{ly, which is consistent with the trend
that a larger neocortex has a greater number of synapses
per neuron (Abeles 1991). Since N ~ Vgy, the average
percent neuron-interconnectedness is, then, J/N ~
Ng?;f. Thus, the average percent neuron-interconnect-
edness decreases with increasing gray matter volume,
and some authors have pointed out that this is to be
expected, as maintenance of a constant average percent
neuron-interconnectedness would be unfeasible (Stevens
1989; Deacon 1990; Ringo 1991).

Average percent neuron-interconnectedness is an
overly strong notion of neural interconnectedness,
however. A more appropriate measure might be the
network diameter, which is defined as — over all pairs of
neurons — the average number of “edges” (i.e., axons)
along the shortest path connecting the pair. Intuitively,
network diameter measures how close — in terms of
connectivity — neurons are to one another, on average.
Despite the decreasing average percent neuron-inter-
connectedness, it is quite possible that the network di-
ameter remains constant and low as Vgr,y increases, as
we will now see. In a random network the network di-
ameter is approximately (log N)/(log 0) (Bollobas 1985,
p. 233). The neocortex is certainly not a random net-



work, but because pyramidal neurons usually make
long-range connections (or ‘‘shortcuts”) via the white
matter, the network may be a small world network
(Watts and Strogatz 1998) which is non-random yet has
a network diameter nearlgf as low as that for a random
network. Because N ~ Ngr/.fy and 6 ~ Vglrﬁ,, N ~ 8. The
network diameter would, then, be approximately [log
(Co*))/[log 8] = 2+ (log C)/(log &), where C is a pro-
portionality constant. That is, for sufficiently large Vray,
the neuron degree ¢ becomes large and thus the network
diameter approaches two; in the limit there are on av-
erage only two edges — one neuron — separating any pair
of neurons. A rough estimate of the constant C can be
obtained by comparing actual values of neuron number
N and the average neuron degree 6. For a mouse,
N =2 x 107 and 6 ~ 8000 (Schiiz 1998), so the constant
C~N/& =03. Common estimates for human are
around N ~ 10'° and 6 ~ 50000 (Abeles 1991), making
the constant C =~ 4. What is important here is that these
estimates of C: (i) are of order one, and (ii) are well
below the estimates of ¢. Thus (logC)/(logd) ~ 0 and
the network diameter is approximately two. As a point
of comparison, note that the network diameter for
Caenorhabditis Elegans — the only nervous system for
which the network diameter has been explicitly mea-
sured — is 2.65 (Watts and Strogatz 1998); its network
diameter computed via the random network approxi-
mation is 2.16. This suggests the conjecture that a net-
work diameter around two is a feature common to all
central nervous systems.

6 Conclusion and discussion

The way that neocortical quantities scale as gray matter
volume Vgr,y increases suggests that the neocortex
consists of anatomically distinct areas: (i) that must
connect, on average, to a certain percentage of the total
number of areas no matter how many areas there are;

Table 2. Metabolic rates per gram are shown for various organs in
mouse (Martin and Fuhrman 1955), rat (Field et al. 1939), and dog
(Martin and Fuhrman 1955). Because larger animals have lower
metabolisms, we cannot simply average across the three animals.
Instead, for each animal the values are normalized in the interval
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and (i) whose area-to-area connections must connect,
on average, to a certain percentage of the neurons in an
area no matter how many neurons are in the area.
Furthermore, all this is satisfied in a way sensitive to the
pressure to optimize volume. The physico-mathematical
Model 1 concerned the efficient distribution of materials
through a space-filling, leaf-size-invariant network, and
was an essential piece in the explanation of the scaling
exponents. This highlights an under-recognized and
under-utilized explanatory avenue in neuroscience, that
of explaining phenomena by recourse, in part, to the
underlying physical and mathematical constraints.

It may be that such constraints, which have recently
been useful in explaining metabolic scaling, also explain
why brain mass scales as body mass M to the power of
3/4 (see, e.g., Allman 1999). Consider the following
preliminary qualitative argument. Under the assump-
tions that: (a) metabolic rate is proportional to blood
flow, and (b) capillary diffusing-ability is invariant and
so blood flow is proportional to the total number of
capillaries Nep, it follows that Ne,, ~ M3/* (West et al.
1997). If organ A4 has greater capillary density than or-
gan B, then we expect organ A’s scaling behavior to be
driven more by the scaling behavior of capillaries than is
organ B’s. Intuitively, organ 4 will have to enlarge less
quickly in larger animals than organ B because, as each
organ enlarges, the “capillary portion” of each does not
have to enlarge as quickly as the ““‘non-capillary portion”
of each, and organ A has a greater percentage of ““cap-
illary portion” than organ B. One measure of the cap-
illary density of an organ is the metabolic rate per gram
of the organ (Ross et al. 1989, p. 311), and there exist
data for the latter. The prediction of this argument is
that organs with greater metabolic rates per gram should
have lower scaling exponents against body mass. To test
this prediction, I compiled metabolic rates per gram for
organs in mouse, rat, and dog, and normalized them;
also, for each organ I obtained from the literature the
scaling exponent. These values can be found in Table 2.

[0, 1], and then the average and standard deviation (SD) are
computed. The scaling exponent for M., as a function of body
mass M is shown, along with the citation for the exponent. The
exponents are plotted against the average normalized metabolic
values in Fig. 5

Organ Metabolic rate per gram (ml O,/(g hr))  Normalized metabolic rate Exponent Citation for exponent
Mouse Rat Dog Mean SD

Blood 0.06 0.025 0.006 0 0 0.99 Prothero (1996)

Brain 3.09 1.84 1.37 0.535 0.084 0.75 Allman (1999)

Diaphragm 2.33 1.8 0.444 0.016 0.865 Mathieu et al. (1981)

Fat 0.43 0.26 0.089 0.02 1.146 Prothero (1995)

Heart 1.29 1.93 0.75 0.338 0.113 0.98 Prothero (1979)

Kidney 5.04 4.12 2.47 1 0 0.85 Prothero (1984)

Liver 3.33 2.01 2.05 0.657 0.172 0.886 Prothero (1982)

Lungs 0.14 1.25 0.49 0.171 0.143 0.99 Stahl (1965)

Skeletal muscle 1.26 0.875 0.57 0.226 0.017 1 Stahl (1965)

Skeleton/bone 0.28 0.153 0.031 0.029 0.017 1.073 Prothero (1995)

Skin 0.48 0.416 0.17 0.082 0.015 0.92 Calder (1996)

Spleen 1.75 1.33 0.8 0.327 0.011 1.02 Stahl (1965)

Stomach/intestines 2.01 0.33 0.262 0.184 0.94 Adolph (1949)

Thyroid 1.18 0.225 0 0.92 Stahl (1965)
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Fig. 5. Scaling exponent versus normalized metabolic rate per gram,
taken from values in Table 2. For each organ, the scaling exponent is
for Morgan as a function of body mass M. There is a significant
correlation in the predicted direction (R? =0.4442, n =14,
p < 0.001). Namely, organs with a greater normalized metabolic rate
per gram tend to have exponents nearer to 3/4, and organs with lower
normalized metabolic rate per gram tend to have exponents nearer to
one. Horizontal error bars indicate standard deviation as shown in
Table 2

Figure 5 shows how the scaling exponents vary as a
function of normalized metabolic rate per gram. The
plot is consistent with the prediction above: organs with
greater normalized metabolic rate per gram (and thus
greater capillary density) have exponents nearer to 3/4,
and organs with lower normalized metabolic rate per
gram (and thus lower capillary density) have exponents
nearer to one. Thus, brain mass may scale against body
mass with an exponent near 3/4 primarily because of
these metabolic scaling considerations.
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