Chapter 4

Conseguences of a Finite Brain

Do the ultimate limits on what it is possible to compute have a role to play
in explaining our world? Can the ultimate limits on computers tell us any-
thing about ourselves? Can recursion theory, the most theoretical discipline of
computer science, be applied to the brain? One major point of this chapter is to
suggest that the answers are “Yes”: Studying the limits of computation can give
one a handle on principles governing any sufficiently intelligent agent, whether
the agent is meaty or metal. If you are a finite machine, as we are, then there
are certain necessary consequences. Any brain will have certain similarities.
The similarity that | concentrate on is the phenomenon called vagueness, and |
show why any finite-brained agent will have to deal with vagueness.

As a student, one of my interests was to understand the ultimate limits of
thought, learning, understanding and intelligence. My interest was not really
about brains, per se; my interest concerned the ultimate limits of any thinking
machine. Now, it is primarily brains that think, learn, understand and have
intelligence, and so one might expect that studying neuroscience might help
one to discover these limits of thought. Not so, at least not with the state of
neuroscience today. The reasons are that

(a) brains are not well-understood,
(b) brain activity is not easily describable, and
(c) brains are not susceptible to proving theorems about them and their limits.

And even if someday (a), (b) and (c) are averted with a mature neuroscience, it
may be that
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(d) the brain, being just one of presumably infinitely many possible kinds of
thinking machine, barely scratches the surface as to what the ultimate
limits are.

This reasoning led me to learn computer science, and, more specifically,
logic, theoretical computer science, complexity theory and recursion theory.
Why? Because

(a) computers are well-understood,

(b) their activities are nicely describable, and

(c) computers are susceptible to proving theorems about them and their limits.
Furthermore,

(d) in theoretical computer science one may study what is arguably the class
of all thinking machines, not just one specific kind of thinking machine.

Understanding theoretical computer science and logic not only illuminates
the limits of machines, | believe it can tell us interesting things about one par-
ticular machine: the brain. A computer is, alas, not a brain. The fine details of
how the brain works will probably not be illuminated merely by understand-
ing computers and their limitations; those interested in the fine details need to
study real brains in addition to computers. But | have never been interested in
fine details—I care only about general, foundational principles—and this goes
for the brain as well. Given the plausible notion that the brain is a kind of com-
puter, understanding computers and their limits may provide us with insights
into the brain. That is, using computers as a model of the brain may have a
payoff.

There is a danger that one might take me to mean that “using computers to
model the brain may have a payoff.” Now, this is uncontroversially true; com-
putational models in neuroscience and psychology are widespread. Generally,
the idea is to concoct a program that captures relevant aspects of the system of
interest. But this is not what | mean. When | say that the brain is to be mod-
eled as a computer, | do not mean that | have devised some particular kind of
program that seems to capture this or that aspect of the brain or behavior. In-
stead, | mean that the brain is to be treated as a computational device—whether
a neural network machine, a random access architecture, or other—and is thus
subject to the same computational limits as computers.
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This, too, is almost entirely uncontroversial: nearly everyone considers the
brain a computing machine. (Although Penrose (1994) is one counterexam-
ple.) What has not been given sufficient attention, however, is that the brain-
as-computer hypothesis—all by itself and without reference to any more de-
tailed hypothesis about the program it computes or what its specific limitations
are—has certain empirical implications. Rational, computer-brained agents—
although they may be radically different in behavior, personality, intelligence,
likes, and so on—are going to have certain similarities. These similarities are
things true of any rational computationally bound agent; they are “behavioral
invariants” for such machines.

Our limitations

Consider the informal plots in Figure 4.1. Each plot has human “activities,”
or behaviors, along the x axis. Along the y axis in each plot is the human
“ability”; f(x) is the degree of ability humans possess in doing activity x. For
example, perhaps we are interested in the activity = of running, in which case
f (x) represents the human ability to run so and so fast. Or, consider the activity
z of holding items in working memory. Humans have the ability to hold around
seven (plus or minus two) items in working memory, and f(z) represents this
ability.

The top horizontal line in each graph represents the line at which greater
ability become logically impossible. Graph A is what | will call the “usual
conception,” where our human abilities always fall short of the logical limits
of what is possible. For example, having a working memory space of seven is
presumably not explained by reference to any logical limits on what is possible.
The explanation for it is likely to be brain-specific and historical in nature.
Graph B, on the other hand, depicts an activity (the arrow) for which the limits
of logical possibility are the active constraint in explaining the human ability
in that activity.

For example, consider the activity = of determining truths of Peano Arith-
metic. First, what is “Peano Arithmetic”? For now, you just need to know that
it is a short list of obviously true sentences of arithmetic, from which one may
derive infinitely many other truths of arithmetic (but not all the truths of arith-
metic). And, note that “arithmetic” just refers to what you might think it does:
mathematical sentences concerning addition and multiplication on the natural
numbers 0,1,2.... Thus, | am asking you to consider the activity of deter-
mining whether or not a sentence in arithmetic follows from Peano’s axioms of
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Figure 4.1: Ability to do a given activity. The top horizontal line in each plot demarcates
the boundary between logical possibility and, above the line, logical impossibility. The usual
conception is to view our ability as falling short of the line of logical impossibility. That is,
the explanation for our ability being what it is usually refers to hosts of contingent physical or
biological details about us. On the other conception, perhaps there are abilities of ours (the
arrow) that are, in some sense, as good as they possibly can be, where “ possibly” refers to
logical possibility. The explanation for our ability (or inability) being what it is refers entirely
(or almost entirely) to the limits of what is logically possible.
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arithmetic. It turns out that we humans are not perfect at this; we are not perfect
determiners of which sentences follow from Peano’s axioms and which do not.
This is not the kind of thing that anyone has actually experimentally tested,
mind you, but no savant has come forth able to, without error, tell whether or
not an arithmetic sentence follows from Peano’s axioms. We humans seem to
have a limited ability in this regard.

Another place we have a similar inability concerns the problem of deter-
mining whether or not some program is going to halt on some given input.
That is, | hand you some software for your computer, and I give you a copy of
the programming instructions, or code, underlying the software. | then give you
something to input into the program. Two things can possibly happen. First,
the program could take the input, grind it through some instructions and so on,
and eventually terminate. This is what we almost always want our software to
do: to eventually stop running without us having to reboot the system to force
it to stop. The other possible result of placing the input into the program is that
the program may never stop running; it is said to never halt. It just keeps car-
rying out more and more computations, going on and on and on without end.
This is when one must definitely resort to rebooting the computer, or breaking
out of the program somehow. Your task, with the program code in one hand
and the input in the other, is to determine whether the program will or will not
halt when that input is entered. This problem is called the halting problem, and
people are known to be notoriously bad at solving it. Again, it is not as if there
have been psychological experiments in this regard (not that | know of); it is
just known within computer science circles, for example, that we are all prone
to error in solving this problem.

One possible source of our limitations: logic itself

What is the source of our limited abilities in determining the truths of Peano
arithmetic and in determining whether a program halts on some given input?
It is thought that our limited abilities in these activities are explained by the
undecidability of the problems. In particular, the set of truths of Peano Arith-
metic is undecidable, as is the set of pairs of programs and inputs for which the
program halts on the input. What do we mean by “undecidability”? We say
that a set is undecidable if there is no computer program that exists, even in
principle, that can take elements as input and always correctly output whether
or not the element is a member of the set. If one did have such a program, the
program would be said to decide the set; and the set would be decidable since
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there exists at least one program that can decide it. (We will talk more about
this later.) Thus, when we say that the set of truths of Peano arithmetic is un-
decidable, we mean that there is no program that can be run on a computer that
will take as input a sentence of arithmetic and output whether or not it is true.
And when we say that the halting set—i.e., the set of pairs of programs and
inputs for which the program halts on that input—is undecidable, we mean that
there is no program @ that can be implemented on a computer that will take a
program code P along with an input x together as input (i.e., the pair (P, z) is
the input to the program ) and output YES if program P halts on input x, and
outputs NO if program P does not halt on input z.

What does the undecidability of these problems have to do with our limited
ability in solving them? Since they are undecidable, no computing machine
can solve them perfectly. And since we are just computing machines, we,
too, cannot solve them perfectly. This argument depends on something called
Church’s Thesis, which states that if something is intuitively computable—i.e.,
if it seems in some sense as if one is able to compute it—then it is computable,
in principle, by today’s computers. In other words, it says that there is no
other notion of computing something that we have not already captured in our
understanding of computers. (We’ll be discussing this at more depth at the
appropriate time later.) With Church’s Thesis in hand, it is argued that we can
compute nothing a computer cannot also compute, and since a computer has
limited ability with the Peano arithmetic and Halting problems, so must we.

Such an explanation, if true, utilizes in an essential way the logical limits of
what is possible for finite agents (by which I will mean for now computationally
bound agents, although I shall mean something more precise in Section 4.2.3),
and thus f(x) in the plot from earlier would be depicted as reaching the top
horizontal line.

Vagueness and logical limits

Vagueness—the phenomenon that, roughly, natural language words have bor-
derline regions (see Section 4.1)—is a phenomenon, not an activity, but phe-
nomena and activities are sometimes related. The activity of human running is
associated with the phenomenon that humans run only so and so fast. The ac-
tivity of remembering via working memory is associated with the phenomenon
that humans can only hold seven items. The activity of determining truths
of Peano Arithmetic is associated with the phenomenon that humans are in-
capable of acting as perfect Peano Arithemetic truth-determiners. And the
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activity of discovering if a program halts on a given input is associated with
the phenomenon that humans are not very good halting-determiners, or “bug-
checkers.”

In this vein, the phenomenon of vagueness will be seen to be associated
with two certain logical limits on the ability of finite, sufficiently powerful,
rational agents:

1. their inability to determine whether or not a program halts on a given input, and

2. their inability to generally acquire algorithms—programs that eventually halt on every
input—for their concepts.

Thus, in explaining vagueness in this chapter, | will be arguing for a picture of
explanations of human behavior as in graph B of Figure 4.1, where vagueness is
connected with an activity for which the human ability is bound by the ultimate
limits on what is possible; mathematics shapes us. We will see that vagueness
is not due to any particularly human weakness, but due to a weakness that
any computationally bound agent possesses; even HAL from 2001: A Space
Odyssey and Data from Star Trek will probably experience vagueness?

4.1 Vagueness, the phenomenon

One of the main points of this chapter is to show why one particular, very
important, all-pervasive, long-known, and not well-understood phenomenon is
explained primarily by the fact that the human brain is finite. That phenomenon
is vagueness. Vagueness applies to predicates of natural language. A predicate
is a word that applies to a subset of the set of all possible objects or events. For
example, the predicate ‘dog’ applies to all possible dogs, the predicate ‘bald’
applies to all possible bald heads, and the predicate ‘eat’ applies to all possible
occasions of eating. Nouns, adjectives and verbs are predicates, but many other
kinds of words are not predicates, such as logical connectives like ‘and’, ‘or’,
and ‘therefore’, or other “function” words (as they are called in linguistics)
such as ‘after’, ‘each’, “in’, “must’, ‘he’, ‘is’, ‘the’, ‘too’, and ‘what’.

A predicate is vague if it has borderline cases. Yul Brynner (the lead in The
King and 1) is definitely bald, I am (at the time of this writing) definitely not,

YVery early ideas of mine along the lines presented here appeared in Changizi (1995). A
paper on my theory was presented at the 1998 vagueness conference in Bled, Slovenia (Changizi,
1999a), and at the 1998 Irish Conference on Formal Methods (Changizi, 1999b). The latter
concentrates on logics and semantics of vagueness motivated by my theory of vagueness. The
main ideas were published in Changizi (1999c).
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and there are many people who seem to be neither. These people are in the
“borderline region” of the predicate ‘bald’, and this phenomenon is central to
vagueness. Nearly every predicate in natural language is vague. From ‘person’
and ‘coercion’ in ethics, ‘object’” and ‘red’ in physical science, ‘dog’ and ‘male’
in biology, to ‘chair’ and “plaid’ in interior decorating; vagueness is the rule
not the exception. Pick any natural language predicate you like, and you will
almost surely be able to concoct a case—perhaps an imaginary case—where
it is unclear to you whether or not the case falls under the predicate. Take the
predicate ‘book’, for example. The object from which you are reading this is
definitely a book, your light source is definitely not a book. Is a pamphlet a
book? If you dipped this book in acid and burned off all the ink, would it still
be a book? If I write this book in tiny script on the back of a turtle, is the
turtle’s back a book? We have no idea how to answer such questions. The fact
that such questions appear to have no determinate answer is roughly what we
mean when we say that ‘book’ is vague.

And, by ‘vague’ we do not include conundrums such as whether redness
is or is not bald; the word ‘bald’ does not apply within the domain of colors,
and so some might say that neither ‘bald’ nor ‘not bald” “nicely applies” to
redness. If ‘bald’ is vague—and it is—it is not because of the colors that it
is vague. In cases of vagueness, the inability to nicely apply the word and its
negation is not due to the word not applying to objects in that domain. *bald’
is vague because there are heads which do not nicely fall under ‘bald’ or ‘not
bald’, even though there are lots of other heads which do fall nicely under one
or the other of *bald’ or ‘not bald’.

For the uninitiated, why should we care about vagueness? There are a
number of reasons.

Most importantly for my interests here, the fact that natural language is
vague needs to be explained. Why are natural language users unable to draw
a single sharp line between definitely bald and definitely not bald? Why do
natural language users seem to find cases that are borderline bald? Why cannot
natural language users determine the boundaries of the borderline region? Is it
possible to have a non-vague language? If so, under what conditions?

The most central phenomenon of vagueness is the borderline region, where
for a vague predicate P there are objects which are not clearly classifiable as
either P or ‘not P’. This borderline region phenomenon seems to stab at the
very heart of the idea that our concepts divide the world into two parts: those
objects to which the predicate applies—the predicate’s extension—and those
objects to which the predicate does not apply—the complement of the pred-
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icate’s extension. Although some would like to argue that the true meanings
of P and ‘not P’ are as in classical two-valued logic where the extension of
‘not P’ is the complement of the extension of P (such a semantics is called
determinate), the concepts as we actually use them do not seemto be like this,
lest there be no phenomenon of vagueness at all. What are our concepts like,
if they are not as in classical logic? If we are not carving up the world a la
classical logic, how do we carve up the world?

A third reason the study of vagueness is important is related to the previous
one, but now the concern is one of logic rather than the question of what is a
concept. The issue is that classical two-valued logic seems to be at stake, for
classical two-valued logic says (i) that the meaning of a predicate is a precise
set and (ii) that the meaning of the negation of the predicate is the complement
of that precise set. Prima facie, (i) and (ii) do not seem to be consistent with
the existence of the phenomenon of vagueness. This threatens the usefulness
of over seventy years of technical work in classical logic. What is the proper
model of our interpretations and use of natural language predicates? And what
is the logic of our inferences if we are not “classical logic machines”? Given
that we humans are the paradigm example of rationality, it would serve us well
to understand the logic we engage in for the purposes of (a) better understand-
ing what is rationality and (b) building artificial machines that can mimic the
intelligence and humanity of our inferences and utterances—how better to do
this than to first understand how we do this?

Now that we care about vagueness, it is necessary to become clearer about
what exactly the phenomenon of vagueness is? What is it that is in need of ex-
planation? Some names of phenomena comprising the phenomenon of vague-
ness are ‘borderline region’, ‘higher-order vagueness’, ‘sorites paradox’, ‘ine-
liminability’, and ‘essentialness’; the first two are central. All things equal, a
theory that satisfies more of the phenomena is more favorable. But what are
these phenomena? It is dangerous to attempt to precisely and formally define
them since we have no clear pre-theoretic agreement on what exactly are the
data, and any such definition is likely to be theory-laden to some extent. Ac-
cordingly | want to remain open-minded. | will give the rough idea for each
phenomenon with the understanding that | am in no way defining what it is
exactly. The best | hope for is an independently motivated theory that results
in certain plausible phenomena that seem to match closely with the rough def-
initions of those named above. On to the phenomena.



248 CHAPTER 4

What isthe borderlineregion?

The borderline region phenomenon is roughly the phenomenon that for a vague
predicate P we find ourselves with objects for which P neither clearly applies
nor clearly does not apply; these objects are in the borderline region. Or, an
object is borderline if it does not fit neatly into just one category. Alternatively,
an object is borderline P if when we are given the choice “Which is it, P
or not, and not both?” we do not know quite how to respond, and our non-
response is seemingly not because we simply do not know, but because it seems
fantastic to suppose there is exactly one correct response; this is partially what
distinguishes vagueness from other sorts of unknowabilities. | say “seemingly”
above because otherwise | exclude the possibility of an epistemic determinist
theory of vagueness being correct, i.e., a theory where every object either falls
into the extension of the predicate or the complement of the extension, and
vagueness is due to our problems in seeing the boundary. The borderline region
is also connected with the phenomenon that we are incapable of drawing a
single sharp line distinguishing things P from things not P, and more than this,
it is that any line drawn would seem ad hoc, arbitrary and wrong. Sometimes
the borderline region is defined more epistemically as that region for which
knowledge concerning membership in P is unattainable. The phenomenon is
probably best communicated by example: wolves are borderline dog, violet is
borderline blue, and so on.

What is higher-order vagueness?

Higher-order vagueness, second-order vagueness in particular, is the phenom-
enon that we find ourselves incapable of determining boundaries of the bor-
derline region. Alternatively, imagine pulling hairs out of the head of a man
who is definitely not bald. Second-order vagueness is exemplified by the fact
that we do not find ourselves pulling out a single hair for which we are able
to determine that the man suddenly becomes borderline bald. We find objects,
or states of this man’s head, which are borderline borderline bald. More ex-
plicitly epistemically, knowledge of the boundaries—if there are any—of the
borderline region is unattainable. Higher-order vagueness, more generally, is
the phenomenon that we find ourselves incapable of determining any semanti-
cally distinct boundaries at all between definitely bald and definitely not bald.
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The “no boundaries’ dogma

On these first, most central, two phenomena of vagueness—the borderline re-
gion and higher-order vagueness—what needs to be explained is not necessar-
ily the real existence of a borderline region and higher-order vagueness, but
rather why there seems to be a borderline region and higher-order borderline
regions. The borderline region could be defined as the region which is se-
mantically distinct from the definite regions, but a less theory-laden and more
scientific approach would be to say that any adequate theory of vagueness must
explain why there is a region which seemsto be semantically distinct; this still
leaves it open as to whether there is semantic indeterminacy. Also, sometimes
(very often, in fact) higher-order vagueness is taken to be the phenomenon that
there is no sharp semantic boundary between the definite regions and the bor-
derline region, and even more radically it is sometimes taken that there are no
semantic lines at all to be drawn, no matter how small the semantic difference
or how impossible it is to see the lines. To have any lines posited by one’s the-
ory is, so it is reiterated, “not to take vagueness seriously.” This seems straight-
forwardly bad science. There are our experiences of vagueness, and there are
our theories about them; only the former can possibly count as data. Theo-
ries may well explain the data by positing that there is a semantically distinct
borderline region, or that there are no sharp semantic lines, and perhaps such
theories can in the end be victorious over epistemic theories like Sorensen’s
(1988), Williamson’s (1994), a version of Koons (1994) and mine. What one
cannot do is criticize epistemic theories on the basis that they do not posit a se-
mantically distinct borderline region, or that they do posit sharp lines, for to do
so is effectively to criticize epistemic theories for not being non-epistemic the-
ories. In fact, if we are to be biased by our metaphysical prejudices, we have
a long history of success in the drawing-sharp-lines business (e.g., classical
logic) and should therefore be biased toward the existence of sharp lines.

Not only are epistemic theories unfairly criticized, so are many-valued the-
ories (truth-valuational or probabilistic). | have never understood the criticism
of fuzzy logic, for example, that it does not adequately handle higher-order
vagueness. The charge is that there is a sharp, and let me suppose knowable,
line between ‘a is P’ having truth value 0, where « is definitely not P, and
having truth value > 0 (and < 1), where a is borderline P. This is criticized
as being fantastic just as is a semantics with a sharp line between ‘a is P’ hav-
ing truth value 0 and having, say, indeterminate truth value. Furthermore, it
is argued, fuzzy logic is full of sharp lines everywhere, and this is just crazy.
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Edgington (1992), who proposes a probabilistic theory, nicely states the feeling
I have always had on this when she writes,

A twofold classification into the true and the false is inadequate where things
hover on the edge of this great divide. A threefold classification is little improve-
ment, | agree, with things hovering on the edge of the still-substantial divide
between the true and the indeterminate. But in a manyfold classification, the
difference between close degrees of truth, including the difference between clear
truth and its near neighbors, is (almost always) insignificant, and a good theory
must preserve this fact—must not deliver significantly different verdicts for in-
significantly different cases. It does not matter if things still hover on the edges
of inconsequential divides. (Edgington, 1993, p. 198.)

The motto “no boundaries” has become a dogma when theories postulating
inconsequential divides are dismissed out of hand.

Why does so much of the vagueness community strongly believe that there
are no sharp lines? | understand the intuition of there being no semantic lines
of any kind drawn since we “feel” like there are no such lines. But we also
feel a lot of ways counter to our current physics, say, but we can explain why
we feel that way, and we allow ourselves to conclude that it is just a feeling.
For example, we do not feel like we are spinning around as the Earth rotates,
but we know now that we are, and we can explain why we feel the way we do.
What is it about vagueness that so many—indeed most—in the field are so bent
on not only explaining the feeling, but making it a real part of the semantics?

And it is not even the case that the “no boundaries” dogma has proved fruit-
ful. 1 do not believe there is even one extant theory satisfying the “no bound-
aries” constraint that is remotely adequate as a description, much less an expla-
nation. One wonders whether the dogma is really just a skeptical “no possible
theory of vagueness” dogma, given that the “no boundaries” constraint seems
simply impossible to satisfy in a coherent fashion. Horgan (1994) goes so far as
arguing that one should accept the incoherence of the “no boundaries” motto—
that the incoherence is not vicious. Not all “no boundaries” theorists are so
ready to take this route of Horgan; they hold out hope, presumably, for some
theory satisfying their constraint. For example, Sainsbury (1990) proposes an
attempted such theory that Edgington (1993) shows does have boundaries.

The sorites paradox

Moving on, there is a third phenomenon linked to vagueness: the sorites para-
dox. Its standard form is exemplified by the following two-premise argument



CONSEQUENCES OF A FINITE BRAIN 251

and conclusion: (i) 1 grain of sand cannot make a heap, (ii) for all n, if n grains
of sand cannot make a heap, then n + 1 grains of sand cannot make a heap, (iii)
there are no heaps of sand. (i) is obviously true? (ii) is very compelling, since
to deny it means that there is some n such that »n grains of sand cannot make a
heap but n + 1 grains can make a heap—that there is a to-the-grain distinction
between being a heap and not—and this seems fantastic. (i) and (ii), though,
imply (iii), which is obviously false. The sorites paradox is part of the phe-
nomenon of vagueness in that it may be built using any vague predicate; and it
may not be built with non-vague predicates.

There are two related constraints on a theory of vagueness. The first is that
it locate the fault in the sorites argument, and do so without having to make
fantastic claims. | do not mean to imply that the classical negation of the in-
duction step cannot possibly be the solution to the sorites paradox. Epistemic,
determinist theories do exactly this, but it is incumbent upon the theory to say
why it is not so fantastic; for example, that we cannot ever determine or know
the boundary, and this is why the suggestion that there is a boundary seems
incredible. The second constraint is that a theory’s post-theoretic notion of the
phenomenon of vagueness should be such that a sorites argument built around
a predicate displaying the phenomenon is paradoxical; i.e., denying the induc-
tion step must seem paradoxical. If the argument loses its paradoxical aspect,
then the phenomenon claimed to be vagueness has a lesser claim to vagueness.
For example, if we cannot ever determine or know the boundary but still be-
lieve quite reasonably that there is one, then there is nothing paradoxical in
the sorites argument since the induction step can be (classically) denied readily
without intuitive difficulties.

Ineliminability and essentialness

The final two phenomena are less central to vagueness.

The first of these is ineliminability: it is often felt that vagueness is not
something we can simply eliminate from natural language. For example, it
is sometimes said that any attempt to eliminate vagueness through precisi-
fication (i.e., making predicates precise) would, at best, radically undermine
the meanings of natural language concepts. Also, restricting oneself to some
delimited context is also thought to be unhelpful in eliminating vagueness—

2 Although some have sought to save us from paradox by denying the base case. Unger (1979)
and Wheeler (1979) deny that there are non-heaps by denying that there is a concept heapness
at all.
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vagueness occurs within contexts. The Undecidability Theory—i.e., my theory
of vagueness—explains and accommodates a variety of ways in which vague-
ness is ineliminable (Subsection 4.3.5). | am less confident about this phe-
nomenon being a necessary constraint on a theory of vagueness, and accord-
ingly | do not criticize other theories on the basis that they do not explain or
accommodate ineliminability. | do think that some degree of ineliminability
must be addressed, however, lest we be left to wonder why we have not cured
ourselves of vagueness.

Or a theory may alleviate this worry just mentioned by giving a good reason
for why we should not want to “cure ourselves” of vagueness. This is the final
phenomenon of vagueness: its seemingly essential nature, in the sense that it
is often felt that even if we could eliminate vagueness, we would not want to
because it fills an important and essential role for us. Perhaps it quickens our
communication, or makes our utterances more informative, or gives us more
power to correctly carve up the world, etc. There need not be any such reason,
but if a theory has no reason, then it ought to say why vagueness is ineliminable
lest, as mentioned above, we wonder why we have not cured ourselves long
ago.

In addition to our shared pretheoretic notions which serve as our guide to
saying roughly what is vagueness, we have stronger shared intuitions concern-
ing what predicates are vague. If a theory says that a vague predicate is not
vague, or that a non-vague predicate is vague, then this counts against the the-
ory.

Explanatoriness

The phenomena from the previous subsections need to be explained, not just
modeled. That is, a logic devised just to accommodate these phenomena is
not sufficient to have the status of an explanatory theory of vagueness. | want
to know why there is vagueness, not just how to describe it. In this section |
mention a handful of accounts of vagueness that are not explanatory.

Take many-valued theories such as multiple valued logic—fuzzy logic (Zad-
eh, 1965) in particular—and probabilistic degrees such as Edgington’s (1992).
Multiple valued logics allow sentences to have truth values besides simply true
and false, or 1 and 0. They allow truth values in between true and false, e.g.,
a truth value of 1/2, say. For vague predicates R there will be objects ¢ falling
in the borderline region of R, and the sentence ‘c is R’ accordingly has truth
value in between 0 and 1. Probabilistic models of vagueness, on the other
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hand, accommodate vagueness by saying that the probability that ‘c is R’ is
true is somewhere in between 0 and 1. Probabilistic degrees have superiori-
ties over many-valued logics with respect to modeling natural language (Edg-
ington, 1992), many-valued logics whose deficiencies are well catalogued [for
starters see Williamson (1994, Chapter 4), and Chierchia and McConnell-Ginet
(1990, pp. 389 ff.)]. One problem with many-valued descriptions of vagueness
is that it is not clear that they describe vagueness. To be sure, many-values
are a good description in many cases: many vague properties come in degrees,
like baldness or redness. But even some non-vague mathematical concepts
have been shown to come in degrees to subjects, like ‘even’ (Armstrong et al.,
1983), so degrees are not uniquely connected with vagueness. My principal
problem with many-valued theories is that even if we agree that they provide
a satisfactory model, or description, of natural language semantics—and allow
useful applications in computer science and engineering—they do not make for
an explanation for vagueness. Many-valued theories are silent on explanatory
guestions, and, in fairness, description and not explanation is their aim. They
do not tell us why natural language is vague, and they do not even tell us why
natural language predicates tend to come in degrees.

Consider briefly supervaluations (see Fine (1975) and Kamp (1975); see
also Williamson (1994) for some history), which is the model of vagueness
wherein, roughly, a sentence ‘c is R’ is “super-true,” or definitely true, if it
comes out true on every precisification of the borderline region of R, “super-
false” if it comes out false on every precisification, and borderline, or indeter-
minate, truth value otherwise. Despite its problems concerning whether it is
an adequate description of higher-order vagueness and more generally natural
language, my problem is that | want to know why the non-linguistic facts do
not determine a single precise extension for natural language predicates. What
is it about us or the world that makes meanings incomplete? As in many-valued
theories, description is the main task, not explanation; supervaluation aims to
be a logic of vagueness, not a reason for why vagueness exists.

Sorensen (1988, pp. 199-216) puts forth an epistemic, determinist account
in which vagueness is due to ignorance of the sharp line separating the positive
and negative extension, but his theory is not aimed at explanation. Vagueness
is, he argues, identical to a phenomenon he calls blurriness. Let M, ..., Nigo
be mystery natural numbers, and consider the mystery sentences ‘N, is even’
for every ¢ from 1 to 100. Now say that an integer is miny if and only if it is less
than or equal to the number of true mystery sentences. ‘miny’ is blurry. 0 is
definitely miny. 1 is almost certainly miny (i.e., its probability of being miny,
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presuming some natural assumptions, is 1 — (.5)1% ~ 1), 101 is certainly not
miny, and somewhere in between things are difficult to say. Sorensen pushes
the idea that vague predicates possess the phenomena they do for the same
reasons ‘miny’ possesses the phenomenon of blurriness; i.e., he pushes the idea
that vagueness is blurriness. Even if | were to agree that blurriness is a perfect
description of the phenomenon of vagueness, | still would want to understand
why natural language predicates are blurry, i.e., why predicates are built as if
from mystery numbers, and so on.

My point in this subsection is not to seriously entertain these theories on
which | have touched, but to emphasize that much of the work on vagueness has
concentrated on describing vagueness rather than explaining it; Hyde’s (1997)
defense of a “subvaluational” logic and Putnam’s (1983) intuitionistic solution
are two others.

4.2 Unseeable holesin our concepts

In this section | present the guts of my theory of why there is vagueness. | will
become precise about what is a “finite, sufficiently powerful, rational agent”
and | will argue that any such agent will have concepts with “unseeable holes”
in them. What this all has to do with vagueness will not be discussed until Sec-
tion 4.3. | believe it is useful to separate out this “unseeable holes” thesis from
the explanation of vagueness, because, for me at least, that there are unsee-
able holes in our concepts—and also for any rational, computationally bound
agent—is just as interesting and important as that there is vagueness.

We will see that, in my view, vagueness is definitely not a good thing for
us, in the sense that it is not as if language has evolved to be vague because it
was independently useful. Vagueness is something we are stuck with because
we are rational, finite entities. If you were a computationally bound, rational
alien agent given the task of figuring out what our natural language predicates
mean, you would very probably end up with vagueness. | will explain how
vagueness could, in principle, be avoided: it would require that we either have
inaccessible meanings for our predicates, or that we radically confine our pos-
sible meanings for predicates to a very reduced set. Given that we do not want
inaccessible meanings and do want to have a rich choice of meanings for predi-
cates, vagueness is thrust upon us. Vagueness is a cost, but it is worth it because
of the benefits it brings. In this sense, vagueness is good for you, since without
vagueness you would be worse off.

My theory for why there is vagueness is simple, and in order that you not
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miss the overall point in all the details (not technical details, just details), | first
give you a quick introduction to my theory.

4.2.1 Brief introductionsto the theory of vagueness
Very brief introduction

Here is the theory: When you or | judge whether or not a predicate P applies
to an object a, we are running a program in the head for P on input a. This
program for determining the meaning of predicate P we may call Cp. For
every one of our natural language predicates P, we have a program for it, Cp,
in the head. The job of program Cp is to output YES when input with objects
that are P, and NO when input with objects that are not P.

The central problem, though, is that we are unable to always have these
programs give an answer to every input; these programs will often take an
input, but never respond with an answer of YESor NO. Instead of responding,
the program will just keep running on and on, until eventually you must give
up on it and conclude that the object does not seem to clearly fit under either P
or ‘not P’.

The reason we are susceptible to this difficulty is that it is a general diffi-
culty for any finite-brained entity. And the reason this is true is because the
problem of determining if a program halts on every input is undecidable. Thus,
generally speaking, there will be, for each predicate P, objects x for which
your program in the head for P, Cp, does not ever halt and output YES or NO.
These objects will appear to be in the borderline region of P. In sum, we have
borderline regions because we are not computationally powerful enough—no
finite-brained agent is—to make sure our programs for our predicates always
halt. We have holes in our concepts.

The other major feature of vagueness is that it is not generally possible
to see the boundary between the definite regions and the borderline regions;
this is called higher-order vagueness. This falls out easily from the above, and
goes as follows. The borderline region for a predicate P is the set of all =
such that the program Cp(x) does not halt. How accessible is this set? For
computational agents, the answer is, “not very.” To determine that an object a
is borderline P, one must determine that Cp(a) does not halt. This, though, is
the halting problem which we discussed a little bit in the introduction to this
chapter. We mentioned there that the halting problem is undecidable, and so it
is not generally possible for computational entities to solve. In sum, then, you
will not generally be able to see the boundary of the borderline region because
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it is too hard for you to determine which things are and are not borderline P—
too hard, in fact, for any finite-brained entity. Not only, then, do we have holes
in our concepts, we have unseeable holes!

This is the explanation of vagueness, as simple as | can make it. There
are more intricacies to the story. For example, being finite-brained is not com-
pletely sufficient for the conclusion; one actually needs finite-brained and ratio-
nal. But it gets across the main idea, which is, I think, embarrassingly simple.

A less brief introduction

I now give a little less brief primer on my theory of vagueness. The “vagueness
is good for you” arguments will still not appear in this introduction. | will take
you to be my example natural language user.

There are three hypotheses.

(1) The first hypothesis is the Church-Bound Hypothesis, and it states that
you can compute no more and no less than what a computer can compute.

(2) The second hypothesis is the Programs-in-Head Hypothesis, and it
states that what natural language predicates extensionally mean to you is deter-
mined by programs in your head. For example, an object is a dog to you if and
only if your program in the head for ‘dog’ outputs YES when the (name of the)
object is input into the program. It is much less plausible that many scientific,
mathematical and technical predicates get their meaning to you via programs
in the head, and this difference is what prevents my theory from concluding
that such predicates, many which are not vague, are vague.

(3) The third and last hypothesis is the Any-Algorithm Hypothesis, and it
states that you allow yourself the choice of any algorithm when choosing pro-
grams in the head for determining your natural language predicate meanings.
(An algorithm is a program that halts on every input; programs sometimes do
not halt on some inputs.)

Informally and crudely, the three hypotheses are that (1) you are a com-
puter, (2) you have programs in the head determining what natural language
predicates mean to you, and (3) you allow yourself the fullest range of possible
meanings for natural language predicates.

If these three hypotheses are true, what follows? The Programs-in-Head
Hypothesis says you choose programs to determine your meanings of natural
language predicates. The Any-Algorithm Hypothesis says that the set of pro-
grams from which you are choosing is a superset of the set of all algorithms.
But here is the catch: one of the basic undecidability results implies that any
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such set of programs is undecidable. (A set is decidable if and only if there is
program that outputs YES whenever input with an object from the set and NO
whenever input with an object not in the set.) Because of the Church-Bound
Hypothesis, this undecidability is a difficulty for you: in choosing from the
set of programs you cannot always obtain algorithms. In fact, because pick-
ing algorithms is computationally more difficult than picking non-algorithms,
you will “usually” pick non-algorithms; “most” of your programs determining
the meanings of natural language predicates will not be algorithms. So, in an
attempt to acquire a meaning for ‘dog’ via a program in the head that outputs
YES when something is a dog to you and NO when something is not a dog to
you, therewill be objects on which your program does not halt at all. This does
not mean that you will actually run into an infinite loop; it just means that you
will eventually give up when running the program on such inputs.

What does this have to do with vagueness? Consider the set of objects for
which the program for ‘dog’ does not halt. For any object in this set the pro-
gram will neither say YES nor NO; the object will neither be a dog to you nor
not a dog to you. My first theoretical claim is that this is the set of borderline
cases for the predicate.

What about higher-order vagueness, the phenomenon that the boundaries
of the borderline region are vague? Consider trying to determine exactly which
objects are part of the borderline region. To determine that some object is in
the borderline region of ‘dog’ requires that you determine that your program
for “‘dog’ does not halt on that object. But now we have another catch: possibly
the most well-known undecidability result is the “halting problem,” which says
that whether or not a program will halt on a given input is undecidable. This
undecidability is a difficulty for you because of the Church-Bound Hypothesis:
objects in the borderline region are generally difficult to determine as such, and
where the boundaries of the borderline region are is not generally possible for
you to determine. Imagine moving from ‘dog’ cases to borderline cases. Your
program for ‘dog’ will no longer output YES, and will, in fact, never halt; but
you will not know it will never halt. You will be unable to see the boundary. My
second theoretical claim is that this inability is the phenomenon of higher-order
vagueness. Here is a simple representation of the behavior of your program for
‘dog’, where ‘Y’ denotes YES, ‘N’ denotes NO, and ‘1’ denotes “does not
halt”.

YYYYYYTTTTTTTTTINNNNNNN

{--*dog’ - - }{- - borderline - - }{- - ‘not dog’ - - }
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So, the three hypotheses entail that for “most” of your natural language
predicate meanings there are objects for which your program for that predi-
cate does not halt. Add to this my two theoretical claims just mentioned and it
follows that “most” natural language predicates are vague. That is the Unde-
cidability Theory of Vagueness in a nutshell. Now to develop and defend it in
more detail. The remainder of this section presents the Undecidability Theory
and Section 4.3 discusses how it explains vagueness.

4.2.2 Theory

In this subsection | discuss the three hypotheses comprising the Undecidabil-
ity Theory of Vagueness and show how they lead to what | call the “Thesis,”
which is central to the Undecidability Theory of Vagueness’s characterization
of vagueness. Here is the Thesis, followed by an explanation of the terminol-
ogy used.

Thesis. For “most” natural language predicates P
1. your interpretation of P is determined by a program in the head that is capable of semide-
ciding but not deciding it,
2. your interpretation of ‘not P’ is determined by a program in your head that is capable of
semideciding but not deciding it, and
3. there are objects neither in your interpretation of P nor in your interpretation of ‘not P’.

I will explain the scare quotes around ‘most’ later. By a “program in the
head” | mean the method used by you to determine whether or not a given
object is in your interpretation of P. One may usefully and informally think
of the program as your intension of the predicate P. The “interpretation of P
(‘not P’) determined by a program” is the set of objects on which the program
in the head for P (‘not P’) outputs YES. A set is decidable by a program C' if
and only if for all =, C on input = outputs YES if z is in the set, and outputs
NO otherwise. A set is semidecidable by a program C if and only if for all
x, C' on input x outputs YES exactly when it is in the set; if x is not in the
set then C' may well not halt at all, though. Do not confuse the notion of a set
being semidecidable but not decidable by the program for it with the notion
of an underdefined or incompletely specified set. The former, which appears
in my theory, is a precise set that happens to be computationally difficult for
the program to identify nonmembers, whereas the latter is not a well-defined
set at all. Also, do not confuse a set’s being semidecidable but not decidable
by a program C' with a set’s being semidecidable but not decidable simpliciter.
The latter means the set is computationally complex (in fact, it means it is
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recursively enumerable but not recursive), but the former, which appears in my
theory, only means that the set is complex as far as the program C' is concerned;
C' is unable to decide it, even though it may well be decidable.

There is a simpler, equivalent way of stating the Thesis, one | implicitly
used in the brief introduction to the theory. | had written there about a sin-
gle program in the head, call it Cp,,,,, p, doing the work for both a predicate
and its natural language negation: the interpretation of P was the set of ob-
jects on which Cp/,,.,, p OUtputs YES, and the interpretation of ‘not P’ was
the set of objects on which the same program outputs NO. In the Thesis and
throughout the remainder of the section the single program is treated as two
distinct programs: one program, Cp, for P; and another, C,,,p, for ‘not P’.
The interpretation of P is the set of objects on which Cp outputs YES, and
the interpretation of ‘not P’ is the set of objects on which G,,,, p outputs YES.
Each of these two programs can output only a YES, if they halt at all; they
do not ever output NO. Realize that there is no difference in these approaches:
running Cp/y,0np ON @n input is equivalent to simultaneously running both Cp
and Cy,onp ON the input and seeing who halts first (if any); if Cp halts first then
Cp/nonp Would have output YES, but if C,on, p halts first then Cp/,,,,, p Would
have output NO. In terms of a single program, the Thesis would be the fol-
lowing: for “most” natural language predicates P there are objects for which
Cp/nonp does not halt. Although this is simpler than the statement at the start
of this section, the two-programs version helps to clearly identify distinct as-
pects of the Thesis.

In the subsections that follow | indulge in a sort of fantasy. | imagine
that you are a rational, computationally bound agent who has entered into our
culture. Your task is to learn language for the first time and to determine what
our natural language predicates mean. We will see that the Thesis is very likely
to be true of any such agent. Such an agent will likely choose to have vagueness
because its costs are less than the costs of avoiding it. | will also show that it is
plausible that the Thesis does, in reality, apply to you.

As part of the fantasy | suppose that the true extensions (as opposed to
your interpretations) of natural language predicates are determinate; that is, ev-
ery object is either in the extension of the predicate or its complement. [For
defenses of a determinate semantics within the vagueness literature see Camp-
bell (1974), Cargile (1979), Sorensen (1988, 1994) and Williamson (1994).] |
use ‘extension’ to refer to the true meaning of a predicate, and ‘interpretation’
to refer to whatever you mean by the predicate. All capital letters will be used
to signify the extension of a predicate; e.g., ‘bald’ has the set BALD as its ex-
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tension, and ‘not bald’ has the complement of BALD as its extension. In trying
to figure out your interpretations for the language in the fantasy scenario, | sup-
pose that you are presented with examples, somehow, from the true extensions.
What | wish to communicate by this is that even if the true semantics of natu-
ral language predicates were determinate (via, perhaps, a semantic externalist
account), you would still very likely end up with interpretations as specified in
the Thesis (and thereby end up with vagueness). Thus, while standard classical
two-valued logic would be a correct model of natural language true semantics,
we will see that it is not a correct model of the way we actually interpret nat-
ural language predicates. On the question what really is the true semantics of
natural language predicates my theory can remain agnostic.

4.2.3 Church-bound

The Undecidability Theory of Vagueness applies only to those agents that are
computationally bound. Specifically, it applies only to those agents that are
“finite” and “sufficiently powerful.”

By a finite agent | mean an agent (i) that has a finite but possibly unbounded
memory, (ii) that has an upper bound on the speed at which it can compute, (iii)
whose primitive computations are simple (e.g., adding 1 to a number), and (iv)
who cannot (or at least does not) utilize in its computing any aspects of the
universe allowing it to achieve supertasks (i.e., to achieve infinitely many steps
in a finite period of time finite “brain”). To defend my use of the term “finite” in
this way, | informally rephrase these requirements as follows: by a finite agent |
mean an agent that is finite in (i) memory, (ii) speed, (iii) degree of complexity
of primitive computations and (iv) resourcefulness in utilizing nature to achieve
supertasks.

Without (i), an agent could have infinitely large look-up tables in the head.
Such an agent could compute any function at all by simply storing the entire
function (i.e., storing every pair (z, f(x))) in its head, so long as the function
has domain and range with cardinality no greater than the cardinality of the
look-up table. The agent could merely check his look-up table to see what
f () is. Without (ii), an agent could compute the first step of a computation in
half a second, the next in a fourth, the next in an eighth, etc., thereby computing
infinitely many steps in one second (such an agent is called a Plato Machine).
Without (iii), an agent may have primitive computations that are themselves as
mathematically computationally difficult as one pleases; of course, from such
an agent’s point of view these computations would seem utterly simple, requir-
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ing only the least amount of “thinking” to compute (see, e.g., Copeland 1998).
Finally, without (iv), it is logically possible that the laws of physics might make
it possible to compute supertasks (despite (ii)) (see Earman and Norton (1993,
1996) and Hogarth (1994)). Being a finite agent severely constrains what an
agent can compute, as | now describe.

We have an informal, pre-theoretic notion of what it is to compute some-
thing. Such an intuitive notion of a computation typically connotes that there
be only a finite number of steps involved, that the amount of memory (and
scratch paper) required also be finite, that each primitive step be relatively sim-
ple (enough to understand), and that one cannot engage in supertasks. That is,
the intuitive notion of a computation exactly corresponds to those computations
a finite agent can compute. We are inclined to say that a function f from the
natural numbers to the natural numbers is intuitively computable if, for each
natural number n, f(n) is intuitively computable.

The Turing machine formalism provides an abstract, precise notion of what
a computation is and leads to a particular set of functions on the natural num-
bers as the set of Turing-computable functions. Any computation a modern
computer can do, a Turing machine can, in principle, do also; and vice versa.
There is the well known hypothesis that the set of functions that are intuitively
computable just is the set of Turing-computable functions; this hypothesis is
referred to as Church’'s Thesis (or the Church-Turing Thesis).

The hypothesis is not a mathematical assertion; it refers to our intuitions
and it does not make sense to ask whether it has been mathematically proven.
Nearly everyone believes in Church’s Thesis, though, as do I. One reason for
this is that no one has yet provided a convincing case of an intuitively com-
putable function that is not Turing-computable; the longer we go without such
a case being found, the higher our inductive probability goes toward one that
the sets are identical. A second, more slippery, reason nearly everyone believes
in Church’s Thesis is that half a dozen very different formalizations of compu-
tation have been concocted by different people and each leads to precisely the
same set of computable functions.

If a finite agent can compute a function on the natural numbers, then the
function must be intuitively computable. But then by Church’s Thesis that
function must be Turing-computable. Therefore, the only functions on the nat-
ural numbers a finite agent can possibly compute are those that are Turing-
computable.

But any finite agent worth considering carries out computations on objects
besides the natural numbers. What constraints are these computations under?



262 CHAPTER 4

Although there are objects besides natural numbers that are objects of such
computations (i.e., such an agent computes functions over objects besides the
natural numbers), we can encode all of the objects the finite agent can grasp—
including natural numbers—onto the natural numbers. Supposing each differ-
ent possible state of the finite agent’s mind is finitely describable, the set of
all such finite descriptions can be bijectively encoded onto the natural numbers
(hopefully in an intuitively computable fashion). (Such an encoding is bijec-
tive if and only if each object gets assigned to a unique natural number and
each natural number is used in the encoding.) ‘4’ may now be the code for
mental state p; which holds the information of the finite agent’s mother, ‘37’
the code for mental state p» which holds the information of a particular fist
fight the finite agent once witnessed, ‘18’ the code for mental state p; which
holds the information of the feeling of love-at-first-sight the finite agent felt
upon meeting its spouse, ‘103’ the code for the mental state p, which holds the
information of the natural number 5, “1000’ for the mental state p; which holds
the information of the finite agent’s favorite shade of blue, etc. Intuitively, ev-
ery possible dog, every possible shade of color, every possible action, etc., is
given its own natural number. With such an encoding, all of the finite agent’s
computations may be interpreted as computations on the natural numbers, and
the finite agent’s computational power is constrained in such a way that it can
compute only the Turing-computable functions on this set of codings.

One should not find this too fantastic, given that the same sort of thing is
true about every computer. In a physical computer, as opposed to an abstract
model, there are no numbers actually input into the machine nor output from
the machine; numbers are abstract objects. Rather, an input or output is some
physical state and it encodes certain information. Each physical state is finitely
describable and can be coded onto the natural numbers. ‘4’ may be the code for
physical state p; which holds the information of a black and white picture of a
rooster, ‘37° may be the code for physical state p, which holds the information
of natural number 5, ‘18" may be the code for physical state p»; which holds
the information of the sentence “Press any key to continue,” etc. It is only
through such means that one can meaningfully say that computers are subject
to the same ultimate computational constraints as Turing machines, and it is
also only through such means that one can meaningfully say that a finite agent
is subject to the same ultimate computational constraints as Turing machines.

Worries over which coding is being employed for the finite agent are some-

times raised. For example, what if the coding makes intuitively uncomputable
problems computable by having a non-intuitively computable coding? Or, is
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there a privileged coding and, if so, what determines it? | wish to sidestep all
such issues. To whatever extent these are legitimate worries, they are worries
for anyone claiming that even computers are bound by Church’s Thesis. This
latter claim is uncontroversial, however, and so | am under no special obligation
to explain or address issues of coding with respect to finite agents.

One might complain that the universe has uncountably many possible ob-
jects, and so no bijection is possible onto the natural numbers. Supposing for
the moment that there are indeed uncountably many possible objects, | only
care about what possible objects the finite agent can hold before its mind. Since
it is finite, it can only entertain countably many possible objects. Its universe
is countable, regardless of the cardinality of the real universe. This brings in
its own trouble: if the universe is uncountable and the finite agent’s universe
countable, is not it going to have a false model of the world? The Downward
Lowenheim-Skolem Theorem can help to alleviate this worry to an extent: as
long as the finite agent notices only first-order properties of the universe, it is
possible for its model to be such that the set of all truths is the same as God’s
(whose model is the true uncountable one). Should we, however, believe that
it is confined to first-order properties? Perhaps, perhaps not; there are many
things that can be said on this issue, but | have no need to pursue them here
since nothing hinges on the agent’s model being true.

Thus, I am confining discussion to finite agents, which means that | am con-
fining discussion to agents capable of computing only the Turing-computable.

By “sufficiently powerful” | mean that the finite agent is capable of com-
puting at least the Turing-computable.

Together, “finite” and “sufficiently powerful” imply that the computational
powers of the agents | wish to discuss are bound by Church’s Thesis and only
bound by Church’s Thesis. | sometimes say “Church-bound” instead of “finite
and sufficiently powerful.” | record this as the Church-Bound Constraint.

Church-Bound Constraint: The agent can compute any function (over natu-
ral numbers coding mental states, which in turn represent objects in the world)
so long asit is Turing-computable.

Related to this constraint is the Church-Bound Hypothesis, which states
that you are under the Church-Bound Constraint. The Church-Bound Hypothe-
sis is, by assumption, true of the fantasy you. Is it true of the real you? Yes, and
here is why. It is plausible that you are finite in the four senses discussed above
(although see Penrose, 1994) and so cannot compute the Turing-uncomputable.
Furthermore, you are, in principle, able (given enough time and scratch paper)
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to compute any Turing-computable function. We know this because any of us
can easily mimic the simple actions of a Turing machine as long as we please.

4.24 Programsin the head

Suppose that you, in the fantasy, are exposed to enough examples of things you
have reason to believe are in the true extension of ‘bald” (BALD) and others
that are not that you acquire an educated guess as to what BALD is. Your guess
determines some set as your “shot” at BALD, and this is your interpretation of
‘bald’. In what can such a guess consist? There are infinitely many (possible)
objects in your universe, infinitely many of them are bald and infinitely many
are not. You are not, then, able to simply guess what the extension is, for you
cannot store the extension since you are finite.

You must employ some sort of intension. You need to find some finite
description of the set that determines your interpretation of ‘bald’ and your
educated guess at BALD, and some finite description of ‘not bald’. Recalling
that these sets may be considered to be sets of natural numbers, one may won-
der whether your interpretation of ‘bald’ can be described “in your head” as,
say, a first-order sentence in the language of arithmetic (such sets are called
arithmetically definable). For example, you may interpret ‘bald’ to be the set
{n | 32¥y R(n,z,y)}, where R(n,xz,y) is some recursive formula without
quantifiers. The problem with this is that although it is indeed a finite descrip-
tion, the set is not recursively enumerable and since you are Church-bound it
is generally too difficult for you to handle. (A set is recursive if and only if it
is decidable by some program. A formula is recursive if and only if the set of
objects satisfying it is recursive. A set is recursively enumerable if and only if
it is semidecidable by some program.)

The same is true for any arithmetically definable set. .. except those that are
recursively enumerable. For a recursively enumerable set it is possible for you
to have a program in the head that says YES when and only when presented
with objects in the set (although the program may never halt at all when pre-
sented with objects not in the set), but sets any more computationally difficult
than recursively enumerable are beyond your reach. A program in your head,
then, is what you must be employing to determine your interpretation of “bald’
if you wish to have an interpretation that is accessible to you. Your interpreta-
tion would then be the set of objects for which the program for ‘bald’ outputs
YES, and this is recursively enumerable. This motivates the first rationality
principle.
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Principle of Program-Favoring: Without good reason to the contrary, you
should assume that the extension of natural language predicate P and its natu-
ral language negation ‘not P’ are capable of being correctly determined using
programs in the head.

This does seem to be a compelling principle of rationality: why choose in-
terpretations that are not generally possible for you to actually use unless you
have a good reason?

Supposing we believe that the Principle of Program-Favoring really is a
constraint on rationality, is there good reason for believing that programs will
not suffice to correctly interpret natural language predicates and their natu-
ral language negations? For example, in mathematics there is good reason
for believing that programs do not suffice for certain predicates because there
are predicates with interpretations that you know are not recursively enumer-
able. Consider the predicate ‘not a theorem of Peano Arithmetic’, for example.
You know its extension is not recursively enumerable (since its complement is
known to be recursively enumerable but not recursive). Your interpretation of
‘not a theorem of PA’ is set to its extension, regardless of the fact that you are
incapable of generally recognizing things that are not theorems of PA. “To me,
something is not a theorem of PA exactly if it does not follow from Peano’s
Axioms; | have no program for it, though.” You might acquire a program in
the head as a heuristic device aimed to approximately semidecide your inter-
pretation of ‘not a theorem of PA’, but you are not confused into conflating
your heuristic with your interpretation; you know that no such heuristic can
possibly be the extension. Thus, you as a mathematician do have predicates for
which you have good reason to believe the extension is not determinable via a
program in the head, and your interpretations are, accordingly, not determined
using programs in the head. (This is, in passing, why mathematical predicates
such as ‘not a theorem of PA’ are not vague.) Given that you can acquire good
reasons to believe programs are inadequate and can have interpretations that
are not recursively enumerable, what reason is there for you not to do the same
for natural language predicates?

The answer is that in the case of such a mathematical predicate you know
what the definition of the extension is, and so you set your interpretation ac-
cordingly. For a natural language predicate, however, you have no God’s eye
view of its extension. The extension of ‘bald’ is learned via induction; you in-
fer your interpretation of ‘bald” from seeing objects you have reason to believe
(somehow) are in BALD or its complement. You cannot easily acquire the def-
inition for BALD, and as many examples of BALDness and its complement
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you might confidently find, you still will not have access to its definition in the
way you have access to that of ‘not a theorem of PA’, for you have no luxury
of setting your interpretation to that determined by the definition written on
paper before you as you do for mathematical predicates (and this has nothing
to do with the fact that you are Church-bound). Given that you cannot have
access to BALD in the way you have access to the extension of ‘not a theorem
of PA, it is also reasonable to suppose that you cannot learn that BALD is not
recursive enumerable (supposing this were indeed true) in the way you learn
that the extension of ‘not a theorem of PA’ is not recursively enumerable. |
cannot discount the logical possibility of you, a Church-bound agent, learning
(in the fantasy) through time that no recursively enumerable interpretation of
‘bald” seems to fit the examples of BALD and its complement, and in this way
assigning high probability to the hypothesis that BALD is not recursively enu-
merable, and therefore no program in the head is sufficient. The reasonable
hypothesis, though, seems to be that for most (if not all) natural language pred-
icates you have no good reason for believing that programs will not work. |
record this as the following hypothesis.

No-Good-Reason-for-Non-Programs Hypothesis:  For most natural lan-
guage predicates P and their natural language negation ‘not P’ you have no
good reason to believe that programs in the head are inadequate for correctly
determining their interpretation.

The No-Good-Reason-for-Non-Programs Hypothesis together with the Prin-
ciple of Program-Favoring imply the following hypothesis.

Programs-in-Head Hypothesis. For most natural language predicates P and
their natural language negation ‘not P’, their interpretations are determined
by you using programs in the head.

You in the fantasy scenario are, then, very likely to fall under the Programs-
in-Head Hypothesis. “Very likely” because it is very likely that the No-Good-
Reason-for-Non-Programs Hypothesis is true, and given that you are ratio-
nal you will follow the Principle of Program-Favoring and thus fall under the
Programs-in-Head Hypothesis.

Does the Programs-in-Head Hypothesis apply to the real you? Here is an
intuitive reason to think so. For most natural language predicates P you are
capable of recognizing, given enough time, any cases of P and ‘not P’. E.g.,
given enough time you are capable of recognizing, for any bald-to-you person,
that he is bald to you; and, for any not-bald-to-you person, that he is not bald
to you. To suppose otherwise would imply, implausibly, that there is a person



CONSEQUENCES OF A FINITE BRAIN 267

that is bald (not bald) to you, but you are utterly incapable of recognizing him
as such. The only way for you, who are Church-bound, to have this recognition
capability is to have programs in the head doing the work.

4.25 Any algorithm

By the Programs-in-Head Hypothesis you have for most natural language pred-
icates a program in the head as the intension determining your recursively enu-
merable interpretation of the predicate, and this interpretation is your attempt
to fit the extension of the predicate. You would like to have a single program
in the head capable of determining your interpretation of both ‘bald” and ‘not
bald’; that is, a program that not only says YES exactly when an object is in
your interpretation of “bald’, but says NO exactly when an object is not in your
interpretation of ‘bald’. This is just to say that you would like to have a program
to decide the interpretation of ‘bald’, not just semidecide it. Such a program
would be an algorithm since it would halt on every input, and the corresponding
recursively enumerable interpretation of ‘bald’ would be recursive.

But alas, you are Church-bound, and a well-known undecidability result
says that there is no algorithm for algorithmhood; there is no general procedure
by which either you or a Turing machine can always choose programs (from
the set of all possible programs) that are algorithms. It is not, then, generally
the case that your programs in the head are algorithms, and your corresponding
interpretations for natural language predicates and their natural language nega-
tions may generally be only semidecided by the programs for them. (And in
fact things are even worse than this, for a related undecidability result says that
the corresponding interpretations are not generally even recursive; semidecide
is all that any possible program can do in these cases.) If the interpretation of
‘bald” (‘not bald’) is determined by a program in the head that semidecides but
not decides it, then supposing that ‘bald’ (‘not bald’) is one of the predicates
covered by the Programs-in-Head Hypothesis, that program cannot be what
is determining the interpretation of ‘not bald’ (‘bald’). This is because the
Programs-in-Head Hypothesis states that ‘not bald” (“bald”) must have a pro-
gram semideciding its interpretation, and the program for ‘bald’ (‘not bald”)
cannot possibly be that program. Thus, ‘not bald’ (‘bald’) must have its own
program in the head. I have now shown 1 and 2 of the Thesis.

How about 3 from the Thesis? It is possible for the interpretation of ‘bald’
and that of ‘not bald’ to cover every object, but by the Church-Bound Hypoth-
esis this is not generally possible for you to accomplish. If it were generally
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possible, then the two programs semideciding each interpretation could serve
as a single algorithm (run both programs simultaneously until one halts), and
you could therefore always acquire algorithms. But this is impossible. Thus, it
is not generally the case that your interpretation of ‘bald” and that of ‘not bald’
cover every object.

Notice that none of this hinges on either interpretation being non-recursive;
what matters is the program for the interpretation semideciding but not deciding
it. Predicates with finite interpretations (arguably ‘small natural number’) are
therefore subject to the same conclusion just made concerning ‘bald’.

Except for the use of “most” in the statement of the Thesis, | now seem
to have shown that you are subject to the Thesis. Concerning “most,” it is
easier to acquire non-algorithms than algorithms, since in order to achieve al-
gorithmic status the program must halt on every input, whereas to achieve non-
algorithmic status there needs to be only one input on which the program does
not halt.® This observation makes it convenient and informally true to say that
for “most” natural language predicates your corresponding programs are not
algorithms. This is really just elliptical for the proposition that you are not
generally able to acquire algorithms and that it is more difficult to acquire al-
gorithms than non-algorithms. To differentiate this use of ‘most’ (or ‘usually’)
with genuine uses of it, | always put scare quotes around it.

With this it appears | have now shown you are subject to the Thesis. There
is just one remaining problem. | wrote above (second paragraph of this sub-
section) that “there is no general procedure by which either you or a Turing
machine can always choose programs (from the set of all possible programs)
that are algorithms.” The parenthetic remark merits some examination. Why
should you be required to choose from among the set of all possible programs?
Although the set of all algorithms is not recursively enumerable, there do ex-
ist proper subsets of the set of all algorithms that are recursively enumerable,
and even recursive. Could you be choosing your programs from one of these
subsets? For example, the set of primitive recursive programs is recursive, and
perhaps you are choosing from this. If so, you can be sure that every program
you choose is an algorithm, and thus that every one of your interpretations for
natural language predicates is decidable by the program responsible for it (and
is therefore recursive). The Thesis would, then, not follow after all.

$More formally and in recursion theoretic terminology, this is captured by the fact that the
set of algorithms is II2, and the set of non-algorithms X2; the relative difficulty of acquiring
algorithms versus non-algorithms is analogous to the relative difficulty of determining cases
where a program does not halt versus when it does.
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There is a good reason for the fantasy you not to confine yourself in such
a fashion. Your interpretations of natural language predicates are a result of a
learning process of some sort. You see cases you have reason to believe are in
the extension of ‘bald’ (i.e., you are guided by the true semantics somehow),
and you make an educated guess at the extension with your interpretation. A
priori, you have no reason to believe that all concepts of the world can be
correctly determined (or even adequately approximated) with algorithms from
some recursively enumerable subset of the set of algorithms. Why should you
believe that all extensions may be correctly determined with, say, primitive
recursive interpretations? This motivates the following rationality principle.

Principle of No-R.E.-Subsets-of-Algorithms:  Without good reason to the
contrary, you should not presume that there is a recursively enumerable subset
of the set of all algorithms such that for all natural language predicates P (or
‘not '), algorithms from this subset supply the best interpretation for P (‘not
P).

This is a compelling principle: why purposely choose a language with less rich
interpretations without good reason? In fact, any recursively enumerable subset
of the set of all algorithms is, in a certain real mathematical sense, infinitely less
rich than the set of all algorithms.

Supposing we believe that the Principle of No-R.E.-Subsets-of-Algorithms
is a constraint on rationality, is there good reason to believe that there are re-
cursively enumerable subsets of the set of all algorithms sufficiently rich for
natural language predicate interpretations? Although I am willing to suppose
that it may be logically possible for you to acquire high probability in such a
hypothesis (after, say, many years of searching for uses of algorithms outside of
this recursively enumerable subset and not finding one), there would not appear
to be actual evidence for such a supposition. This goes to support the following
hypothesis.

No-Good-Reason-for-R.E.-Subsets-of-Algorithms Hypothesis. Thereisno
good reason for you to presume that thereis a recursively enumerable subset of
the set of all algorithms such that for all natural language predicates P (‘not
P), algorithms from this subset supply the best interpretation for P (‘not P’).

One might wonder whether there is nevertheless the following good prag-
matic reason for confining algorithm choice to a recursively enumerable subset
of the set of all algorithms: by so confining oneself one does indeed avoid the
Thesis (and vagueness). The solution comes with a painful price, though. For
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all you know there are algorithms that can provide the correct interpretation.
Yes, not confining yourself to a recursively enumerable subset of the set of all
algorithms brings with it the cost of there being objects in neither the interpre-
tation of P nor the interpretation of ‘not P’. However, it is possible for the
interpretations to be only “finitely mistaken,” where by this | mean that they
are complements save for finitely many objects in neither interpretation. Con-
straining yourself to a recursively enumerable subset of the set of algorithms
only for the pragmatic reason of avoiding the Thesis runs the risk that there
are predicates, perhaps many, that are not only not correctly interpretable using
algorithms from that subset, but will be infinitely mistaken. For example, if
one constrains oneself to the set of primitive recursive functions without rea-
son to believe that no predicates should best be interpreted using non-primitive
recursive algorithms, then in all those cases where a predicate should be best
interpreted using a non-primitive recursive algorithm you are guaranteed to in-
correctly classify the objects on infinitely many occasions. Worse than this, it
may be that no primitive recursive algorithm even “comes close” to the best
algorithm for the predicate. It might be like using the set of odd numbers as an
approximation to the prime numbers.

The No-Good-Reason-for-R.E.-Subsets-of-Algorithms Hypothesis conjoin-
ed with the Principle of No-R.E.-Subsets-of-Algorithms imply the following
hypothesis.

No-R.E.-Subsets-of-Algorithms Hypothesis: You do not confine your choice
of programsto a recursively enumerable subset of the set of all algorithms when
inter preting natural language predicates and their natural language negations.

You in the fantasy scenario are, then, very likely to fall under the No-R.E.-
Subsets-of-Algorithms Hypothesis. “Very likely” because it is very likely that
the No-Good-Reason-for-R.E.-Subsets-of-Algorithms Hypothesis is true, and
given that you are rational you will follow the Principle of No-R.E.-Subsets-of-
Algorithms and thus fall under the No-R.E.-Subsets-of-Algorithms Hypothesis.

Does the No-R.E.-Subsets-of-Algorithms Hypothesis apply to the real you?
There are reasons to think so. In fact, there is reason to think that the real you
is subject to the following hypothesis.

Any-Algorithm Hypothesis: You are free to choose from the set of all algo-
rithmswhen interpreting natural language predicates or their natural language
negations.

If the Any-Algorithm Hypothesis is true of you, then so is the No-R.E.-
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Subsets-of-Algorithms Hypothesis. This is because any set containing the set
of all algorithms is not a recursively enumerable subset of the set of all algo-
rithms.

What reasons are there to think that the Any-Algorithm Hypothesis is true
of the real you? It is difficult to tell a plausible story about how (the real) you
could have come to restrict program choice to exclude some algorithms, es-
pecially since by the Church-Bound Hypothesis you are capable of computing
any algorithm. The man on the street does not know recursion theory, and even
if he does, as | do, | cannot imagine attempting to restrict myself to, say, prim-
itive recursive intensions for every new interpretation I acquire. Nor does it
seem plausible to suppose that we humans might have evolved to exclude cer-
tain algorithms. Itis, in fact, very difficult to avoid allowing yourself the choice
of any algorithm since once you allow yourself the use of ‘while' loops—i.e.,
the ability to implement programs including statements like “while such and
such is true, continue doing blah”—you are able to build, in principle, any
algorithm (presuming you can also carry out some trivial basic operations).

To avoid this conclusion you would have to ban the use of ‘while’ loops,
using only ‘for’ loops—i.e., the ability to implement programs including state-
ments like “for ¢ becomes equal to 1 to n do blah”, or “do blah n times"—
which is very restrictive. One could argue that your ‘while’ loops are in reality
bounded since you do not (and cannot) let them run forever; thus, it is not the
case that every algorithm can be implemented. But this does not mean that
the proper representation of your program does not use a ‘while’ loop. No
real computer, after all, can actually implement unbounded ‘while’ loops, but
it would be a mistake to say they cannot run unbounded ‘while’ loops and any
algorithm.

It can be noted that the idea of animals employing ‘while’ loops has some
empirical support, namely in the Sphex ichneumoneus wasp, which has been
observed to enter into what is plausibly represented as an infinite loop. Con-
sider the following often quoted excerpt from Woolridge (1963, p. 82).

When the time comes for egg laying, the wasp Sphex builds a burrow
for the purpose and seeks out a cricket which she stings in such a way
as to paralyze but not kill it. She drags the cricket into the burrow, lays
her eggs alongside, closes the burrow, then flies away, never to return.
In due course, the eggs hatch and the wasp grubs feed off the paralyzed
cricket, which has not decayed, having been kept in the wasp equiva-
lent of deep freeze. To the human mind, such an elaborately organized
and seemingly purposeful routine conveys a convincing flavor of logic
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and thoughtfulness—until more details are examined. For example, the
Wasp’s routine is to bring the paralyzed cricket to the burrow, leave it on
the threshold, go inside to see that all is well, emerge, and then drag the
cricket in. If the cricket is moved a few inches away while the wasp is
inside making her preliminary inspection, the wasp, on emerging from
the burrow, will bring the cricket back to the threshold, but not inside,
and will then repeat the preparatory procedure of entering the burrow
to see that everything is all right. If again the cricket is removed a few
inches while the wasp is inside, once again she will move the cricket up
to the threshold and re-enter the burrow for a final check. The wasp never
thinks of pulling the cricket straight in. On one occasion this procedure
was repeated forty times, always with the same result.

I am not suggesting that you are possibly subject to such infinite loops. | am
only suggesting that ‘while’ loops are plausibly part of your computational
grammar. In fact, one might say that the wasp has a “concept” of ‘readied
burrow’ which is determined by the following program:

WHILE burrow not ready do
IF burrow clear & cricket not moved when I emerge
THEN burrow is ready;

As an example showing that you regularly engage in *while’ loops (or an equiv-
alent) as well, in order to determine if the bath temperature is good, you may
well keep increasing the hot until it is comfortable or too hot; if the latter then
you keep decreasing until comfortable; and so on. That is, you implement the
following program:

WHILE temperature not comfortable do
IF temperature too cold
THEN increase hot water;
ELSE decrease hot water;

‘while’ loops seem to be an integral part of your (and my) computational gram-
mar. And if this is true, the Any-Algorithm Hypothesis is sure to apply to the
real you. Thus, the No-R.E.-Subsets-of-Algorithms Hypothesis also applies to
the real you.

What does the No-R.E.-Subsets-of-Algorithms Hypothesis tell us? There
is a set of all possible programs you can attain (and this is recursively enumer-
able since you are bound by Church’s Thesis). This set is not a subset of the set
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of all algorithms, as the No-R.E.-Subsets-of-Algorithms Hypothesis requires.
This means you are not generally capable of choosing algorithms. In particular,
if the Any-Algorithm Hypothesis is true, then since the set of all algorithms is
undecidable, you are not generally capable of choosing algorithms. We saw
above that the Church-Bound Hypothesis and the Programs-in-Head Hypothe-
sis “almost” imply the Thesis. What was missing was some reason to believe
that the set of algorithms from which you determine your interpretations is
not recursively enumerable. The No-R.E.-Subsets-of-Algorithms Hypothesis
finishes the argument, and these three hypotheses together entail the Thesis.

4.2.6 Thesis

In this subsection | bring together the previous three subsections. Here is the
Thesis again.

For “most” natural language predicates P

1. your interpretation of P is determined by a program in your head that is capable of
semideciding but not deciding it,

2. your interpretation of ‘not P’ is determined by another program in your head that is
capable of semideciding but not deciding it, and

3. there are objects neither in your interpretation of P nor in your interpretation of ‘not P’.

There are two ways of arguing toward the Thesis. The first is via the fantasy
scenario and is largely but not entirely prescriptive, concluding that the Thesis,
and thus vagueness, follows largely but not entirely from rationality consider-
ations alone (and the Church-Bound Constraint). The second is via the real
you scenario and is descriptive, concluding that the Thesis follows from hy-
potheses that are true about us. The first would be rather worthless without the
second, because a theory that claims that vagueness would exist in the fantasy
scenario but says nothing about the real us would be incomplete at best, since
it is us who experience vagueness, not some idealized, rational fantasy agents.
The second, however, is made more interesting by the first. The Thesis, and
thus vagueness, does not follow from some human irrationality or quirk, but is,
on the contrary, something to which nearly any rational, sufficiently powerful,
finite agent will converge.

I finish this section by (i) cataloguing the premises of both the prescrip-
tive (fantasy you) and the descriptive (real you) argument, (ii) reminding us
that the premises of the prescriptive argument entail those of the descriptive
argument, and (iii) summarizing how the Thesis follows from the descriptive
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argument (and thus by (ii) also from the prescriptive argument). Below are the
two arguments.

Descriptive Argument (Real you) Prescriptive Argument (Fantasy you)
Church-Bound Hypothesis. Church-Bound Constraint.
Programs-in-Head Hypothesis. Principle of Program-Favoring.

No-Good-Reason-for-Non-Programs Hypothesis.

No-R.E.-Subsets-of-Algorithms Hypothesis. Principle of No-R.E.-Subsets-of-Algorithms.
No-Good-Reason-for-R.E.-Subsets-of-Alg Hyp

The prescriptive argument says that any rational (Principles of Program-
Favoring and No-R.E.-Subsets-of-Algorithms), Church-bound (Church-Bound
Constraint) agent is subject to the Thesis so long as (a) he has no good reason
to believe that the extensions of most natural language predicates are not recur-
sively enumerable (No-Good-Reason-for-Non-Programs Hypothesis), and (b)
he has no good reason to presume that there is a recursively enumerable subset
of the set of all algorithms that suffices for adequate interpretations of natural
language predicates (No-Good-Reason-for-R.E.-Subsets-of-Algorithms Hyp-
othesis). Because (a) and (b) are very difficult to imagine being false, the Thesis
follows “largely” from the Church-Bound Constraint and the two principles of
rationality. Supposing (a) and (b) are true, the Thesis (and thus vagueness) is
good for you, fantasy and real.

The descriptive argument says that (o)) we humans are Church-bound (Chur-
ch-Bound Hypothesis), () for most natural language predicates and their nat-
ural language negations we use programs in the head to determine our inter-
pretations of them (Programs-in-Head Hypothesis), and () any algorithm may
possibly be used by us as a determiner of the interpretations of natural lan-
guage predicates or their natural language negations (Any-Algorithm Hypoth-
esis), and thus we do not confine ourselves to a recursively enumerable subset
of the set of all algorithms for interpreting natural language predicates or their
natural language negations (No-R.E.-Subsets-of-Algorithms Hypothesis).

The prescriptive premises (for the fantasy scenario) imply the descriptive
premises in the following sense. If you satisfy the Church-Bound Constraint
then the Church-Bound Hypothesis is true. If you follow the Principle of
Program-Favoring and the No-Good-Reason-for-Non-Programs Hypothesis is
true, then the Programs-in-Head Hypothesis is true; the converse is not true. If
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you follow the Principle of No-R.E-Subsets-of-Algorithms and the No-Good-
Reason-for-R.E.-Subsets-of-Algorithms Hypothesis is true, then the No-R.E.-
Subsets-of-Algorithms Hypothesis is true; the converse is not true.

The descriptive premises entail the Thesis as follows. The Programs-in-
Head Hypothesis states that you use programs in the head to determine most of
your interpretations of natural language predicates and their natural language
negations. Most of your interpretations are therefore semidecidable by the pro-
grams responsible for them. The No-R.E.-Subsets-of-Algorithms Hypothesis
states that the set of programs at your disposal for natural language predicate
interpretations is not a recursively enumerable subset of the set of all algo-
rithms. This entails that the set of algorithms from which you can possibly
choose is not recursively enumerable. The Church-Bound Hypothesis states
that you can only compute the Turing-computable, and thus you cannot gener-
ally choose programs for your interpretations of natural language that are algo-
rithms (even if your interpretations are recursive, or even finite). For “most” of
your interpretations of natural language predicates P (or ‘not P’) your program
for it will be able to semidecide but not decide it. Since “most” predicates can
only semidecide their interpretation, this means that for “most” predicates there
must be one program for P, and another program for ‘not P’, and each can only
semidecide the interpretation for which it is responsible. We have so far con-
cluded that “most” natural language predicates satisfy 1 and 2 of the Thesis.
Your interpretations of P and ‘not P’ cannot cover every object, because if
they could be then it would be possible to take the two programs and use them
as one algorithm to simultaneously decide the interpretations, and this would
contradict the impossibility of generally acquiring algorithms. Thus, “most”
of the time your interpretations of predicates and their natural language nega-
tions do not cover all objects; there are objects in neither interpretation. We
now have that “most” predicates satisfy 1, 2 and 3; the Thesis follows from the
three hypotheses.

It is important to note that the Thesis is an important claim about natural
language whether or not one believes that the Thesis has anything to do with
vagueness. If it is true, then, informally, our concepts have “unseeable holes”
in them. As for vagueness, my theory’s characterization of vagueness is that a
predicate is vague if and only if it satisfies 1, 2 and 3 from the Thesis; the truth
of the Thesis implies that “most” natural language predicates are indeed vague,
as we know they are.
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4.3 From theory to vagueness

In this section | demonstrate how the Undecidability Theory of Vagueness ex-
plains vagueness. Recall that the theory’s characterization of vagueness from
Subsection 4.2.6 is as follows: Predicate P is vague to you if and only if

1. your interpretation of P is determined by a program in your head that is capable of
semideciding but not deciding it,

2. your interpretation of ‘not P’ is determined by a program in your head that is capable of
semideciding but not deciding it, and

3. there are objects in neither your interpretation of P nor your interpretation of ‘not P’.

The Thesis stated that “most” natural language predicates satisfy 1, 2 and 3,
i.e., “most” natural language predicates are vague. In terms of a single program
Cp/nonp that outputs YES whenever an object is P and outputs NO whenever
an object is ‘not P’, the characterization is that a predicate P is vague to you
if and only if there are objects on which your program Cp ., p does not halt.
The corresponding Thesis is that “most” natural language predicates have a
region of objects for which the program does not halt. In what follows the
Thesis is assumed to be true.

Please notice that in my theory's characterization of vagueness, vague
predicates are not in any way required to be computationally complex. | have
a great deal of difficulty with people thinking that my theory somehow equates
non-recursiveness with vagueness. The only appeal to non-recursiveness has
been to the non-recursiveness of the set of algorithms and the halting set (the
set of all pairs of programs and inputs such that the program halts on that in-
put), not to the non-recursiveness of natural language predicate interpretations.
The interpretations of vague predicates may well be recursive, and even finite,
and vagueness is unscathed. And even if a predicate’s interpretation is not re-
cursive, the vagueness comes not from this but, as we will see, from the facts
that the interpretations do not cover all objects and that the programs are not
algorithms.

4.3.1 Borderlineregion

Your interpretations of P and ‘not P’ do not cover all objects; there are objects
¢ such that the natural language sentences ‘c is P’ and ‘c is not P’ are both
false. These objects comprise the borderline region. This fits well with the
datum of a borderline region: that there are objects which do not seem to fit
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neatly into just one category. The development in Section 4.2 served in part to
show that (i) any rational, Church-bound agent in the fantasy is very likely to
have a borderline region for “most” natural language predicates, and (ii) you do,
in fact, have such a borderline region for “most” natural language predicates.
In epistemic theories of vagueness the borderline region is characterized
differently than merely “not fitting neatly into just one category.” Rather, for
epistemicists the borderline region is comprised of those objects for which
knowledge of membership is unattainable, where “membership” refers to mem-
bership in the true extension. The Undecidability Theory explains this sort of
borderline region as well. Suppose that BALD is the true extension of ‘bald’.
You are not generally capable of acquiring a program in the head that decides
BALD, even if BALD is decidable, because you are not generally capable of
acquiring algorithms. Your interpretation of ‘bald’ is semidecidable but not
generally decidable by the program responsible for it, and even if you are so
lucky to correctly interpret it (i.e., your interpretation is equal to the extension
BALD), if you want to be able to respond to queries about ‘not bald” you must
acquire a second program in the head, and this program will not generally cor-
rectly interpret ‘not bald’ (i.e., the ‘not bald’ program will not semidecide the
complement of BALD). Your interpretations of ‘bald” and ‘not bald’ do not
cover every object, and the programs for each only semidecide them. There are
therefore objects for which you are incapable of determining or even knowing,
using your programs in your head, whether or not it is a member of BALD.

4.3.2 Higher-order vagueness

Although you cannot draw a sharp line between ‘bald” and ‘not bald’, can you
draw a sharp line between ‘bald’ and ‘borderline bald’? There is, in fact, a
sharp line here posited by my theory, but are you generally capable of drawing
it? No. The two programs in the head for baldness (one for ‘bald’ and one for
‘not bald’) are not powerful enough to determine the lines. To see this intu-
itively, imagine starting in the “bald’ region and moving toward the borderline
bald region. While in the ‘bald’ region your program for *bald’ halts and says
YES and the program for ‘not bald’ never halts. When you move into the bor-
derline region the program for ‘not bald’ still does not halt, but the program
for ‘bald’ suddenly now never halts as well. You are not, though, generally
able to know that the program for ‘bald’” will never halt—you cannot gener-
ally know when you have crossed the line. This seems to be consistent with
our observations of higher-order vagueness, and it solves the problem without
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having to postulate semantically distinct higher-order borderline regions. This
latter aspect is good since it puts a stop to the regress of higher and higher order
semantically distinct borderline regions, all which amount to nothing if when
one is finished there is still a knowable sharp line between the definite region
and the non-definite region.

Can this phenomenon really be the phenomenon of higher-order vague-
ness? In my theory what does it “feel like” to not be capable of determining
the boundaries of the borderline region? Well it feels like whatever it feels like
to attempt to decide a set using a program that only semidecides it. One might
try to make the following criticism: Let us take the set of even numbers and
supply you with a program that only says YES exactly when a number is even,
and is otherwise silent. Do the evens now seem vague through the lens of this
program? There are a number of problems with such a criticism as stated. First,
it is not enough that the program simply says YES when an input is even and
is silent otherwise. When we say that the program semidecides but does not
decide the set of evens we mean that if the program is silent we are not sure
whether it will at any moment converge and say YES. The program’s silence is
not translatable to NO. Second, it is difficult to judge our intuitions with a pred-
icate like ‘even’ for which we already have a program in the head for deciding
it. We should imagine instead that it is some new predicate P for which we
have no intuitions. The third problem is that even with these fixes the question
the critic needs to ask is not whether P-ness seems vague, but whether P-ness
seems to have whatever feel higher-order vagueness has. This is because P is
not vague according to my theory since it does not satisfy part 2 of the char-
acterization of vagueness (i.e., we are not given a program for semideciding
‘not P’). On this modified question it is unclear that we have any compelling
intuitions that the answer is NO. When using the given program to attempt to
decide the extension of P, you will be incapable of seeing where exactly the
boundary is, and therefore you will be unable to classify many objects. These
objects plausibly are just like the borderline borderline objects (i.e., second-
order borderline objects).

Another critic may ask the following: Let us suppose that you have two
programs that only semidecide their respective interpretations, and let us also
suppose that the interpretations do not cover every object. If these programs
are for some predicate P and ‘not P’ then is P-ness necessarily vague? For
example, let us take the predicate ‘theorem of arithmetic’, whose extension is
not even recursively enumerable. You are surely capable of determining some
theorems and some non-theorems, and you must therefore utilize a program
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in the head for ‘theorem’ and another for ‘not theorem’. But surely ‘theorem’
is not now vague! There is a difference between this case and vague natural
language predicates. You as a mathematician are conscious that you are not
actually deciding theoremhood with your programs. You understand that they
are only heuristics, and it is possible that each might even occasionally be in-
correct, e.g., saying that a theorem is not a theorem. That is, your programs
for theoremhood do not determine what you mean by ‘theorem’. You mean by
‘theorem of arithmetic’ whatever follows from its definition. 1 and 2 from the
characterization of vagueness are not satisfied.

4.3.3 The sorites paradox

Finally we arrive at the sorites paradox, which | give here in the following
form: (i) O hairs is bald, (ii) for all n, if n hairs is bald, so is n + 1, (iii)
therefore you are bald no matter how many hairs you have. Notice that | have
stated the argument in natural language; many researchers on vagueness state
the paradox in some logical language, which is strange since the paradox is one
in natural language. Presenting it in a logical language inevitably makes certain
biased presumptions; for example that ‘not’ is to be translated to the classical
negation ‘—’.

What is usually dangerous about rejecting premise (ii) is that it implies
there is an ng such that ng hairs is bald but ng + 1 hairs is not; i.e., it usually
leads to there being no borderline region. This is bad because borderline re-
gions surely exist. In my theory’s case, though, what happens? A sorites series
moves along a “path” that is most gradual from P to ‘not P’; it must therefore
cross the borderline region lest it not be “most gradual.” Imagine starting in the
‘bald’ region and moving toward the borderline region. Eventually there will
be a number ng such that ng hairs is bald but it is not case that ng + 1 is bald,
and you cannot in general determine where this occurs. However, this in no
way prevents ng + 1 from being borderline bald, i.e., being neither bald nor not
bald. Eventually the denial of (ii) will occur—and you will not know when—
but it does not imply the lack of a borderline region. The sorites paradox is thus
prevented without losing vagueness.

4.3.4 Essentialness

There is a widespread feeling (since Wittgenstein, it seems) that vagueness is
an essential part of natural language. That is, even if it were eliminable (see
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Subsection 4.3.5 to see why it is not), we would not want to eliminate it since
it serves an essential role.

My Undecidability Theory of Vagueness has its own explanation. Recall
from Section 4.2 that the Undecidability Theory in largely prescriptive dress
rested upon one constraint, two weak (weak relative to the three hypotheses
in the descriptive argument) hypotheses, and two principles of rationality. The
constraint was the Church-Bound Constraint, which states that | am concen-
trating only on agents that are bound by Church’s Thesis and able to compute
any computable function. The first of the two weak hypotheses is the No-Good-
Reason-for-Non-Programs Hypothesis which says that we have no good reason
to believe that programs are not sufficient to describe the world. The second
of the two weak hypotheses is the No-Good-Reason-to-Exclude-Algorithms
Hypothesis which says that we have no good reason to believe that some al-
gorithms may not be useful in describing the world. Supposing the truth of
these two weak hypotheses the truth of the two principles of rationality suf-
fices to secure the Two-Programs Thesis and the resulting vagueness (as seen
in Subsections 4.3.1 and 4.3.2). Principles of rationality claim that one ought
to do something, where there is some implication that not doing that something
would be very bad, whatever that might mean. The essentialness of vague-
ness is bound up with the rationality principles: vagueness is essential because
the only way to avoid it is through irrationality, which would be bad. Avoid
badness. .. get vagueness. Let us examine the two principles of rationality in
turn.

The Principle of Program-Favoring says that without good reason to the
contrary, you should assume that the extension of natural language predicate
P and its natural language negation ‘not P’ are capable of being correctly
determined using programs in the head. Recall that this helps lead to the Two-
Programs Thesis and thus vagueness because ‘not P’ is required to be semide-
cidable by the program for it as well as P, and it is this dual requirement that is
difficult to satisfy. How “essential” is this rationality principle; i.e., how “bad”
would it be to act in non-accordance with it? You could, after all, avoid the
vagueness of ‘bald’ if you were only willing to live with just one program in
the head—the one for ‘bald’, say. However, this benefit would come at great
cost since you would be generally able to identify bald things but not generally
things that are not bald. Is seeing the other half of a concept really that essen-
tial? Alternatively, is not being able to see the other half of a concept so bad?
Yes, it is so bad; | take this to be obvious. The utility gained by bringing in the
program for ‘not bald’ is that it helps you see the “other half” of the concept.
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Since it cannot do this job perfectly, vagueness is the result. [Or in “single pro-
gram” form (see the discussion near the start of Subsection 4.2.5), as soon as
you allow your single program to say NO and make your interpretation of ‘not
P’ be the set of objects on which the program says NO rather than simply the
complement of the interpretation of P, vagueness is the result since you cannot
put in the NOs perfectly.]

Now let us look at the second principle of rationality, the Principle of Any-
Algorithm, which says that without good reason to the contrary, you should not
presume that there are particular algorithms such that for all natural language
predicates P (or ‘not P”) the algorithm does not supply the best interpretation
for P (‘not P’). You could avoid the vagueness of ‘bald’ if you were will-
ing to confine your choice of programs to some recursive subset of the set of
algorithms. | spent a little time near the end of Subsection 4.2.5 defending
why it is bad not to act in accordance with this principle, and I largely refer
you to that discussion. The short of it is that violating the Principle of Any-
Algorithm would be very costly since you would thereby confine yourself to
much less rich interpretations for natural language predicates and you would
not be as capable—possibly even incapable—of adequately classifying an in
principle, classifiable world. Vagueness is essential, in addition to the earlier
reason, because it is essential that we be capable of classifying our world.

4.3.5 Ineiminability

Vagueness is not to be easily circumvented, or so it is usually thought, and my
theory of vagueness leads to several ways in which it may be said that vague-
ness is ineliminable. One major notion of ineliminability emanates from the
fact that there is nothing particular to us humans assumed in the theory; ideal
computing devices such as HAL from 2001 Space Odyssey and Data from Star
Trek are subject to vagueness as well. Greater powers of discrimination and
computation cannot overcome the dilemma of a borderline region and higher-
order vagueness. Why, though, is vagueness ineliminable for them?

Let us consider whether the borderline region may be completely elimi-
nated. Once the two programs exist for, say, baldness, perhaps it is possible to
find a single new algorithm for baldness that divvies up the universe into YES
and NO in such a way that anything that is definitely bald (with respect to the
two programs) falls into YES, and anything that is definitely not bald falls into
NO (i.e., it respects the definite cases). This algorithm would act by classifying
each member of the borderline region as either bald or not, and would serve
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Definitely P Definitely not P

Borderline
region

Figure 4.2: A successful precisification would recursively cut through the borderline region
as shown by the dotted line, leaving the definite regions untouched. This is, however, not
generally possible.

to redefine baldness so as to be non-vague all the while preserving the defi-
nite cases (see Figure 4.2). The algorithm would amount to a precisification of
baldness. But if it were generally possible to precisify the borderline region and
obtain an algorithm for a precisification of baldness, then it would have been
generally possible to find such an algorithm in the first place (i.e., pick two
programs and then precisify them), contradicting the non-recursiveness of the
set of algorithms. Therefore it is not generally possible to eliminate the border-
line region, and I call this sort of ineliminability non-precisifiability. [If, under
supervaluationism, (super)truth is meant to be determined by running through
all precisifications and checking to see if the sentence is true in each, then (su-
per)truth of natural language utterances is not generally possible to determine
since it is not generally possible to precisify at all.]

May you carefully restrict yourself to certain well-defined contexts, and
within these contexts might vagueness be eliminated? We usually do not think
so. For example, we do not seem to find ourselves able to identify a group of
people (say, infants) such that baldness is no longer vague amongst that group.
My theory explains this sort of ineliminability. What you would like to find is a
subset of the universe of objects such that there is no longer a borderline region
for baldness; you would like to eliminate vagueness by restricting the context
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Restricted |context

Definitely P Definitely not P

Borderline
region

Figure 4.3: Asuccessful restriction would consist of a recursive subset (a context) consisting
of no borderline region as shown by the dotted box. Thisis, however, not generally possible.

to one where there is no borderline region (see Figure 4.3). Not just any subset
(or context) will do—you need to be able to recognize (via a program in the
head) when something is or is not in that subset, and this implies that you need
an algorithm. But now you are back to the same old problem yet again: you
cannot generally acquire algorithms. Your contexts are not generally decidable
by the programs for them. You may then acquire a context which does not
include any of the borderline region but be presented with objects for which
you are incapable of knowing whether it is in the context. The objects may in
actuality not be in the context, but you may then judge them to be borderline
cases and thereby see vagueness. One might respond in two ways here. First,
perhaps you only judge an object to be part of the context if the program for
the context actually says YES that it is part of the context; if this were so then
a single program only semideciding the context is sufficient. The difficulty
with this response is that you may well be asked about some object whether it
is part of the context and what its categorization is with respect to the vague
predicate, and you cannot just refuse to answer. A second response is that we
have no reason to believe that contexts require an Any-Algorithm hypothesis;
perhaps the allowable programs for contexts are confined to a recursive subset
of the set of algorithms. The difficulty with this is that contexts very often are
natural language concepts; e.g., attractiveness among bald people, or quickness
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among cats. Therefore, (a) the arguments from Section 4.2.5 toward allowing
any algorithm apply here, and therefore (b) the context itself is vague. Even if
you manage to secure a context that is decided by the program for it, because
you cannot generally determine where the borderlines are it is not generally
possible for you to be assured that the context does not include some of the
borderline region. It is not, then, generally possible for you to restrict yourself
to a context wherein the borderline region is eliminated, and | call this sort of
ineliminability non-restrictability.

I have discussed two sorts of ineliminabilities concerning the borderline
phenomenon. Higher-order vagueness is also ineliminable. To begin with,
it is not generally possible to correct the two programs so that they decide
their respect interpretations. If it were possible, the program determining the
interpretation of P could have been “corrected” to an algorithm in the first
place, and there would be no need for a second program in the head at all. But
it is not possible to generally acquire an algorithm, and thus it is not possible
to so correct the programs.

Although the two programs for baldness cannot determine the boundaries
of the borderline region, it is possible for the borderline region to be recursive
and thus it is in principle possible for you to have an algorithm deciding it.
If you had such an algorithm there would be no more higher-order vagueness
since you could determine the boundaries of the borderline region. However, it
is not generally possible to find the algorithm. For one, it is not generally pos-
sible to pick an algorithm rather than a non-algorithm for the job of attempting
to decided the borderline region. And two, you cannot be sure, even given that
you have an oracle handing you any desired algorithm, whether what it is de-
ciding is the borderline region since you cannot generally know what things are
in the borderline region.

4.3.6 Degreesof vagueness

The previous section concludes the sections on the phenomena of vagueness.
I want to discuss “degrees of membership” in this section. Membership seem-
ing to come in degrees is not a phenomenon unique to vagueness; non-vague
predicates such as ‘even’ have been shown (Armstrong et al., 1983) to come
in degrees to subjects. Also, consider the set H ALT of ordered pairs of pro-
grams C and inputs x such that the program halts on that input. In a natural
sense we are inclined to say that (Cy, z1) is more HALT-like than (Cs, xo) if
C1 (1) halts after fewer steps than does Cs(z2). Such judgements may depend
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on a number of factors, such as typicality, probability, degree of difficulty in
determining membership, and so on.

Prior to noticing such examples of precise sets that nevertheless display to
us a phenomenon of degrees, one might be worried about the fact that since in
my theory concepts are pairs of precise sets, the phenomenon of seeming de-
grees of membership might be precluded. If single precise sets are not inconsis-
tent with the phenomenon, then it seems there is no prima facie inconsistency to
two pragmatically related precise sets displaying the phenomenon—i.e., vague
predicates within my theory—and it seems there is no particular responsibility
for me to explain seeming degrees of membership. | do not know the explana-
tion for degrees, and | do not care; | defer to whatever is the best theory.

4.3.7 Summingup

I have argued that it is very likely to be in a Church-bound agent’s (i.e., fi-
nite and sufficiently powerful) best interest to have accessible (i.e., interpreted
via programs in the head), maximally accurate (i.e., any algorithm a possible
meaning determiner) interpretations of natural language predicates. | have also
argued that such an agent having such interpretations experiences vagueness.
Vagueness, then, is in such an agent’s best interest. If we, too, are Church-
bound, then vagueness is very likely good for us; the only possible ways for us
to avoid vagueness are either to lose the accessibility of our natural language
meanings or to confine our meanings to an “infinitely less rich” choice, each
very likely to be more costly than the costs of vagueness.

4.4 Discussion

The Undecidability Theory of Vagueness is now out on the table. We have
seen how it is motivated in Section 4.2 and how it explains the phenomena
linked to vagueness in Section 4.3. There are number of issues to be discussed
concerning it that | take up in this section.

Nonstandard concepts

Section 4.2 concluded with the Two-Programs Thesis, which says that “most”
of your interpretations of natural language predicates P and ‘not P’ are semide-
cidable but not decidable by the programs for them ((i) and (ii)), and are not



286 CHAPTER 4

complements ((iii)). This is a stunning conclusion irrespective of the vague-
ness to which we saw in Section 4.3 it leads. ‘not P’ cannot (“usually”) be
translated into logic as ‘=P’ as it is usually thought. Rather, ‘not P’ should be
represented as a distinct predicate of its own, non P, the dual to P. nonP has
no logical connection to P (other than non-overlap), although, informally, they
should be thought of as rough approximations of the complement of the other.

My theory leads to a nonstandard notion of what is a concept, where by
‘concept’ | mean your or my concept, extensionally construed. There is no sin-
gle set of objects which fall under a given concept; the interpretation of ‘bald’ is
not the concept baldness, and neither is the interpretation of ‘non-bald’. Rather,
a concept is comprised of two sets with only a pragmatic relation; the concept
baldness is comprised of the interpretation of ‘bald’ and that of ‘non-bald’.
Your concept, or your semantics of, P-ness is the ordered pair (A, nonA),
where A and nonA are the interpretations of P and ‘not P’, respectively. If
a single two-sided coin represents the usual view of a concept—i.e., ‘bald’
on one side and ‘—bald’ on the other—my theory leads to a ‘two single-sided
coins’ view of what is a concept: you have access to only one side of each
coin, and the coins are independent of one another (although they are disjoint,
and are likely to be rough approximations of the complement of the other’s
interpretation).

There is an intuitive sense in which this notion of a concept is incoherent.
By incoherent | do not just mean that it is non-classical; there are certainly
many other non-classical notions of what it is to be a concept which are not
incoherent in the way that | mean. For example, in fuzzy logic a concept is a
fuzzy set, and in some connectionist models of mind a concept is a vector of the
weights of the connections. In each of these cases there is a single intuitively
natural object representing a concept—a single fuzzy set and a single weights
vector. In my case though the single object representing a concept is an ordered
pair of sets and this complex object is entirely unnatural. Rather, my notion of
a concept consists of two intuitively natural objects, namely sets, unnaturally
paired together. Whether one should share this intuition of incoherence is not
particularly crucial, but to the extent that there is incoherence it helps to explain
one of the aspects typically thought to pertain to vagueness. Since Frege (1970)
(see also Dummett (1975) and Wright (1975)) there has been the thought that
vague predicates are incoherent, and we can see from where the feeling of
incoherence springs. This “incoherent” notion of a concept is, according to
my theory, an essential part of language for any rational, sufficiently powerful,
finite agent. Our concepts are essentially incoherent, and this is just the sort of
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intuitive feeling people have had about vagueness since Wittgenstein.

The notion of “your concept” just discussed is really “your concept compe-
tently employed.” In your actual performance you will sometimes incorrectly
conclude, for example, that an object is borderline since you cannot afford to
let your programs run forever. There are thus three levels of concepts that may
be distinguished. First, there is the (fantasy) level of true concepts “out there
in the world.” | have been presuming they are determinate. Second, there is
the level of your concepts “in the head” determined by the pair of programs
for P and ‘not P’, respectively. Third, there is the level of your concepts as
you actually perform using them; these will be, at best, approximations of the
second-level concepts.

Associated with these distinctions is the following criticism. One might
complain that my explanation of vagueness is too abstract to possibly be cor-
rect. The theory depends crucially on the notion that we run programs in our
head that do not halt on some inputs. This, one could charge, cannot be the ex-
planation for vagueness since our programs never actually do diverge forever.
The critic can even admit that perhaps the methods in the head are indeed best
represented as non-algorithmic programs in the head, but deny that this can be
the explanation for vagueness since the programs are never actually allowed to
run forever.

It is true that programs in your head certainly do simply give up after some
point; you don’t run into infinite loops. When presented with something in
the borderline region, where both programs diverge, after some period of intro-
spection you will inductively conclude that the object is borderline. You could
have been too hasty, for on the very next step it could be that one program
would have halted. All this is no difficulty for my theory. In fact I need it
for my theory, for it is just these difficulties the actual agent runs into in deal-
ing with his programs in the head that accounts for his inability to determine
the boundaries of the borderline region, or higher-order vagueness. It is this
third level mentioned above whose non-identity with the second level helps to
explain higher-order vagueness.

Universality of vagueness

I now touch on three issues related to the universality of vagueness.

The first concerns whether all natural language predicates are vague. By
the Thesis and the characterization of vagueness, “most” of your natural lan-
guage predicates are vague. “most,” however, does not mean all, and accord-
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ing to my theory there may be some non-vague predicates. But are not all
natural language (nonrelational) predicates vague? It is not clear that the an-
swer to this question is ‘Yes’. For example, Sorensen (1988, p. 201) cites
“flat’, “‘clean’ and ‘empty’ as example non-vague predicates. These predicates
are often applied in “restricted domains of discourse; not all bumps, dirt, and
contents are relevant” (ibid.), but if | am asked if, strictly speaking, some sur-
face is flat, I am sure that my answer is either YES or NO (i.e., not neither).
“Strictly speaking,” surfaces are either flat or not, whereas for ‘heap’ there is
no such “strictly speaking” analog. | also believe ‘mortal’ and ‘everlasting’,
for example, to be non-vague. There are explanations consistent with my the-
ory for why non-vague predicates are rare at best. The first emanates from
the observation made in Subsection 4.2.5 that the set of algorithms is much
more difficult than its complement, and this is what motivated the scare quotes
around ‘most’ in the first place. The second explanation helps to explain why
there are few to no non-vague “complex” natural language predicates. By com-
plex predicates | informally mean those predicates like ‘dog’, ‘bald’, ‘people’,
‘chair’, etc., that depend on a number of more “primitive” predicates like ‘red’,
‘circular’, etc., for their application. Most of our every day predicates—the
ones we use to carve up the world—are complex. In order for one of these
predicates to be non-vague, every more primitive concept it employs must be
non-vague—although see Sorensen (1988, pp. 228-229) for some nice and un-
usual counterexamples—and this is probably never the case, given that “most”
(primitive) concepts are, according to my theory, vague.

The second universality issue is that given that some predicates might be
non-vague, we do not find in our experiences cases where, say, ‘dog’ is vague
but “cat’ is not; similar sorts of predicates should either both be vague or nei-
ther. The observation just mentioned concerning complex versus primitive
concepts explains this datum. Similar predicates make use of similar more
primitive concepts, and thus inherit the vagueness (or lack thereof) of the more
primitive concepts.

On the third issue of universality, the Thesis is about your interpretations,
stating that “most” of the time your natural language predicates are vague. The
Thesis obviously also applies to any of us individually. One datum of vague-
ness seems to be that we don’t find ourselves disagreeing about the vagueness
of predicates. What reason have we to believe, in my theory’s sights, that you
and | have the same vague predicates? Why should your “most” and my “most”
coincide? The answer to this query is as follows: If you believe ‘bald’ is vague
and | believe it is non-vague, then it is not the case that we have the same
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concept of baldness save that one is vague and the other not. Your concept of
baldness consists of two interpretations which do not cover every object. My
concept of baldness, on the other hand, consists of just a single classical inter-
pretation; | have no “hole” in my concept. We disagree about more than just
baldness’s vagueness since our concepts are genuinely different. Therefore, in
order to explain why we all agree on which predicates are vague, it suffices to
explain why we all tend to have the same concepts for predicates. Explaining
this, however, is not something my theory is subject to any more than any other
theory; any adequate account of our shared concepts suffices to explain why
we agree about the vagueness of predicates.

Non-vague metalanguage

I do not equate precision and non-vagueness; you can be precise and vague
since vague concepts in my theory are, after all, two precise sets of a partic-
ular sort. For convenience here is the Undecidability Theory of Vagueness’s
characterization of vagueness again: Predicate P is vague if and only if

1. your interpretation of P is determined by a program in your head that is capable of
semideciding but not deciding it,

2. your interpretation of ‘not P’ is determined by a program in your head that is capable of
semideciding but not deciding it, and

3. your interpretation of P is not the complement of your interpretation of ‘not P’.

The metalanguage used to state the characterization is precise. Furthermore it
is non-vague. Do not be confused into thinking my use of “your head” in the
metalanguage brings in vagueness; it is no more vague within my model than
is “the computer | am typing this on,” and we may suppose that it is implicitly
“your head right now” to allay worries about the identity of your head through
time. Predicates are possibly vague, names (or individual constants) are not;
or, at least, they are different issues.

Non-vague metalanguage does not necessarily imply that the characteriza-
tion of vagueness, and thus ‘vague’, is non-vague, although it does imply that it
is precise. Is ‘“vague’ vague according to my theory? This question can be read
in two ways: (a) is your concept of vagueness vague?, and (b) is the concept
emanating from my theory’s characterization vague. Let me answer (b) first.
The concept of vagueness emanating from the characterization is the set of all
predicates P satisfying the characterization; i.e., it is just a set. The extension
of “vague’ is that set, and the extension of ‘not vague’ is the complement of
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that set. Part (iii) of the characterization is thus violated and so the concept of
vagueness is not vague.

What about question (2)? Although the true extension of ‘vague’ is not
vague, might your concept of it possibly be vague? According to the charac-
terization, ‘vague’ is vague to you if and only if

1. your interpretation of ‘vague’ is determined by a program in your head that is capable of
semideciding but not deciding it,

2. your interpretation of ‘not vague’ is determined by a program in your head that is capable
of semideciding but not deciding it, and

3. your interpretation of ‘vague’ is not the complement of your interpretation of ‘not vague’.

The characterization is not just a characterization—it is also the explanation
for why some predicates are vague. It says that vague P seems vague to you
because your programs in the head for P and ‘not P’ semidecide but do not
decide their respective interpretations and these interpretations are not com-
plements. When you are presented with P and are asked whether it is vague,
my theory’s claim is that you do some introspection—running both programs
on various inputs—and see if things “feel” like whatever things feel like when
(i), (ii) and (iii) of the characterization obtain. Therefore, your interpretation
of ‘vague’ according to my account might seem to be the same as the true ex-
tension. The problem with this suggestion is that it is not generally possible
for you to successfully do such introspection. Your interpretations might be
complements yet you not be able to know this, or not be complements and you
not be able to know this. Also, your programs might not decide their interpre-
tations but you may not be capable of verifying this, or vice versa. Thus, it is
doubtful that your interpretation of ‘vague’ actually is the true extension. The
guestion of whether ‘vague’ is vague to you is still open, and it comes down to
a factual matter. As far as my characterization goes, your concept of vagueness
may be vague or not.

Sorensen (1985) has argued that ‘vague’ is vague. His argument tactic
is to show that one can build a sorites argument using ‘vague’. He proposes
the disjunctive predicates ‘n-small’ for each natural number n, each which
applies to those natural numbers that are either small or less than n. The sorites
argument is as follows;

(1) “1-small’ is vague.
(2) For all n, if ‘n-small’ is vague, then ‘n + 1-small’ is vague.
(3) “One-billion-small’ is vague.
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*1-small’ is obviously vague, so (1) is true. (2) seems compelling, but (1) and
(2) imply (3) which, supposing that our interpretation of ‘small’ is such that
one billion is definitely and clearly not small, is false since it is now equivalent
to the non-vague predicate ‘less than one billion.” ‘vague’ is vague because “it
is unclear as to where along the sequence the predicates with borderline cases
end and the ones without borderline cases begin” (Sorensen, 1985, p. 155).

Such unclarity, or even unknowability, of the line is not sufficient for vague-
ness. The sorites argument for ‘vague’ is not paradoxical, since it is not fan-
tastic to deny the induction step; such a denial means asserting that there is
an n such that ‘n-small’ is vague but ‘n 4+ 1-small’ is not. Is this difficult to
believe? | do not see why. For ‘bald’, on the other hand, the proposition that
n hairs is bald but »n + 1 hairs is not strains credulity, and we are accordingly
unhappy to deny the induction step. It strains credulity because we feel, right
or wrong, that there are borderline cases of baldness. Is there any such intu-
ition for vague predicates? Are there cases of predicates we find are borderline
vague? | do not know of any such examples; any natural language predicates |
have encountered either have borderline cases or do not. (See also Deas (1989)
for one who agrees.)

‘vague’ is not vague, then; or at least if it is vague it is not so merely by
being able to be put it into what seems to be a sorites series. A sorites series is
only genuine when it is paradoxical, and it is only paradoxical when the denial
of the induction step seems counter-intuitive. Since the denial of the induction
step for the sorites series above is not counter-intuitive, this suggests that any
sorites series with ‘vague’ will also not be paradoxical. In fact, since there are
no clear cases of borderline vague predicates, there is not even any prima facie
reason to believe ‘vague’ is vague.

Hyde (1994) utilizes Sorensen’s argument for the vagueness of ‘vague’ to
argue, in turn, that higher-order vagueness is a pseudo-problem. If *vague’ is
vague and vagueness is defined as the phenomenon that there are borderline
cases, then since the existential ‘there are’ is not vague ‘borderline case” must
be vague because otherwise ‘vague’ would not be vague. l.e., if ‘vague’ is
vague then “borderline case’ is vague. But higher-order vagueness is the phe-
nomenon that there are borderline cases of borderline cases—it is that ‘border-
line case’ is vague—and this is already built into the original concept of vague-
ness. Higher-order vagueness comes for free from the vagueness of ‘vague’,
and thus one need not tell any special story concerning higher-order vague-
ness. Hyde’s argument fails without the vagueness of ‘vague’, though, and
with reason now to deny the vagueness of ‘vague’, there is reason to believe
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that higher-order vagueness is a genuine problem needing possibly a separate
explanation. (See also Tye (1994) for other criticisms of Hyde’s argument.)

What kind of theory isthis?

Where does the Undecidability Theory of Vagueness fit in amongst the spec-
trum of theories of vagueness?

(2) It is an epistemic theory. Vagueness exists in part because of your inad-
equacies: you are finite. Furthermore, no semantic indeterminacy concerning
the true concepts is required. In this sense it is a full-fledged epistemic theory.
(2) However, despite the consistency with a determinist account of true seman-
tics, my theory has an indeterminist aspect in that the semantics for the natural
language user’s concept P-ness consists of two distinct interpretations, one for
P and another for ‘not P’. The borderline region is semantically distinct from
the definite regions. The account of natural language semantics for your con-
cepts is, then, indeterminist. If one holds that (true) meaning is competent use
(of a community even), then the semantics at this level is the true semantics,
and one would have to hold semantic indeterminism. (3) Finally, the underly-
ing logic of your concepts is determinist in that P and ‘not P’ become P and
non P, each which gets its own determinist classical interpretation.

How does the Undecidability Theory compare to other explanatory theories
of vagueness? Is there anything about the Undecidability Theory that is favor-
able? I think so: its paucity of assumptions. It rests on the three weak descrip-
tive hypotheses from Section 4.2: the Church-Bound, Programs-in-Head, and
Any-Algorithm Hypotheses. Each is, independent of vagueness, quite plausi-
ble. The Church-Bound Hypothesis (see Subsection 4.2.3) says that you are
finite, bound by Church’s Thesis, and capable of, in principle, computing any
Turing-computable function. The Programs-in-Head Hypothesis (see Subsec-
tion 4.2.4) says that your interpretation of a predicate is determined by a pro-
gram in your head for it. That is, natural language predicates are not like ‘the-
orem of Peano Arithmetic’ for which your interpretation is set to that given by
its (not recursively enumerable) arithmetic definition, not the set determined by
whatever program you might use as a heuristic for responding to queries about
it. The Any-Algorithm Hypothesis (see Subsection 4.2.5) says that you allow
yourself the use of any algorithm for your interpretations of natural language
predicates. We saw that if you allow yourself ‘while’ loops in the building of
programs, then it is difficult to reject this hypothesis. Each is compelling, and
vagueness follows. Alternative theories of vagueness must either deny one of
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these, or argue that the phenomenon my theory explains is not vagueness.
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