Chapter 3

| nduction and I nnateness

One of the deepest problems in philosophy concerns how we learn about the
world, and whether there are right or wrong ways to go about it. In this chapter
I introduce this problem—the “problem of induction”—and describe its rele-
vance to understanding learning in intelligent agents, and brains in particular.
One consequence of the problem of induction is that there can be no such thing
as a universal learning machine; it is not even possible that brains could en-
ter the world as blank slates equipped with universal learning algorithms. The
goal of the chapter is to provide a kind of solution to the problem of induction,
and also to put forth something | call a theory of innateness. The latter would
be a mathematical framework in which we are able to make sense of the kinds
of structures that must be innately generated in a brain in order for that brain
to have its own innate way of learning in the world. | present a theory called
Paradigm Theory (Changizi and Barber, 1998) that purports to do these things.

What isinduction?

“John is a man. All men are mortal. Therefore, John is mortal.” This argument
from two premises to the conclusion is a deductive argument. The conclusion
logically follows from the premises; equivalently, it is logically impossible for
the conclusion not to be true if the premises are true. Mathematics is the pri-
mary domain of deductive argument, but our everyday lives and scientific lives
are filled mostly with another kind of argument.

Not all arguments are deductive, and ‘inductive’ is the adjective labelling
any non-deductive argument. Induction is the kind of argument in which we
typically engage. “John is a man. Most men die before their 100th birthday.
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Therefore John will die before his 100th birthday.” The conclusion of this
argument can, in principle, be false while the premises are true; the premises do
not logically entail the conclusion that John will die before his 100th birthday.
It nevertheless is a pretty good argument.

It is through inductive arguments that we learn about our world. Any time
a claim about infinitely many things is made on the evidence of only finitely
many things, this is induction; e.g., when you draw a best-fit line through data
points, your line consists of infinitely many points, and thus infinitely many
claims. Generalizations are kinds of induction. Even more generally, any time
a claim is made about more than what is given in the evidence itself, one is
engaging in induction. It is with induction that courtrooms and juries grap-
ple. When simpler hypotheses are favored, or when hypotheses that postulate
unnecessary entities are disfavored (Occam’s Razor), this is induction. When
medical doctors diagnose, they are doing induction. Most learning consists
of induction: seeing a few examples of some rule and eventually catching on.
Children engage in induction when they learn the particular grammatical rules
of their language, or when they learn to believe that objects going out of sight
do not go out of existence. When rats or pigeons learn, they are acting induc-
tively. On the basis of retinal information, the visual system generates a percept
of its guess about what is in the world in front of the observer, despite the fact
that there are always infinitely many ways the world could be that would lead
to the same retinal information—the visual system thus engages in induction.

If ten bass are pulled from a lake which is known to contain at most two
kinds of fish—bass and carp—it is induction when one thinks the next one
pulled will be a bass, or that the probability that the next will be a bass is more
than 1/2. Probabilistic conclusions are still inductive conclusions when the
premises do not logically entail them, and there is nothing about having fished
ten or one million bass that logically entails that a bass is more probable on
the next fishing, much less some specific probability that the next will be a
bass. It is entirely possible, for example, that the probability of a bass is now
decreased—"it is about time for a carp.”

What the problem is

Although we carry out induction all the time, and although all our knowledge
of the world depends crucially on it, there are severe problems in our under-
standing of it. What we would like to have is a theory that can do the following.
The theory would take as input (i) a set of hypotheses and (ii) all the evidence
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known concerning those hypotheses. The theory would then assign each hy-
pothesis a probability value quantifying the degree of confidence one logically
ought to have in the hypothesis, given all the evidence. This theory would
interpret probabilities as logical probabilities (Carnap, 1950), and might be
called a theory of logical induction, or a theory of logical probability. (Logical
probability can be distinguished from other interpretations of probability. For
example, the subjective interpretation interprets the probability as how confi-
dent a person actually is in the hypothesis, as opposed to how confident the
person ought to be. In the frequency interpretation, a probability is interpreted
roughly as the relative frequency at which the hypothesis has been realized in
the past.)

Such a theory would tell us the proper method in which to proceed with our
inductions, i.e., it would tell us the proper “inductive method.” [An inductive
method is a way by which evidence is utilized to determine a posteriori beliefs
in the hypotheses. Intuitively, an inductive method is a box with evidence and
hypotheses as input, and a posteriori beliefs in the hypotheses as output.] When
we fish ten bass from the lake, we could use the theory to tell us exactly how
confident we should be in the next fish being a bass. The theory could be
used to tell us whether and how much we should be more confident in simpler
hypotheses. And when presented with data points, the theory would tell us
which curve ought to be interpolated through the data.

Notice that the kind of theory we would like to have is a theory about what
we ought to do in certain circumstances, namely inductive circumstances. It
is a prescriptive theory we are looking for. In this way it is actually a lot like
theories in ethics, which attempt to justify why one ought or ought not do some
act.

Now here is the problem: No one has yet been able to devel op a successful
such theory! Given a set of hypotheses and all the known evidence, it sure
seems as if there is a single right way to inductively proceed. For example, if
all your data lie perfectly along a line—and that is all the evidence you have
to go on—it seems intuitively obvious that you should draw a line through the
data, rather than, say, some curvy polynomial passing through each point. And
after seeing a million bass in the lake—and assuming these observations are all
you have to help you—it has just got to be right to start betting on bass, not
carp.

Believe it or not, however, we are still not able to defend, or justify, why
one really ought to inductively behave in those fashions, as rational as they
seem. Instead, there are multiple inductive methods that seem to be just as
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Figure 3.1: The purpose of an inductive method is to take a set of hypotheses and the evi-
dence as input, and output the degree to which we should believe in each hypothesis in light
of the evidence, i.e., output the posterior probability distribution over the set of hypotheses.
Inductive methods may, in principle, be any function from the hypotheses and evidence to a
posterior probability distribution, but some inductive methods seem better than others. Which
one ought we use? That istheriddle of induction. Anideal answer would be a theory of logical
probability that tells us, once and for all, which inductive method to use. But there is no such
ideal theory.

good as one another, in terms of justification. Figure 3.1 depicts the problem.
The hypothesis set and evidence need to be input into some inductive method
in order to obtain beliefs in light of the evidence. But the inductive method is,
to this day, left variable. Different people can pick different inductive meth-
ods without violating any mathematical laws, and so come to believe different
things even though they have the same evidence before them.

But do we not use inductive methods in science, and do we not have jus-
tifications for them? Surely we are not picking inductive methods willy nilly!
In order to defend inductive methods as we actually use them today, we make
extra assumptions, assumptions going beyond the data at hand. For example,
we sometimes simply assume that lines are more a priori probable than parabo-
las (i.e., more probable before any evidence exists), and this helps us conclude
that a line through the data should be given greater confidence than the other
curves. And for fishing at the lake, we sometimes make an a priori assumption
that, if we pull n fish from the lake, the probability of getting n bass and no
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carp is the same as the probability of getting n» — 1 bass and one carp, which
is the same as the probability of getting n — 2 bass and two carp, and so on;
this assumption makes it possible (as we will see later) to begin to favor bass
as more and more bass, and no carp, are pulled from the lake. Making different
a priori assumptions would, in each case, lead to different inductive methods,
i.e., lead to different ways of assigning inductive confidence values, or logical
probabilities, to the hypotheses.

But what justifies our making these a priori assumptions? That’s the prob-
lem. If we had a theory of logical probability—the sought-after kind of theory |
mentioned earlie—we would not have to make any such undefended assump-
tion. We would know how we logically ought to proceed in learning about our
world. By making these a priori assumptions, we are just a priori choosing an
inductive method; we are not bypassing the problem of justifying the inductive
method.

I said earlier that the problem is that “no one has yet been able to develop a
successful such theory.” This radically understates the dilemma. It suggests
that there could really be a theory of logical probability, and that we have
just not found it yet. It is distressing, but true, that there simply cannot be
a theory of logical probability! At least, not a theory that, given only the evi-
dence and the hypotheses as input, outputs the degrees of confidence one really
“should” have. The reason is that to defend any one way of inductively pro-
ceeding requires adding constraints of some kind—perhaps in the form of extra
assumptions—constraints that lead to a distribution of logical probabilities on
the hypothesis set even before any evidence is brought to bear. That is, to get
induction going, one needs something equivalent to a priori assumptions about
the logical probabilities of the hypotheses. But how can these hypotheses have
degrees of confidence that they, a priori, simply must have. Any theory of log-
ical probability aiming to once-and-for-all answer how to inductively proceed
must essentially make an a priori assumption about the hypotheses, and this is
just what we were hoping to avoid with our theory of logical probability. That
is, the goal of a theory of logical induction is to explain why we are justified in
our inductive beliefs, and it does us no good to simply assume inductive beliefs
in order to explain other inductive beliefs; inductive beliefs are what we are
trying to explain.
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Bayesian formulation of the problem

We have mentioned probabilities, but it is important to understand a simple,
few-centuries-old theorem of Bayes. Using Bayes’ Theorem it will be pos-
sible to understand inductive methods more deeply. As set up thus far, and
as depicted in Figure 3.1, the inductive method is left entirely variable. Any
way of using evidence to come to beliefs about hypotheses can fill the ‘induc-
tive method’ role. Different inductive methods may utilize evidence in distinct
ways to make their conclusions. Bayes’ Theorem allows us to lay down a fixed
principle dictating how evidence should modify our beliefs in hypotheses. The
variability in inductive methods is constrained; inductive methods cannot now
differ in regards to how evidence supports hypotheses. As we will see, the
Bayesian framework does not dictate a single unique inductive method, how-
ever; the variability is pushed back to prior probabilities, or the degrees of con-
fidence in the hypotheses before having seen the evidence. Let me first explain
Bayes’ Theorem and the framework.

First, the Bayesian framework is a probabilistic framework, where degrees
of confidence in hypotheses are probabilities and must conform to the axioms
of Probability Theory. The axioms of probability are these: (i) Each probability
is in the interval [0,1]. (ii) The sum of all the probabilities of the hypotheses
in the hypothesis set must add to 1. (iii) The probability of no hypothesis
being true is 0. And (iv), the probability of two possibilities A and B is equal
to the sum of their individual probabilities minus the probability of their co-
occurrence. We will be assuming our hypotheses in our hypothesis sets to be
mutually exclusive, and so no two hypotheses can possibly co-occur, making
axiom (iv) largely moot, or trivially satisfied for us.

Suppose the probability of event A is P(A), and that for event B is P(B).
What is the probability of both A and B. We must first consider the probabil-
ity that A occurs, P(A). Then we can ask, given that A occurs, what is the
probability of B; this value is written as P(B|A). The probability of A and B
occurring is the product of these two values. That is, we can conclude that

P(A&B) = P(A) - P(B|A).

But note that we could just as well have started with the probability that B
occurs, and then asked, given that B occurs, what is the probability of A. We
would then have concluded that

P(A&B) = P(B) - P(A|B).
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The right hand sides of these two equations differ, but the left hand sides are
the same, so we may set them equal to one another, resulting in

P(A) - P(B|A) = P(B) - P(A|B).

This is essentially Bayes’ theorem, although it is usually manipulated a little.
To see how it is usually stated, let us change from A and B to h and e,
where h denotes some hypothesis, and e denotes the evidence. The formula
now becomes
P(h) - P(e|h) = P(e) - P(hle).

What do these values mean?

e P(h) stands for the probability of hypothesis h before any evidence exists. It is called
the prior probability of k. Each hypothesis might have its own distinct prior probability.

e P(hle) is the probability of hypothesis % after the evidence has been considered; it is
the hypothesis’ probability given the evidence. Accordingly, it is called the posterior
probability of h. Each hypothesis might have its own distinct posterior probability.

e P(e|h) is the probability of getting the evidence if hypothesis i were true. It is called
the likelihood. Each hypothesis might have its own distinct likelihood, and its likelihood
is usually determinable from the hypothesis.

e P(e) is the probability of getting that evidence. This value does not depend on the
hypothesis at issue. It may be computed from other things above as follows:

P(e) =Y _[P(h)P(e|n)].

Ultimately, the value that we care about most of all is P(hle), the posterior
probability. That is, we want to know how much confidence we should have in
some hypothesis given the evidence. So, let us solve for this term, and we get
a formula that is the traditional way of expressing Bayes” Theorem.

P(hle) = 713(}‘)]3'(];)(6"1).

Since P(e) does not depend on which hypothesis is at issue, it is useful to
simply forget about it, and write Bayes’ Theorem as
P(hle) ~ P(h) - P(elh).

That is, the posterior probability is proportional to the prior probability times
the likelihood. This makes intuitive sense since how much confidence you have
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in a hypothesis should depend on both how confident you were in it before the
evidence—the prior probability—and on how much that hypothesis is able to
account for the evidence—the likelihood.

Using the evidence to obtain posterior probabilities is the aim of induction.
Figure 3.2 shows the material needed to obtain posterior probabilities within
the Bayesian framework. As in Figure 3.1, the hypothesis set (along with the
likelihoods) and the evidence are inputs to the inductive method (which may be
of many different kinds, and is thus variable), which outputs posterior proba-
bilities. But now the inductive method box has some boxes within it; inductive
methods are now determined by variable prior probability distributions and the
fixed Bayes’ Theorem.

Consider an example first. | present to you a coin, and tell you it is possibly
a trick coin. | tell you that there are three possibilities: it is fair, always-heads,
or always-tails. These three possibilities comprise the hypothesis set. Your task
is to flip the coin and judge which of these three possibilities is true. Your ev-
idence is thus coin flip outcomes. Your likelihoods are already defined via the
decision to consider the three hypotheses. For example, suppose two heads are
flipped. The likelihood of getting two heads for the coin-is-fair hypothesis is
(1/2)? = 1/4. The likelihood for the always-heads hypothesis is 1> = 1, and
for the always-tails hypothesis it is > = 0. What is the posterior probability
for these three hypotheses given that the evidence consists of the two heads?
To answer this, we still need prior probability values for the hypotheses. This is
where things get hairy. In real life, we may have experience with tricksters and
coins with which we can make guesses as to the prior (i.e., the prior probability
distribution). But the point of this example is to imagine that you have no expe-
rience whatsoever with tricksters or coins, and you somehow need to determine
prior probabilities for these three hypotheses. Let us suppose you declare the
three to be equally probable, a priori. Now you can engage in induction, and
the posterior probabilities are as follows:

1
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Different prior probability assignments would have led to different posterior
probability assignments; i.e., led to different inductive conclusions.
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Figure 3.2: To acquire beliefs about the world, evidence and a set of hypotheses must be
input into an inductive method, whose job it is to output the degrees of belief about those
hypotheses one ought to have given the evidence. In the Bayesian framework, the inductive
method is determined by a choice of prior probabilities over the hypothesis set. This variable
prior is put, along with the evidence, into Bayes' Theorem, which outputs the posterior proba-
bilities. Now it is not the case that any old inductive method is justified, unlike in Figure 3.1.
However, there is still tremendous variability in the possible inductive methods due to the vari-
ability in the choice of prior. One of the nice things about thisis that the variability no longer
concerns how evidence is brought to bear on hypotheses; this is kept constant by the use of
Bayes' Theorem. All the variability in inductive methods is reduced to just one kind of thing:
one's degrees of belief in the hypotheses before having seen the evidence. Also, note that the
Bayesian framework is al so a probabilistic framework, which constrains the numerical degrees
of confidence in hypotheses to satisfy the axioms of Probability Theory; this constraint is not
depicted in the figure.



160 CHAPTER 3

What does the Bayesian framework for induction buy us? After all, we
still have many possible inductive methods to choose from; we have not solved
the problem of the variability, or indeterminacy, of inductive methods. For one
thing, it rules out whole realms of possible inductive methods; inductive meth-
ods must now fit within the framework. Algorithmic learning rules that take
evidence and assign probabilities to the hypotheses are not allowable inductive
methods if they cannot be obtained by starting with a prior probability distri-
bution and grinding it through Bayes’ Theorem. The second nice thing about
the Bayesian framework is that it gets inside inductive methods and helps to
distinguish between two things an inductive method needs in order to do its
job: evidence principles and prior probabilities. Any inductive method needs
“evidence principles,” principles by which it employs the evidence to affect the
degrees of confidence in the hypotheses. For example, if | fish one more bass,
is this good or bad for the hypothesis that the next fish will be a bass? The
Bayesian framework encapsulates its evidence principle in Bayes’ Theorem,
effectively declaring that all inductive methods must use this same evidence
principle. Whatever variability in inductive method choice is left is not, then,
due to differences in evidence principles. The second thing the Bayesian frame-
work serves to distinguish is the prior probability distribution. This is left in-
determinate, but any inductive method within the Bayesian framework requires
some setting for this variable. All the variability in inductive methods is, then,
reduced to one kind: one’s a priori degrees of confidence in the hypotheses. A
final important thing about the Bayesian framework is that the evidence prin-
ciple is not just any old evidence principle; it is justifiable in the sense that it
follows from probability axioms that everyone believes. Not only does “every-
one believe” the probability axioms, they are, in a certain clear sense, principles
a reasoner ought to hold. This is due to the fact that if someone reasons with
numerical confidences in hypotheses that do not satisfy the probability axioms,
then it is possible to play betting games with this fellow and eventually take all
his money. This is called the Dutch Book Theorem, or the Ramsey-de Finetti
Theorem (Ramsey, 1931; de Finetti, 1974; see also Howson and Urbach, 1989,
pp. 75-89 for discussion). And Bayes’ Theorem follows from these axioms, so
this evidence principle is rational, since to not obey it would lead one to being
duped out of one’s money.!

Things are actually a bit more complicated than this. Using Bayes’ Theorem as our princi-
ple of evidence (or our “principle of conditionalization,” as it is sometimes said) is the rational
principle of evidence—i.e., in this case because any other will lead you to financial ruin—if,
upon finding evidence e, e does not entail that your future degree of confidence in the hypoth-



INDUCTION AND INNATENESS 161

With this machinery laid before us, the riddle of induction can now be
stated more concisely as, “What prior probability distribution ought one use?”
By posing induction within the Bayesian framework, one cannot help but see
that to have a theory of logical induction would require a determinate “best”
choice of prior probabilities. And this would be to make an a priori assumption
about the world (i.e., an assumption about hypotheses concerning the world).
But our original hope was for a theory of logical induction that would tell us
what we ought to do without making a priori assumptions about the world.

What would atheory of logical probability look like?

There is, then, no solution to the riddle of induction, by which we mean there is
no theory of logical probability which, given just a set of hypotheses and some
evidence, outputs the respectable inductive method. There simply is no unique
respectable inductive method.

If one tries to solve a problem, only to eventually realize that it has no
solution, it is a good idea to step back and wonder what was wrong with the
way the problem was posed. The problem of induction must be ill posed, since
it has no solution of the strong kind for which we were searching. Let us now
step back and ask what we want out of a theory of logical probability.

The Bayesian framework serves as a strong step forward. Within it, we
may make statements of the form,

If the prior probability distribution on H is P(h), then, given the evidence, the
posterior probability distribution ought to be given by P(h|e), as dictated by
Bayes’ Theorem.

There are a number of advantages we mentioned earlier, but a principal down-
side remains. What the inductive method is depends entirely on the prior prob-
ability distribution, but the prior probability distribution comprises a set of be-
liefs about the degrees of confidence in the hypotheses. That is, prior probabil-
ities are judgements about the world. Thus, the Bayesian statement becomes
something like,

If one has certain beliefs about the world before the evidence, then he should
have certain other beliefs about the world after the evidence.

esis given e will be different from that given by Bayes’ Theorem. That is, if, intuitively, the
evidence does not somehow logically entail that Bayes” Theorem is inappropriate in the case at
issue. This “if” basically makes sure that some very weird scenarios are not occurring; no weird
circumstances. . . Bayes’ Theorem is the rational principle of evidence. See Howson and Urbach
(2989, pp. 99-105) for details.
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But one of the goals of a logical theory of induction is to tell us which beliefs
about the world we ought to have. The Bayesian framework leaves us unsatis-
fied because it does not tell us which a priori beliefs about the world we should
have. Instead, it leaves it entirely open for us to believe, a priori, anything we
want!

In our move from the pre-Bayesian framework (Figure 3.1) to the Bayesian
framework (Figure 3.2), we were able to encapsulate a fixed evidence princi-
ple, and were left with variable prior probabilities. Now | submit that the task
of a theory of logical probability isto put forth fixed principles of prior proba-
bility determination, and to have left over some variable that does not possess
information about the world (unlike prior probabilities). Just as the left over
variable in the Bayesian framework was non-evidence-based, the variable left
over within this new framework will be non-induction-based, or non-inductive,
or not-about-the-world. If we had something like this, then we could make
statements like,

If one has non-inductive variable @, then one ought to have prior probability dis-
tribution Pg(h), as dictated by the principles of prior probability determination.

It should also be the case that the non-inductive variable has some coherent
(non-inductive) interpretation, lest one not know how anyone would ever pick
any value for it. The principles of prior probability determination would pos-
sess a few things that one ought to do when one picks prior probabilities given
the non-inductive variable. In this way, we would have reduced all oughts
found in induction to a small handful of principles of ought, and no undefended
assumptions about the world would need to be made in order to get different
inductive methods up and going.

Figure 3.3 is the same as Figure 3.2, but now shows the kind of machinery
we need: (i) some fixed, small number of axioms of a priori logical probability
determination, in the form of rationality principles, and (ii) some variable with
a meaningful interpretation, but not with any inductive significance.

The bulk of this chapter consists of the development and application of
a theory of logical induction aiming to fill these shoes. The theory is called
Paradigm Theory. Three abstract symmetry-related principles of rationality
are proposed for the determination of prior probabilities, and a kind of non-
inductive variable—called a “paradigm”—is introduced which is interpreted
as a conceptual framework, capturing the kinds of properties of hypotheses one
acknowledges. A paradigm and the principles together entail a prior probability
distribution; the theory allows statements of the form,
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Figure 3.3: The structure of a sought-after theory of logical induction. The prior probability
distribution should follow from the combination of a small number of rationality principles—
things a rational agent ought to do—and some non-inductive variable with a meaningful inter-

pretation.
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If one has paradigm @, then one ought to have prior probability distribution
Pq(h), as dictated by the symmetry-related principles of prior probability deter-
mination.

| nnateness

The brain learns. It therefore entertains hypotheses, and implements inductive
methods. What do we mean by a hypothesis in regards to the brain? Here
are a couple examples. The human brain quickly learns the grammar of natural
language, and there are (infinitely) many possible hypotheses concerning which
grammar is the correct one. Kids eventually converge to the correct grammar;
i.e., after sufficient accumulation of evidence, they impart the highest degree
of belief to the correct (or nearly correct) grammatical hypothesis. Another
example is vision. The retina is a two-dimensional sheet, and the world is three-
dimensional, with many properties such as reflectance and object type. The
information on the retina cannot uniquely specify the thing in the world that
caused it, the reason being that there are infinitely many things in the world that
may have caused it. Each possible cause of the retinal stimulus is a “perceptual
hypothesis,” and after acquiring experience in the world, upon presentation of a
stimulus, the visual system typically finds one perceptual hypothesis to be more
probable than the others, which is why we see just one scene at a time most of
the time. When the probabilities are tied between two perceptual hypotheses,
we jump back and forth between them, as in bistable stimuli such as the Necker
Cube (which is just a line drawing of a cube, which can be seen in one of two
orientations). These two examples for hypotheses entertained by the brain do
not even scratch the surface; the brain indeed is a kind of learning machine,
and thus entertains possible hypotheses at every turn.

Not only does the brain learn, but it is thought by many to enter the world
a blank slate, and to be endowed with powerful and general learning abilities.
One can get the impression that the cortex is some kind of universal learning
engine. The relatively homogenous nature of the anatomy and connectivity of
the cortex is one reason scientists come away with this impression: the cortex
is a few millimeter thick sheet (its exact thickness depending on the brain’s
size), with six layers, and with statistically characterized connectivity patterns
for the neurons within it. Roughly, the cortex seems to be built from many re-
peating units called “minicolumns.” And although the cortex is divided up into
distinct areas, connecting to other areas primarily via myelinated white matter
axons, and although the areas often have distinguishing anatomical features,
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they appear to be fairly similar in basic design. The high degree of plasticity of
the cortex also suggests that it is a general learning machine, not a prisoner to
instinct. When, for example, a limb is lost, somatosensory areas formerly de-
voted to the limb sometimes become employed by other areas. Also, the basic
connectivity features of our cortex do not appear much different than that of
monkey or cat, animals leading drastically different lives. The intuitive conclu-
sion sometimes drawn is that we differ from monkeys merely in that our brains
are relatively much larger, and that our ecologies and thus experiences are dif-
ferent. Our perception of the world appears to rely on general learning strate-
gies by the visual system. People raised in non-carpentered environments, like
Bushmen, do not experience some of the classical geometrical illusions that
we find illusory (Segall et al., 1966). Even thirst and hunger, two appetitive
states one might imagine would be innate if anything is innate, appear to be
learned (Changizi et al., 2002b): rats do not know to orient toward a known
water source when cellularly dehydrated unless they have experienced dehy-
dration paired with drinking water, and similarly they do not know to orient
toward a known food source when food restricted unless they have experienced
food restriction paired with eating.

But being highly homogeneous and plastic does not entail that the brain
does not possess innate content, or knowledge. Whatever is innate could well
be wrapped up in the detailed connectivity patterns in the brain. And a strong
role for experience does not mean the cortex is a universal learning machine.
Even those scientists that are fans of a strongly innate brain, such as those that
believe that grammar is innate (e.g., Chomsky, 1972; Pinker, 1994), obviously
believe in an immense role for learning.

With an understanding of the riddle of induction under our belts, we can
say, without knowing anything about the particulars of our brains, that we must
enter the world with innate knowledge. There is no universal learning machine.
There are, instead, just lots and lots of different inductive methods. Whatever
our brains are doing when they learn, they are engaging in an inductive method
(although perhaps a different inductive method for different kinds of learning).
As discussed earlier, the brain must therefore, in effect, be making an assump-
tion about the world in the form of a prior probability distribution over the
possible hypotheses. That is, in order to learn, brains must enter the world with
something equivalent to preconceptions about the degrees of confidence of all
the possible hypotheses. Brains are not blank slates; they are born with what
are, in effect, a priori assumptions about the world.
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What would atheory of innateness be?

Brains, then, come furnished with an inductive method; i.e., they have some
way by which they take evidence and determine the posterior probabilities of
hypotheses. Different brain types—e.g., human versus cat—may employ dif-
ferent inductive methods, and these differences are innate. We will assume that
the principal innate differences between brain types are due to their instantiat-
ing different inductive methods. (They may also differ in their choice of what
hypotheses to consider in the first place, and they may well differ concerning
what things matter to them (i.e., utilities).)

What | wish to consider here is a theory of innateness, a theory aimed at
characterizing the nature of the information that must be innately generated.
How much must innately differ between two kinds of brain (or two parts of the
same brain) in order for them to possess distinct inductive methods? The the-
ory of innateness | seek is not one that actually claims that brains conform to
the theory. Rather, the aim is to construct a mathematical theory, or framework,
within which we can conceptually distinguish among the kinds of structure re-
quired for an innate inductive method. With a theory of innateness in hand,
we will then have the conceptual apparatus to begin to speak about the prin-
ciples governing how brains—or any intelligent learning agents—have innate
inductive methods.

Here is one thing that we would like out of a theory of innateness. | have
already mentioned that brains of different kinds have a lot in common. It would
accordingly be useful to find a theory of innateness that postulates no greater
innate differences than are absolutely necessary to account for the different
inductive methods used. We would like to be able to model brains of differ-
ent types—i.e., brains employing different inductive methods—as following
the same underlying principles, principles used in determining their inductive
method. All these brains are, after all, brains, and the way they go about their
learning should be describable using universal principles. Furthermore, these
principles should be rationality principles of some kind, or principles stating
what a rational agent would do. We would then be able to model brains hav-
ing different innatenesses as nevertheless being similar to the extent that they
follow the same rationality principles. We would be able to say that all these
kinds of brains may be different in some regard that specifies what is innate,
but that in all other ways we may model these brains identically.

The second aspect of our theory of innateness that requires concern is the
distinguishing feature between brains of different types—the feature that is the
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possessor of the innate information. There must be some variable property of
brains, distinct settings of the variable which lead to distinct inductive methods
used by the brain. As mentioned earlier, the theory of innateness for which we
search would postulate no greater innate differences than are absolutely neces-
sary to account for the different inductive methods used. Accordingly, we want
the variable that determines the innate differences to be as weak as possible.
Furthermore, innate content is derided by many because it seems absurd that,
say, natural language grammar could be encoded into the brain at birth. Surely
it is an incredible claim that brains enter the world with a priori beliefs, or as-
sumptions. With this in mind, we would also like the “innateness variable” to
say as little as possible about the world; i.e., to be non-inductive. Finally, this
innateness variable should be interpretable in some plausible fashion; if it has
no interpretation, then one begins to suspect that it is just a stand-in for an a
priori inductive assumption.

In short, we would like a theory of innateness that models brains, or any in-
telligent agent, as following fixed principles of rationality in their learning, and
models the differences with an innateness variable that is weak, non-inductive,
and has a meaningful interpretation.

If you recall the earlier subsection on what we want out of a theory of log-
ical probability, you will notice a close connection to that and to what we here
want out of a theory of innateness. This is not a coincidence. The discovery of
a theory of logical probability of the kind described would state how, through
a fixed set of prior probability determination principles, a rational agent with
a setting of the non-inductive variable should proceed in assigning his prior
probabilities, and consequently what inductive method he ought to follow. On
the one hand, the theory would tell us what we ought to do, but on the other
hand, the theory tells us what a rational agent will, in fact, do—since this agent
will do what he should. If our interest is in modeling innateness in assumed-to-
be-rational brains, then the theory of logical probability can be used to describe
brains, not just to say how brains ought to perform.

Let us go through the connection between a theory of induction and a the-
ory of innateness more slowly, beginning with the earlier Figure 3.1. One way
to treat innateness differences in different brain types is to postulate that they
are governed by entirely different principles altogether. Brains of different
types are, in regards to learning, just (computable) functions of any old kind
taking evidence and outputting posterior probabilities. Each brain would in-
nately make different assumptions about the world, and follow different rules
concerning how evidence supports hypotheses (i.e., follow different evidence
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principles). But we wish to be able to retain the view that brains and other intel-
ligent agents learn in a rational fashion, and thus are all fundamentally similar,
following identical principles, and differing only in regard to some small, in-
terpretable, weak variable that does not correspond to an assumption about the
world.

Bayesianism provides a great first step toward satisfying these demands,
just as it provided a great first step for a theory of logical induction. Figure
3.2 was our corresponding figure for the problem of induction, and it is apt to
look at it again for innateness. Bayes’ Theorem is helpful toward a theory of
innateness and learning because it allows us to treat all agents, or brains, as
following Bayes’ Theorem in their modification of their degrees of confidence
in hypotheses in the light of evidence. And the Bayesian evidence principle is
not just any old evidence principle, it seems to be the right principle—it is the
way one should use evidence to modify the degree of confidence in hypotheses.
This is why Bayesian approaches have been so popular in the psychological,
brain and decision sciences. This Bayesian framework is used to model the
visual system, memory, learning, behavior, economic agents and hosts of other
cases where there is some kind of “agent” dealing with an uncertain world.
The argument goes something like this: (a) These agents have probably been
selected to learn in an optimal, or rational, manner. (b) The optimal learning
manner is a Bayesian one. (c) Therefore, we may treat these agents as follow-
ing Bayesian principles. The Bayesian framework also severely constrains the
space of possible inductive methods, from anything-goes down to only those
using its evidence principle.

As powerful as the Bayesian framework is, it leaves us with some resid-
ual dissatisfaction concerning a theory of innateness. The Bayesian framework
has prior probabilities that differ between agents that follow different induc-
tive methods. A prior probability distribution, then, is the innateness variable.
Brains that differ in innateness would be postulated to enter the world with
different a priori beliefs about the degree of confidence in the hypotheses. As
discussed earlier, this is one thing we want to avoid with a theory of innate-
ness. We would like it to be the case that innateness can be much more subtle
than a priori beliefs about the world in the head. Perhaps there are further
principles—principles beyond Bayes’ Theorem—that an optimally engineered
agent will follow, so that two such agents might innately differ in some non-
inductive fashion, yet by following these fixed principles they come to have
different prior probabilities. Figure 3.3 from earlier is again appropriate, for it
shows what we are looking for. Such a theory would even further constrain the
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space of possible inductive methods, from any-prior-probability-distribution-
goes down to only those using the fixed principles of prior probability determi-
nation.

That is our goal for a theory of innateness. The theory that | will propose
in the next section—called Paradigm Theory—consists of fixed symmetry and
symmetry-like principles of rationality—or principles of non-arbitrariness—
which | argue any rational agent will follow. The non-inductive variable is
something | call a “paradigm”, which is just the kinds of hypotheses the agent
acknowledges; for example, you and | might possess the same hypothesis set,
but I may carve it up into kinds differently than do you. The intuition is that
we have different conceptual frameworks, or belong to different (Kuhnian)
paradigms. Innateness differences, then, would be attributable to differences in
the conceptual frameworks they are born with. But in all other regards agents,
or brains, of different innatenesses would be identical, having been selected to
follow fixed optimal, or rational, principles, both of prior probability determi-
nation and of evidence.

Are there really innate paradigms in the head? | don’t know, and at the
moment it is not my primary concern. Similarly, the Bayesian framework is
widely considered a success, yet no one appears particularly worried whether
there is any part of the developing brain that corresponds to prior probabilities.
The Bayesian framework is a success because it allows us to model brains as
if they are rational agents, and it gives us the conceptual distinctions needed
to talk about evidence principles and a priori degrees of belief in hypotheses.
Similarly, the importance of Paradigm Theory in regards to innateness will be
that it allows us to model brains as if they are rational agents, giving us more
conceptual distinctions so that, in addition to evidence principles and a pri-
ori degrees of belief in hypotheses, we can distinguish between principles of
non-arbitrariness for prior probability determination and a priori conceptual
frameworks. Paradigm Theory gives us the power to make hypotheses we oth-
erwise would not be able to make: that brains and intelligent learners could
have their innate inductive methods determined by innate, not-about-the-world
paradigms, along with a suite of principles of rationality. Whether or not brains
actually utilize these possibilities is another matter.
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In this section | introduce a theory of logical probability (Changizi and Barber,
1998), with the aim of satisfying the criteria | put forth in the previous section.
The plan is that it will simultaneously satisfy the demands | put forward for a
theory of innateness. The theory’s name is “Paradigm Theory,” and it replaces
prior probabilities with a variable that is interpreted as a conceptual framework,
and which we call a “paradigm.” A paradigm is roughly the way an agent
“carves up the world”; it is the kinds of hypotheses acknowledged by the agent.

[The idea that induction might depend on one’s conceptual framework is
not new. For example, Harsanyi (1983, p. 363) is sympathetic to a depen-
dency on conceptual frameworks for simplicity-favoring in induction. Salmon
(1990) argues for a Kuhnian paradigmatic role for prior probabilities. Earman
(1992, p. 187) devotes a chapter to Kuhnian issues including paradigms. Di
Maio (1994, especially pp. 148-149) can be interpreted as arguing for a sort of
conceptual framework outlook on inductive logic. DeVito (1997) suggests this
with respect to the choice of models in curve-fitting. Also, Gérdenfors (1990)
develops a conceptual framework approach to address Goodman'’s riddle, and
he attributes a conceptual framework approach to Quine (1960), Carnap (1989)
and Stalnaker (1979).]

Having a paradigm, or conceptual framework, cannot, all by itself, tell us
how we ought to proceed in our inductions. Oughts do not come from non-
oughts. As discussed in the previous section, we are looking for principles of
ought telling us how, given a paradigm, we should assign a priori degrees of
belief in the hypotheses. | will put forward three symmetry-related principles
that enable this.

Before moving to the theory, let us ask where the hypothesis set comes
from. This is a difficult question, one to which | have no good answer. The
difficulty is two-fold. First, what hypotheses should one include in the hypoth-
esis set? And second, once this set is chosen, how is that set parameterized?
I make some minimal overtures toward answering this in Changizi and Barber
(1998), but it is primarily an unsolved, and possibly an unsolvable problem. |
will simply assume here that the hypothesis set—a set of mutually exclusive
hypotheses—and some parameterization of it is a given.
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3.1.1 A brief first-pass at Paradigm Theory

Before presenting Paradigm Theory in detail, | think it is instructive to give a
short introduction to it here, with many of the intricacies missing, but never-
theless capturing the key ideas. Paradigm Theory proposes to replace the vari-
able prior probabilities of the Bayesian framework with variable “paradigms,”
which are interpreted as comprising the inductive agent’s way of looking at
the set of hypotheses, or the agent’s conceptual framework. For example, you
and | might share the same hypothesis set, but | might acknowledge that there
are simple and complex hypotheses, and you might, instead, acknowledge that
some are universal generalizations and some are not. More generally, a parad-
igm consists of the kinds of hypotheses one acknowledges. One of the most
important aspects of paradigms is that they do not make a claim about the
world; they are non-inductive. If, in complete ignorance about the world, 1
choose some particular paradigm, | cannot be charged with having made an
unjustifiable assumption about the world. Paradigms are just a way of carving
up the space of hypotheses, so they make no assumption. Prior probabilities,
on the other hand, are straightforwardly claims about the world; namely, claims
about the a priori degree of confidence in the hypotheses. The justification of
induction in Paradigm Theory rests not on a variable choice of prior probabili-
ties as it does in the Bayesian framework, but, instead, on a variable choice of
a non-inductive paradigm. Paradigm Theory puts forth three principles which
prescribe how prior probabilities ought to be assigned given that one possesses
a paradigm. Different inductive methods differ only in the setting of the parad-
igm, not on any a priori differences about claims about the world or about how
one ought to go about induction.

To understand the principles of prior probability determination, we have to
understand that any paradigm naturally partitions the hypothesis set into dis-
tinct sets. [A partition of a set B is a set of subsets of B, where the subsets
do not overlap and their union is B.] The idea is this. From the point of view
of the paradigm—i.e., given the properties of hypotheses acknowledged in the
paradigm—there are some hypotheses which cannot be distinguished using the
properties in the paradigm. Hypotheses indistinguishable from one another are
said to be symmetric. Each partition consists of hypotheses that are symmetric
to one another, and each partition is accordingly called a symmetry type. Hy-
potheses in distinct partitions can be distinguished from one another. Since hy-
potheses cannot be distinguished within a symmetry type, the symmetry types
comprise the kinds of hypothesis someone with that paradigm can distinguish.
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Note that the symmetry types may well be different than the properties in the
paradigm; the properties in the paradigm imply a partition into symmetry types
of distinguishable (from the paradigm’s viewpoint) types of hypotheses.

With an understanding that paradigms induce a natural partition structure
onto the hypothesis set, | can state Paradigm Theory’s principles for how one
should assign prior probabilities. One principle states that each distinguishable
type of hypothesis should, a priori, receive the same degree of confidence; this
is the Principle of Type Uniformity. The intuition is that if one is only able
to distinguish between certain types of hypotheses—i.e., they are the kinds
of hypotheses one is able to talk about in light of the paradigm—and if there
is no apparatus within the paradigm with which some of these distinguished
types can a priori be favored (and there is no such apparatus), then it would
be the height of arbitrariness to give any one type greater prior probability than
another. The second principle states that hypotheses that are symmetric to one
another—i.e., the paradigm is unable to distinguish them—should receive the
same probability; this is the Principle of Symmetry. The motivation for this
is that it would be entirely arbitrary, or random, to assign different a priori
degrees of confidence to symmetric hypotheses, given that the paradigm has no
way to distinguish between them; the paradigm would be at a loss to explain
why one gets a higher prior probability than the other. There is one other
principle in the full Paradigm Theory, but it is less central than these first two,
and we can skip it in this subsection.

The Principle of Type Uniformity distributes equal shares of prior proba-
bility to each symmetry type, and the Principle of Symmetry distributes equal
shares of the symmetry type’s probability to its members. In this way a prior
probability distribution is determined from a paradigm and the principles. Par-
adigms leading to different symmetry types usually lead to different prior prob-
ability distributions. Justifiable inductive methods are, then, all the same, in
the sense that they share the Bayesian principle of evidence, and share the
same principles of prior probability determination. They differ only in having
entered the world with different ways of conceptualizing it. | can now make
claims like, “If you conceptualize the world in fashion @, then you ought to
have prior probabilities 7y (H ) determined by the principles of Paradigm The-
ory. This, in turn, entails a specific inductive method you ought to follow, since
you ought to follow Bayes’ Theorem in the application of evidence to your
probabilities.”

The remainder of this subsection, and the next subsection, develop this ma-
terial in detail, but if you wish to skip the details, and wish to skip example
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applications of Paradigm Theory (to enumerative induction, simplicity favor-
ing, curve-fitting and more), you may jump ahead to Section 3.3.

3.1.2 Paradigms, Symmetry and Arbitrariness

In the next subsection | will present the principles of prior probabilities de-
termination, i.e., principles of ought which say what one’s prior probabilities
should be given that one has a certain paradigm. But first we need to intro-
duce paradigms, and to motivate the kinds of symmetry notions on which the
principles will rest.

Paradigms

Let us begin by recalling that we are assuming that we somehow are given
a hypothesis set, which is a set filled with all the hypotheses we are allowed
to consider. The hypotheses could concern the grammar of a language, or the
curve generating the data, and so on. The hypothesis set comprises an inductive
agent’s set of all possible ways the world could be (in the relevant regard).

Now, what is a paradigm? A paradigm is just a “way of thinking” about
the set of hypotheses. Alternatively, a paradigm is the kinds of similarities and
differences one appreciates among the hypotheses. Or, a paradigm stands for
the kinds of hypotheses an inductive agent acknowledges. A paradigm is a kind
of conceptual framework; a way of carving up the set of hypotheses into distinct
types. It is meant to be one way of fleshing out what a Kuhnian paradigm might
be (Kuhn, 1977). If the hypothesis set is the “universe,” a paradigm is the
properties of that “universe,” a kind of ontology for hypothesis sets. When an
inductive agent considers there to be certain kinds of hypotheses, | will say that
the agent acknowl edges those kinds, or acknowledges the associated properties.
I do not mean to suggest that the agent would not be able to discriminate,
or notice, other properties of hypotheses; the agent can presumably tell the
difference between any pair of hypotheses. The properties in the paradigm,
however, are the only properties that are “sanctioned” or endowed as “genuine”
properties in the ontology of that universe of hypotheses.

For example, suppose the hypothesis set is the set of six outcomes of a roll
of a six-sided die. One possible paradigm is the one that acknowledges being
even and being odd; another paradigm is the one that acknowledges being small
(three or less) and big (four or more). Or, suppose that the hypothesis set is the
set of all points in the interior of a unit circle. One possible paradigm is the one
that acknowledges being within distance 0.5 from the center. Another possible
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paradigm would be the one acknowledging the different distances from the
center of the circle; that is, points at the same radius would be of the same
acknowledged kind. For a third example, suppose the hypothesis set is the
set of all possible physical probabilities p of a possibly biased coin; i.e., the
hypothesis set is H = [0, 1], or all the real numbers from 0 to 1 included.
One possible paradigm is the one that acknowledges the always-heads (p = 0)
and always-tails (p = 1) hypotheses, and lumps the rest together. Another
paradigm on this hypothesis set could be to acknowledge, in addition, the coin-
is-fair hypothesis (p = 1/2).

For each of these examples, there is more than one way to carve up the
hypothesis set. One person, or inductive community, might acknowledge prop-
erties that are not acknowledged by another person or community. Where do
these properties in the paradigm come from? From Paradigm Theory’s view-
point it does not matter. The properties will usually be interpreted as if they are
subjective. There are two kinds of subjective interpretations: in the first kind,
the properties in the paradigm have been consciously chosen by the inductive
agent, and in the second kind, the properties are in the paradigm because the
inductive agent has evolved or been raised to acknowledge certain properties
and not others.

Recall that our aim for a theory of logical probability was to have an in-
terpretable, non-inductive variable to replace prior probabilities. In Paradigm
Theory, the variable is the paradigm, and we have just seen that paradigms are
interpreted as conceptual frameworks. But we also want our variable—namely,
paradigms—to also be non-inductive, or not-about-the-world. (And, similarly,
for our hoped-for theory of innateness, the innate content was to have some
interpretable, non-inductive variable.)

Are paradigms about the world? A paradigm is just the set of properties
acknowledged, and there is no way for a paradigm to favor any hypotheses
over others, nor is there any way for a paradigm to favor any properties over
others—each property is of equal significance. Paradigms cannot, say, favor
simpler hypotheses, or disfavor hypotheses inconsistent with current ontolog-
ical commitments; paradigms can acknowledge which hypotheses are simpler
than others, and acknowledge which hypotheses are inconsistent with current
ontological commitments. Paradigms make no mention of degrees of belief,
they do not say how inductions ought to proceed, and they do not presume that
the world is of any particular nature. Do not confuse a paradigm with infor-
mation. Being unbiased, the properties in the paradigm give us no information
about the success or truth of any hypothesis, and in this sense the paradigm is
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not information. Therefore, paradigms are non-inductive.

To help drive home that paradigms are non-inductive, suppose that an agent
discounts certain hypotheses on the basis of something not measured by the
paradigm (e.g., “too complex™) or favors some properties over others. Parad-
igm Theory is not then applicable, because the inductive agent now effectively
already has prior probabilities. Paradigm Theory’s aim is to attempt to defend
inductive beliefs such as priors themselves. If an agent enters the inductive
scenario with what are in effect prior probabilities, then Paradigm Theory is
moot, as Paradigm Theory is for the determination of the priors one should
have. Consider the following example for which Paradigm Theory is inappli-
cable. A tetrahedral die with sides numbered 1 through 4 is considered to have
landed on the side that is face down. Suppose one acknowledges that one of
the sides, side 4, is slightly smaller than the others, and acknowledges nothing
else. The paradigm here might seem to be the one acknowledging that side 4
is a unique kind, and the others are lumped together. If this were so, Parad-
igm Theory would (as we will see) say that 4 should be preferred. But side
4 should definitely not be preferred! However, Paradigm Theory does not ap-
ply to cases where one begins with certain inductive beliefs (e.g., that smaller
sides are less likely to land face down). Paradigm Theory is applicable in those
kinds of circumstances where one has not yet figured out that smaller sides are
less likely to land face down. [There may remain an issue of how we assign
a precise prior probability distribution on the basis of an imprecise inductive
belief such as “smaller sides are less likely to land face down,” but this issue
of formalization of imprecise inductive beliefs is a completely different issue
than the one we have set for ourselves. It is less interesting, as far as a theory
of logical probability goes, because it would only take us from imprecise in-
ductive beliefs to more precise inductive beliefs; it would not touch upon the
justification of the original imprecise inductive belief.]

I now have the concept of a paradigm stated, but | have not quite formally
defined it. Here is the definition.

Definition 1 A paradigm is any set of subsets of the hypothesis set that is
closed under complementation. The complements are presumed even when, in
defining a paradigm, they are not explicitly mentioned. A

Recall that when you have a set of objects of any kind, a property is just a
subset of the set: objects satisfying the property are in the set, and objects not
satisfying the property are not in the set (i.e., are in the complement of the set).
The definition of a paradigm just says that a paradigm is a set of subsets, or
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properties; and it says that for any property P in the paradigm, the property of
not being P is also in the set. And that is all the definition says.

Being Symmetric

We now know what a paradigm is: it is the non-inductive variable in our theory
of logical probability that I call Paradigm Theory, and paradigms are inter-
preted as conceptual frameworks, or ways of conceptualizing the set of hy-
potheses. Our goal is to present compelling principles of rationality which
prescribe how one ought to assign prior probabilities given one’s paradigm; we
would thereby have fixed principles of prior probability determination that all
rational agents would follow, and all justifiable differences in inductive meth-
ods would be due to differences in the way the inductive agent carved up the
world before having known anything about it.

Before we can understand Paradigm Theory’s principles of prior proba-
bility determination, we must acquire a feel for the intuitive ideas relating to
symmetry, and in this and the following subsubsection | try to relate these in-
tuitions.

One of the basic ideas in the rational assignment of prior probabilities will
be the motto that names should not matter. This motto is, generally, behind
every symmetry argument and motivates two notions formally introduced in
this subsubsection. The first is that of a symmetry type. Informally, two hy-
potheses are of the same symmetry type if the only thing that distinguishes
them is their names or the names of the properties they possess; they are the
same type of thing but for the names chosen. One compelling notion is that hy-
potheses that are members of smaller symmetry types may be chosen with less
arbitrariness than hypotheses in larger symmetry types; it takes less arbitrari-
ness to choose more unique hypotheses. The principles of Paradigm Theory
in the Subsection 3.1.3, founded on different intuitions, respect this notion in
that more unique hypotheses should receive greater prior probability than less
unique hypotheses. The second concept motivated by the “names should not
matter” motto, and presented in the next subsubsection, is that of a defensibility
hierarchy, where picking hypotheses higher in the hierarchy is less arbitrary, or
more defensible. The level of defensibility of a hypothesis is a measure of how
“unique” it is. Subsection 3.1.3 describes how the principles of rationality of
Paradigm Theory lead to a prior probability assignment which gives more de-
fensible types of hypotheses greater prior probability. Onward to the intuition

pumping.
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Imagine having to pick a kitten for a pet from a box of five kittens, num-
bered 1 through 5. Imagine, furthermore, that you deem no Kitten in the litter
to be a better or worse choice for a pet. All these kittens from which to choose,
and you may not wish to pick randomly. You would like to find a reason to
choose one from among them, even if for no other reason but that one is dis-
tinguished in some way. As it turns out, you acknowledge some things about
these kittens: the first four are black and the fifth is white. These properties
of kittens comprise your paradigm. Now suppose you were to pick one of the
black kittens, say kitten #1. There is no reason connected with their colors you
can give for choosing #1 that does not equally apply to #2, #3 and #4. “I’ll
take the black kitten” does not pick out #1. Saying “I’ll take kitten #1” picks
out that first kitten, but these number-names for the kittens are arbitrary, and
had the first four kittens been named #2, #3, #4 and #1 (respectively), “I’ll take
kitten #1” would have picked out what is now called the fourth kitten. #1 and
#4 are the same (with respect to the paradigm) save their arbitrary names, and
we will say that they are symmetric; in fact, any pair from the first four are
symmetric.

Imagine that the five kittens, instead of being just black or white, are each a
different color: red, orange, yellow, green and blue, respectively. You acknowl-
edge these colors in your paradigm. Suppose again that you choose kitten #1.
Unlike before, you can at least now say that #1 is “the red one.” However,
why is redness any more privileged than the other color properties acknowl-
edged in this modified paradigm? ‘red’ is just a name for a property, and had
these five properties been named ‘orange’, ‘yellow’, ‘green’, ‘blue’ and ‘red’
(respectively), “the red one” would have picked out what is now called the blue
one. #1 and #5 will be said to be symmetric; in fact, each pair will be said to
be symmetric.

For another example, given an infinite plane with a point above it, consider
the set of all lines passing through the point. If the plane and point “inter-
act” via some force, then along which line do they do so? This question was
asked by a professor of physics to Timothy Barber and myself as undergrad-
uates (we shared the same class), and the moral was supposed to be that by
symmetry considerations the perpendicular line is the only answer, as for ev-
ery other line there are lines “just as good.” In our theoretical development
we need some explicit paradigm (or class of paradigms) before we may make
conclusions. Suppose that you acknowledge the properties of the form “having
angle 6 with respect to the plane,” where a line parallel to the plane has angle
0. Any pick of, say, a parallel line will be arbitrary, as one can rotate the world
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about the perpendicular line and the parallel line picked would become another
one. Each parallel line is symmetric to every other. The same is true of each
non-perpendicular line; for any such line there are others, infinitely many oth-
ers, that are the same as far as the paradigm can tell. The perpendicular line is
symmetric only with itself, however.

In the remainder of this subsubsection we make the notion of symmetry
precise, but there is no real harm now skipping to the next subsubsection if
mathematical details bother you. The following defines the notion of being
symmietric.

Definition 2 Fix hypothesis set H and paradigm Q. h; and hs are Q-symmetric
in H if and only if it is possible to rename the hypotheses respecting the un-
derlying measure such that the paradigm is unchanged but the name for A be-
comes the name for hy. Formally, forp : H — H, if X C H then let p(X) =
{p(z)|z € X}, and if Q is a paradigm on H, let p(Q) = {p(X)|X € Q}.
hy and hsy are Q-symmetric in H if and only if there is a measure-preserving
bijection p : H — H such that p(Q) = Q and p(h1) = ha. A

In the definition of ‘Q-symmetric’ each measure-preserving bijection p :
H — H is arenaming of the hypotheses. @ represents the way the hypothesis
set H “looks,” and the requirement that p(Q) = @ means that the renaming
cannot affect the way H looks. For example, if H = {h, hs, h3} with names
‘a’, ‘b’, and ‘c’, respectively, and Q = {{hi, ha}, {h2,h3}}, the renaming
p1: (a,b,¢) — (¢, b,a) preserves @, but the renaming p, : (a,b,¢) — (¢, a,b)
gives p2(Q) = {{hs, h1},{h1,ha}} # Q. Suppose we say, “Pick a.” We are
referring to h;. But if the hypotheses are renamed via p; we see H in exactly
the same way yet we are referring now to hg instead of h;; and thus h; and hg
are Q-symmetric. Two hypotheses are QQ-symmetric if a renaming that swaps
their names can occur that does not affect the way H looks. Only arbitrary
names distinguish QQ-symmetric hypotheses; and so we say that QQ-symmetric
hypotheses cannot be distinguished non-arbitrarily. Another way of stating this
is that there is no name-independent way of referring to either / or hgs because
they are the same symmetry type. h; and hg are of the same type in the sense
that each has a property shared by just one other hypothesis, and that other
hypothesis is the same in each case.

But cannot one distinguish h; from hg by the fact that they have different
properties? The first property of Q is, say, ‘being red,” the second “being short.’
hq is red and not short, k3 is short and not red. However, so the intuition goes,
just as it is not possible to non-arbitrarily refer to i because of the “names
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should not matter” motto, it is not possible to non-arbitrarily refer to the red
hypotheses since p;1(Q) = @ and py({h1, ha}) = {hs, ha} (i.e., pi(red) =
short). Our attempt to refer to the red hypotheses by the utterance “the red
ones” would actually refer to the short hypotheses if ‘red” was the name for
short things. The same observation holds for, say, @ = {{ha},{hs}, {h~}}-
The fact that each has a distinct property does not help us to refer to any given
one non-arbitrarily since each pair is (J-symmetric.

Consider hy from above for a moment. It is special in that it has the unique
property of being the only hypothesis having both properties. | say that a hy-
pothesis is Q-invariant in H if and only if it is @Q-symmetric only with itself.
hs is invariant (the white kitten was invariant as well, as was the perpendicular
line). Intuitively, invariant hypotheses can be non-arbitrarily referred to.

Three other notions related to ‘symmetric’ we use later are the following:
First, I(Q, H) is the set of Q-invariant hypotheses in H, and —I(Q, H) is
its complement in H. Above, I(Q,H) = {ho}, and ~1(Q, H) = {h1, hs}.
Second, a paradigm @ is called totally symmetric on H if and only if the hy-
potheses in H are pairwise Q-symmetric. (' above is totally symmetric (on
{ha, hs, hy}). Third, t is a Q-symmetry type in H if and only if ¢ is an equiv-
alence class with respect to the relation ‘Q-symmetric’. {k} and {hq, h3} are
the @Q-symmetry types. In each of the terms we have defined, we omit @ or H
when either is clear from context.

The Q-symmetry types are the most finely grained objects one can speak of
or distinguish via the paradigm . One can distinguish between no hypotheses
when the paradigm is totally Q-symmetric. When we say that a property is
“acknowledged” we mean that the property is in the paradigm. Acknowledging
a property does not mean that it is distinguishable, however, as we saw above
with @’. When we say that a property is “distinguishable” we mean that it is a
symmetry type (but not necessarily a set appearing in the paradigm). {/, ho}
is acknowledged in @ above but is not distinguishable. {k} is distinguishable
but not acknowledged in the paradigm.

Invariant hypotheses, then, can be non-arbitrarily referred to—non-invariant
hypotheses cannot. From the point of view of the paradigm, invariant hypothe-
ses can be “picked for a reason,” but non-invariant hypotheses cannot. In this
sense to pick an invariant hypothesis is to make a non-random choice and to
pick a non-invariant hypothesis is to make a random choice; however | will try
to avoid using this terminology for there are already many rigorous notions of
randomness and this is not one of them. Any “reason” or procedure that picks
a non-invariant hypothesis picks, for all the same reasons, any other hypothesis
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in its symmetry type; where “reasons” cannot depend on names. We say that
invariant hypotheses are more defensible, or less arbitrary, than non-invariant
ones. Picking a hypothesis that is not invariant means that had it been named
differently you would have chosen something else; this is bad because surely a
defensible choice should not depend on the names. Invariant hypotheses would
therefore seem, a priori, favorable to non-invariant hypotheses. More gener-
ally, the intuition is that hypotheses that are members of larger symmetry types
are less preferred, as picking one would involve greater arbitrariness. These in-
tuitions are realized by the rationality principles comprising Paradigm Theory
(as we will see later).

Consider the following example. H, = {hg,h1,ha,h3}, Qa = {{ho},
{h1}, {ha}, {ho, hs}}. The reader may check that hg is symmetrical to k4, and
that ho and hg are each invariant. Suppose one chooses hy. Now suppose that
the hypotheses hg, hi, ho, hs are renamed hq, hg, hs, hg, respectively, under
the action of p. Since p(Q.) = Q., the choice of hypotheses is exactly the
same. However, this time when one picks hg, one has really picked h;. hg is
invariant because, intuitively, it is the only element that is not in a one-element
set. ho is invariant because, intuitively, it is the only element occurring in a
two-element set with an element that does not come in a one-element set.

One way to visualize paradigms of a certain natural class is as an undirected
graph. Hypothesis set H and paradigm () are associated with undirected graph
G with vertices V and edges E C V2 if and only if there is a bijection p : V' —
H such that @ = {{p(v)}|v € V} U {{p(v1),p(v2)} [(v1,v2) € E}}. This
just says that a graph can represent certain paradigms, namely those paradigms
that (i) acknowledge each element in H and (ii) the other sets in () are each
composed of only two hypotheses. Consider the following graph.

U1 U2
V3 (] Vs
The associated hypothesis set is H, = {v1,...,vs} and the associated parad-

igmis @y = {{v1}, ..., {vs}} U {{v1,va}, {v1,vs}, {v1,va}, {v1,05},
{va,v5}}. Notice that {v1 }, {ve, vs}, and {vs3, v4} are the Qp-symmetry types;
so only vy is Qp-invariant—informally, it is the vertex that is adjacent to every
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other vertex. When visualized as graphs, one is able to see the symmetry.

Defensibility Hierarchy and Sufficient Reason

In the previous subsubsection | introduced the notion of a symmetry type, and
we saw that a paradigm naturally induces a partition on the hypothesis set,
where each partitions consists of hypotheses that are symmetric to one an-
other. The symmetry types are the kinds of hypotheses that the inductive agent
can distinguish, given his paradigm. Hypotheses that are members of smaller
symmetry types can intuitively be chosen with less arbitrariness, as there are
fewer hypotheses just like it as far as the paradigm is concerned. An invariant
hypothesis—a hypothesis that is all alone in its symmetry type—can be chosen
with the least arbitrariness since there are no other hypotheses symmetrical to
it. Invariant hypotheses can, intuitively, be picked for a reason.

Although an invariant hypothesis may be able to be picked for a reason and
is thus more defensible than non-invariant hypotheses, if there are one hundred
other invariant hypotheses that can be picked for one hundred other reasons,
how defensible can it be to choose that hypothesis? Why that reason and not
any one of the others? Among the invariant hypotheses one may wonder if
there are gradations of invariance. The way this may naturally be addressed is
to restrict the hypothesis set to the invariant hypotheses, consider the induced
paradigm on this set (we discuss what this means in a moment), and again ask
what is invariant and what is not. Intuitively, concerning those hypotheses that
can be picked for a reason, which of these reasons is justifiable? That is to say,
which of these hypotheses can now be picked for a reason?

For the remainder of this subsubsection we say how to make this precise,
but if you wish to skip the details, it will serve the purpose to simply know
that there is a certain well-motivated, well-defined sense in which a paradigm
induces a hierarchy of more and more defensible hypotheses, where being more
defensible means that it can, intuitively, be picked with less arbitrariness.

A paradigm @ is just the set of acknowledged properties of the hypotheses
in H. If one cares only about some subset A’ of H, then the induced paradigm
is just the one that acknowledges the same properties in H'. Formally, if H' C
H,let @M H' denote {AN H'|A € Q}, and call it the induced paradigm on
H'. Qn H'is Q after throwing out all of the hypotheses in H — H'. For
example, let H; = {ho, hi, ha, hs, h4} and Qd = {{ho, hg}, {hl, hg}, {hg},
{ha, hs,ha}}. ho and hy are the non-invariant hypotheses; hy, hg and hy are
the invariant hypotheses. Now let H; be the set of invariant hypotheses, i.e.,



182 CHAPTER 3

H/, = I(Qq, Hq) = {h2, h3, ha}. The induced paradigm is @, = Q. M H), =
{{hQ}a {hS}a {h2> h37 h4}}-

Now we may ask what is invariant at this new level. hy and hs are together
in a symmetry type, and hy is invariant. hy is the least arbitrary hypothesis
among H);; and since H); consisted of the least arbitrary hypotheses from Hj,
h4 is the least arbitrary hypothesis of all. This hierarchy motivates the follow-
ing definition.

Definition 3 Fix hypothesis set H and paradigm Q. H° = H, and for any nat-
ural number n, Q™ = QT H™. For any natural number n, H"*! = 1(Q™, H"),
which just means that H™*! consists of the invariant hypotheses from H™. This
hierarchy is the defensibility hierarchy, or the invariance hierarchy. A

For instance, for H; and (), above we had:

o HY = {ho, h1, ha, h3, hu}, QY = {{ho, ha}, {h1, ha}, {hs}, {h2, hs,
ha}}.

o Hj={h2, h3, ha}, Qy={{ha}, {3}, {h2, h3, ha}}.
o Hj = {ha}, QF = {{ha}}.

o Hj = {h}, Q)= {{ha}}.

e eiC.

For any hypothesis set H and paradigm @ there is an ordinal number
a(Q, H) such that H* = H**1; this is the height of the defensibility hier-
archy of Q on H.? We say that a hypothesis % is at level m in the defensibility
hierarchy if the highest level it gets to < « is the mi". For H;/Qq, ho is at
level 1, or the second level of the defensibility hierarchy; Ak is at level 2, or
the third level. We let A,,, denote the set of hypotheses at level m. Hypotheses
at higher levels in the hierarchy are said to be more defensible. This defines
‘defensibility” respecting our intuition that, other things being equal, the more
defensible a hypothesis the less arbitrary it is. k4 is the lone maximally defen-
sible hypothesis, and the intuition is that it is the most non-arbitrary choice and
should, a priori, be favored over every other hypothesis.

2When H is infinite it is possible that the least ordinal number « such that H* = H**! is
transfinite. To acquire hypothesis sets H® when £ is a limit ordinal we must take the intersection
of HY forall v < 8. Q° = Q 1 H” (as usual).
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For H,;/@Q4 above, notice that hy and hg are similar in that, although they
are not symmetric with each other at level 0, they are symmetric at level 1.
We will say that they are QQz-equivalent. Generally, two hypotheses are Q-
equivalent in H if and only if at some level H™ they become symmetric (i.e.,
there is a natural number n such that they are @ M H™-symmetric). Two in-
variant hypotheses may therefore be Q-equivalent but not QQ-symmetric. d
is a Q-equivalence type in H if and only if d is an equivalence class of Q-
equivalent hypotheses. {hg, h1}, {he, hs} and {h4} are the Q4-equivalence
types, whereas {hg, h1}, {ha}, {hs} and {h4} are the symmetry types. The
equivalence types are therefore coarser grained than the symmetry types. Two
members of an equivalence type are equally defensible. For @Q-equivalence
types d; and ds, we say that d; is less Q-defensible than d; if and only if for all
h € di and A’ € da, his less Q-defensible than /. Our central intuition was
that hypotheses that are more unique are to be preferred, a priori. Similarly
we are led to the intuition that more defensible types of hypotheses are to be
preferred, a priori. Paradigm Theory’s rationality principles, presented in the
next section, result in higher (actually, not lower) prior probability for more
defensible equivalence types.

As an example, consider the paradigm represented by the following graph,
where Hy = {a,...,l}.

T T B

The symmetry types are {h, i}, {4, k,} and every other vertex is in a singleton
symmetry type. The defensibility types are {h,i}, {j,k,1}, {e, f,9}, {a,d}
and {b,c}. The defensibility levels are A° = {h,i,j,k 1}, A' = {e, f, g},
and A? = {a,b,c,d}.

We noted earlier that invariant hypotheses can be picked “for a reason,”
and this is reminiscent of Leibniz’s Principle of Sufficient Reason, although
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not with his metaphysical import2 which says, in Leibniz’s words, “we can
find no true or existent fact, no true assertion, without there being a sufficient
reason why it is thus and not otherwise...” (Ariew and Garber, 1989, p. 217.)
Rewording our earlier intuition, we can say that invariant hypotheses can be
picked “for sufficient reason.” The problem with this statement is, as we have
seen, that there may be multiple invariant hypotheses, and what sufficient rea-
son can there be to pick from among them? This subsubsection’s defensibility
hierarchy answers this question. It is perhaps best said that lone maximally de-
fensible hypotheses may be picked “for sufficient reason.” More important is
that the defensibility hierarchy is a natural formalization and generalization of
Leibniz’s Principle of Sufficient Reason (interpreted non-metaphysically only),
giving a more finely grained breakdown of “how sufficient” a reason is for
picking a hypothesis: hypotheses in smaller symmetry types possess more suf-
ficient reason, and hypotheses higher in the hierarchy possess (other things
equal) more sufficient reason. Paradigm Theory, further, quantifies the degree
of sufficiency of reason with real numbers in [0,1], as we will soon see.

3.1.3 Paradigm Theory’sprinciples

In this subsection | present the guts of Paradigm Theory: its principles of ought.
Let us first, though, sum up the previous subsection: | showed how acknowl-
edging any set of subsets of a hypothesis set—i.e., a paradigm—naturally de-
termines a complex hierarchical structure. We saw that the “names should not
matter” motto leads to a partition of the hypothesis set into types of hypothe-
ses: the symmetry types. Among those hypotheses that are the lone members of
their symmetry type—i.e., the invariant (or “unique”) hypotheses—there may
be some hypotheses that are “more” invariant, and among these there may some
that are “even more” invariant, etc. This led to the defensibility, or invariance,
hierarchy. Hypotheses that “become symmetric” at some level of the hierarchy
are equivalent, and are said to be members of the same equivalence type.

We also noted in Subsection 3.1.2 the following related intuitions for which
we would like principled ways to quantitatively realize: a priori, (i) hypotheses
in smaller symmetry types are more favorable; or, more unique hypotheses are
to be preferred as it takes less arbitrariness to choose them, (ii) (equivalence)

3eibniz believed that Sufficient Reason arguments actually determine the way the world
must be. However, he did seem, at least implicitly, to allow the principle to be employed in a
purely epistemic fashion, for in a 1716 letter to Newton’s friend and translator Samuel Clarke,
Leibniz writes, “has not everybody made use of the principle upon a thousand occasions?”
(Ariew and Garber, 1989, p. 346).
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types of hypotheses that are more defensible are more favorable, and (iii) the
lone most defensible hypothesis—if there is one—is most favorable (this fol-
lows from (ii)). Each is a variant of the central intuition that less arbitrary
hypotheses are, a priori, more preferred.

These intuitions follow from the three rationality principles concerning
prior probabilities | am about to present. The principles are conceptually dis-
tinct from these intuitions, having intuitive motivations of their own. The fact
that two unrelated sets of intuitions converge in the way we see below is a sort
of argument in favor of Paradigm Theory, much like the way different intu-
itions on computability leading to the same class of computable functions is
an argument for Church’s Thesis. The motivations for stating each principle is
natural and intuitive, and the resulting prior probability distributions are natural
and intuitive since they fit with intuitions (i), (ii) and (iii).

The first subsubsection presents the three principles of rationality, the next
discusses the use of “secondary paradigms” to acquire more detailed prior
probability distributions, and the final subsubsection sets forth the sort of ex-
planations Paradigm Theory gives.

ThePrinciples

Paradigm Theory consists of three principles of rationality that, from a given
paradigm (and a hypothesis set with a finite measure), determine a prior prob-
ability distribution. Paradigm Theory as developed in this section is only ca-
pable of handling cases where there are finitely many symmetry types® We

*1f one begins with H and @ such that there are infinitely many symmetry types, one needs
to restrict oneself to a proper subset H' of H such that there are only finitely many symmetry
types with respect to the induced paradigm. There are some compelling rationality constraints
on such a restriction that very often suffice: (i) any two members of the same equivalence
type in H either both appear in H' or neither, (ii) if an equivalence type from H appears in
H’, then (a) all more defensible equivalence types appear in H’, and (b) all equally defensible
equivalence types in H that are the same size or smaller appear in H’. These constraints on
hypothesis set reduction connect up with the observation that we do not seriously entertain all
logically possible hypotheses. This is thought by F. Suppe (1989, p. 398) “to constitute one of the
deepest challenges we know of to the view that science fundamentally does reason and proceed
in accordance with inductive logic.” These rationality constraints help guide one to focus on
the a priori more plausible hypotheses, ignoring the rest, and is a first step in addressing this
challenge. These constraints give us the ability to begin to break the bonds of a logic of discovery
of a prior assessment sort, and claim some ground also as a logic of discovery of a hypothesis
generation sort: hypotheses are generated in the first place by “shaving off” most of the other
logically possible hypotheses.
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will assume from here on that paradigms induce just finitely many symmetry
types.®

Assume hypothesis set H and paradigm @ are fixed. P(A) denotes the
probability of the set A. P({h}) is often written as P(h).

Principle of Type Uniformity

Recall that the symmetry types are precisely the types of hypotheses that
can be referred to with respect to the paradigm. Nothing more finely grained
than symmetry types can be spoken of. Prima facie, a paradigm gives us no
reason to favor any symmetry type (or “atom”) over any other. To favor one
over another would be to engage in arbitrariness. These observations motivate
the first principle of Paradigm Theory of Induction.

Principle of Type Uniformity: Every (symmetry) type of hypothesis is equally
probable.

There are other principles in the probability and induction literature that are
akin to the Principle of Type Uniformity. For example, if the types are taken
to be the complexions (where two strings are of the same complexion if they
have the same number of each type of symbol occurring in it), then Johnson’s
Combination Postulate (Johnson, 1924, p. 183) says to set the probability of
the complexions equal to one another. Carnap’s n7* amounts to the same thing.

The (claimed) rationality of the Principle of Type Uniformity emanates
from the seeming rationality of choosing a non-arbitrary prior; to choose a
non-uniform prior over the symmetry types would mean to give some symme-
try types higher probability for no good reason. Is favoring some symmetry
types over others necessarily arbitrary? Through the eyes of a paradigm the
symmetry types are distinguishable, and might not there be aspects of symme-
try types that make some, a priori, favorable? If any are favorable, it is not
because any is distinguished among the symmetry types; each is equally dis-
tinguished. Perhaps some could be favorable by virtue of having greater size?
Size is, in fact, relevant in determining which sets are the symmetry types. Ac-
tually, though, it is size difference, not size, that is relevant in symmetry type
determination. Paradigms are not capable of recognizing the size of symmetry
types; symmetry types are the primitive entities, or atoms, in the paradigm’s

SThis restriction ensures that the height of the defensibility hierarchy is finite (although hav-
ing infinitely many symmetry types does not entail a transfinite height).
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ontology. From the paradigm’s point of view, symmetry types cannot be fa-
vored on the basis of their being larger. Given that one possesses a paradigm
and nothing else (like particular inductive beliefs), it is plausible that anything
but a uniform distribution on the symmetry types would be arbitrary.

Now, perhaps one could argue that the weakness of paradigms—e.g., their
inability to acknowledge larger symmetry types—counts against Paradigm The-
ory. Paradigm Theory aims to be a “blank slate” theory of induction, taking
us from innocuous ways of carving the world to particular degrees of belief.
Paradigms are innocuous in part because of their weakness. Strengthening
paradigms to allow the favoring of symmetry types over others would have the
downside of decreasing the explanatory power; the more that is packed into
paradigms, the less surprising it is to find that, given them, they justify par-
ticular inductive methods. That is my motivation for such a weak notion of
paradigm, and given only such a weak paradigm, the Principle of Type Unifor-
mity is rational since to not obey it is to engage in a sort of arbitrariness.

Principle of Symmetry

The second principle of rationality is a general way of asserting that the
renaming of objects should not matter (so long as the paradigm @ is unaltered).
Recall the convention that the underlying measure on H is finite.

Principle of Symmetry: Within a symmetry type, the probability distribution is
uniform.

For finite H this is: hypotheses of the same type are equally probable, or,
hypotheses that can be distinguished only by their names or the names of their
properties are equally probable. Unlike the Principle of Type Uniformity whose
intuition is similar to that of the Classical Principle of Indifference (which says
that if there is no known reason to prefer one alternative over another, they
should receive equal probability), the Principle of Symmetry is truly a sym-
metry principle. Violating the Principle of Symmetry would result in a prior
probability distribution that would not be invariant under renamings that do not
alter the paradigm; names would suddenly matter. Violating the Principle of
Type Uniformity, on the other hand, would not contradict the “names should
not matter” motto (and is therefore less compelling).

If one adopts the Principle of Symmetry without the Principle of Type Uni-
formity, the result is a Generalized Exchangeability Theory. Each paradigm
induces a partition of symmetry types, and the Principle of Symmetry, alone,
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requires only that the probability within a symmetry type be uniform. When
the hypothesis set is the set of strings of outcomes (0 or 1) of an experiment
and the paradigm is such that the symmetry types are the complexions (see
Q1, then the Principle of Symmetry just is Johnson’s Permutability Postulate
(Johnson, 1924, pp. 178-189), perhaps more famously known as de Finetti’s
Finite Exchangeability.

The Basic Theory

Carnap’s m*-based theory of logical probability (Carnap, 1950, p. 563)—
which I will call Carnap’s logical theory—uses versions of the Principles of
Type Uniformity and Symmetry (and leads to the inductive method he calls
c*). His “structure-descriptions,” which are analogous to complexions, are
given equal probability, which amounts to the use of a sort of Principle of
Type Uniformity on the structure-descriptions. Then the probabilities are uni-
formly distributed to his “state-descriptions,” which are analogous to individual
outcome strings of experiments, which amounts to a sort of Principle of Sym-
metry. But whereas Carnap (and Johnson) is confined to the case where the
partition over the state-descriptions is given by the structure-descriptions (or
for Johnson, the partition over the outcome strings is given by the complex-
ions), Paradigm Theory allows the choice of partition to depend on the choice
of paradigm and is therefore a natural, powerful generalization of Carnap’s ni'-
based Logical Theory. The paradigm determines the symmetry types, and the
symmetry types play the role of the structure-descriptions. When the hypoth-
esis set is totally symmetric, one gets something akin to Carnap’s mf-based
logical theory (which he calls ¢).

It is convenient to give a name to the theory comprised by the first two
principles alone.

Basic Theory: Assign probabilities to the hypothesis set satisfying the Princi-
ples of Type Uniformity and Symmetry.

Applying the Basic Theory to H, and @), from Subsection 3.1.2, we get
P(hg) = P(h1) = 1/6 and P(he) = P(hs) = 1/3. Applying the Basic
Theory to Hy, and @, from the same subsection, we get P(v) = 1/3, and the
remaining vertices each receive probability 1/6. Applying it to H; and Qg,
P(hg) = P(h1) =1/8 and P(hy) = P(hs) = P(hy) = 1/4.

Notice that since the underlying measure of the hypothesis set is finite, the
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probability assignment for the Basic Theory is unique. For h € H let ¢(h)
be the cardinality of the symmetry type of h. Let w denote the number of
symmetry types in H. The following theorem is obvious.

Theorem 1 Fixfinite H. The following is true about the Basic Theory. For all

heH, P(h) = 1. A

Theorem 1 may be restated more generally to include infinite hypothesis sets:
for any measure p and all A C H with measure y that are a subset of the same
symmetry type, P(A) = wiu

We see that the probability of a hypothesis is inversely proportional to both
the number of symmetry types and the number (or measure) of other hypothe-
ses of the same symmetry type as itself. The fraction 1/w is present for ev-
ery hypothesis, so c¢(h) is the variable which can change the probabilities of
hypotheses relative to one another. The more hypotheses in a type, the less
probability we give to each of those hypotheses; this fits with our earlier in-
tuition number (i) from the beginning of this section. The following corollary
records that the Basic Theory fits with this intuition and the intuition that in-
variant hypotheses are more probable. The corollary is true as stated no matter

the cardinality of the hypothesis set.

Theorem 2 The following are true about the Basic Theory.
1. Hypothesesin smaller symmetry types acquire greater probability.

2. Each invariant hypothesis receives probability 1/w, which is greater
than (in fact, at least twice as great as) that for any non-invariant hy-
pothesis. A

The Basic Theory is not Paradigm Theory, although when the defensibility
hierarchy has no more than two levels the two theories are equivalent. The Ba-
sic Theory does not notice the hierarchy of more and more defensible hypothe-
ses, and noticing the hierarchy will be key to providing a general explanation
for why simpler hypotheses ought to be favored. When | say things like, “only
the Basic Theory is needed to determine such and such probabilities,” | mean
that the probabilities are not changed upon the application of the third principle
(to be stated below) of Paradigm Theory.

Principle of Defensibility
The third principle of rationality is, as far as | know, not similar to any previous
principle in the induction and probability literature. It encapsulates an intuition
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similar to that used when | discussed gradations of invariance in Subsection
3.1.2. | asked: Among the invariant elements, which are more defensible?
Now | ask: Among the invariant elements, which are more probable? From the
viewpoint of the entire hypothesis set H the invariant hypotheses seem equally
and maximally defensible. But when focusing only on the invariant hypotheses
we see further gradations of defensibility. Similarly, from the viewpoint of the
entire hypothesis set H the invariant hypotheses look equally and maximally
probable. But when focusing only on the invariant hypotheses we see further
gradations of probability. The third principle of rationality says to refocus at-
tention on the invariant hypotheses.

Principle of Defensibility: Reapply the Principles of Type Uniformity, Symme-
try, and Defensibility to the set of invariant hypotheses (H' = I(Q, H)) via
the induced paradigm (Q N H').

Since the Principle of Defensibility is one of the three rationality principles
mentioned in its own statement, it applies to itself as well. | have named the
principle the Principle of Defensibility because it leads to the satisfaction of
intuition (ii) from the beginning of this section, i.e., to more defensible types
of hypotheses acquiring higher prior probability. However, neither the intuitive
motivation for the principle nor the statement of the principle itself hints at this
intuition. The principle only gets at the idea that there is structure among the
invariant hypotheses and that it should not be ignored.

Paradigm Theory
With the three principles presented | can state Paradigm Theory.

Paradigm Theory: Assign probabilities to the hypothesis set satisfying the Prin-
ciples of Type Uniformity, Symmetry, and Defensibility.

The proposal for the prior probability assignment is to use the principles in
the following order: (i) Type Uniformity, (ii) Symmetry, and (iii) Defensibility
(i.e., take the invariant hypotheses and go to (i)). These principles amount to
a logical confirmation function, as in the terminology of Carnap, but ours is a
function of a hypothesis h, evidence e, and paradigm Q; i.e., c(h, e, Q).

Paradigm Theory is superior to the Basic Theory in the sense that it is able
to distinguish higher degrees of defensibility. Paradigm Theory on H,/Q, and
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HplQy from Section 3.1.2 behaves identically to the Basic Theory. Applying
Paradigm Theory to H; and Q) is different, however, than the Basic Theory’s
assignment. First we get, as in the Basic Theory, P(hy) = P(h1) = 1/8,
P(hy) = P(h3) = P(h4) = 1/4. Applying the Principle of Defensibility,
the probability assignments to hy and hq remain fixed, but the 3/4 probability
assigned to the set of invariant hypotheses is to be redistributed among them.
With respect to {hso, hs, ha} and the induced paradigm {{hg, h3}, {h4}}, the
symmetry types are {hq, hg} and {h4}, so each symmetry type receives prob-
ability (3/4)/2 = 3/8. The probabilities of h, ... hy are, respectively, 2/16,
2/16, 3/16, 3/16, 6/16. Recall that h, is the lone most defensible element but
the Basic Theory gave it the same probability as h and hg; Paradigm Theory
allows richer assignments than the Basic Theory.

It is easy to see that since the underlying measure of the hypothesis set is
finite and there are assumed to be only finitely many symmetry types, Paradigm
Theory assigns a unique probability distribution to the hypothesis set, and does
so in such a way that each hypothesis receives positive prior probability density
(i.e., priors are always “open-minded” within Paradigm Theory). Theorem 14
in the appendix at the end of this chapter examines some of its properties.
Unlike the Basic Theory, Paradigm Theory respects the intuition (number (ii))
that more defensible (less arbitrary) implies higher probability by giving the
more defensible equivalence types not less probability than the less defensible
equivalence types. Also, unlike the Basic Theory, Paradigm Theory respects
the intuition (number (iii)) that if a hypothesis is lone most defensible (the
only least arbitrary one) then it receives higher probability than every other
hypothesis. The following theorem states these facts; the proofs along with
other properties are given in the appendix to this chapter.

Theorem 3 The following are true about Paradigm Theory.

1. For all equivalence types d; and da, if d; isless defensible than d;, then
P(d1) < P(da).

2. For all hypotheses h; h is the lone most defensible if and only if for all
B # h, P(W) < P(h). A

Theorem 3 is an argument for the superiority of Paradigm Theory over the
Basic Theory.
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Secondary Paradigms

Suppose we have found the prior probability distribution on H given a parad-
igm @, and, say, half of the hypotheses end up with the same probability; call
this subset H*. Now what if we acknowledge other properties concerning H*,
properties which are, in some sense, secondary to the properties in the orig-
inal paradigm? May H*’s probabilities be validly redistributed according to
this secondary paradigm? After all, cannot any hypothesis set and paradigm be
brought to Paradigm Theory for application, including H* and this secondary
paradigm? The problem is that to do this would be to modify the original, or
primary probability distribution, and this would violate the principles in the
original application of Paradigm Theory.

Here is an example of the sort of thing | mean. Let H = {3,...,9} and
@ acknowledge the property of being prime. There are two symmetry types,
{4,6,8,9} and {3,5,7}, each receiving probability 1/2. Now suppose that
there are secondary paradigms for each symmetry type, in each case acknowl-
edging the property of being odd. The second symmetry type above remains
unchanged since all are odd, but the first gets split into {4, 6,8} and {9}, each
receiving probability 1/4. Notice that this is different than what a primary
paradigm that acknowledges both being prime and odd gives; in this case the
probability of {3,5,7}, {4,6,8} and {9} are 1/3, 1/3, 1/3 instead of, re-
spectively, 1/2, 1/4, 1/4, as before. The first method treats being prime as
more important than being odd in the sense that primality is used to determine
the large-scale probability structure, and parity is used to refine the probabil-
ity structure. The second method treats being prime and being odd on a par. A
more Kuhnian case may be where one allows the primary paradigm to acknowl-
edge scope, and allows the secondary paradigm to acknowledge simplicity; this
amounts to caring about scope first, simplicity second.

I generalize Paradigm Theory to allow such secondary paradigms in a mo-
ment, but | would first like to further motivate it. There is a sense in which
Paradigm Theory, as defined thus far, is artificially weak. For simplicity con-
sider only the Principles of Type Uniformity and Symmetry; i.e., the Basic
Theory. These two principles are the crux of the probability assignment on the
hypothesis set. Together they allow only two “degrees of detail” to probability
assignments: one assignment to the symmetry types, and another to the par-
ticular hypotheses within the symmetry types. The Principle of Defensibility
does allow further degrees of detail for the invariant hypotheses, and it accom-
plishes this without the need for secondary paradigms. But for non-invariant
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hypotheses there are just two degrees of detail. Why two? This seems to be a
somewhat artificial limit.

Allowing secondary paradigms enables Paradigm Theory to break this limit.
Paradigm Theory is now generalized in the following way: Secondary parad-
igms may modify the primary prior probability distribution by applying the
three principles to any subset A* such that the primary prior in H* is uni-
form. In other words, we are licensed to tinker with the primary prior using
secondary paradigms, so long as we tinker only on subsets that were originally
equiprobable. When H* and a secondary paradigm Q* are brought to Parad-
igm Theory for application, they can be treated as creating their own primary
distribution within H*. Secondary paradigms with respect to H* and Q* are
tertiary paradigms with respect to the original hypothesis set H and paradigm
Q. The point is that any degree of detail in the sense mentioned above is how
sanctioned, so long as there are n'"-ary paradigms for large enough n.

All this increase in power may make one skeptical that one can create any
prior one wants by an ad hoc tuning of the secondary (tertiary, and so on)
paradigms. An explanation by Paradigm Theory is only as natural and ex-
planatory as is the paradigm (primary, secondary, and so on) used (see Section
3.1.3). Ad hoc secondary paradigms create ad hoc explanations. The only
use of paradigms in this chapter beyond primary ones are secondary ones. |
use them later where they are quite explanatory and give Paradigm Theory the
ability to generalize a certain logical theory of Hintikka’s (o« = 0). I also note
in Subsection 3.2.3 their ability to give a non-uniform prior over the simplest
hypotheses. If in any particular application of Paradigm Theory there is no
mention of secondary paradigms, then they are presumed not to exist.

The Paradigm Theory Tactic

In the following section Paradigm Theory is used to explain why certain induc-
tive methods we tend to believe are justified are, indeed, justified. The general
tactic is two-fold. First, a mathematical statement concerning the power of
Paradigm Theory is given (often presented as a theorem). Second, an informal
explanatory argument is given. Paradigm Theory’s ability to justify induction
is often through the latter.

Most commonly, the mathematical statement consists of showing that par-
adigm @ entails inductive method x. This alone only shows that inductive
method z is or is not within the scope of Paradigm Theory; and this is a purely
mathematical question. Such a demonstration is not enough to count as an ex-
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planation of the justification of inductive method x. Although paradigm @ may
determine inductive method z, @@ may be artificial or ad hoc and thereby not be
very explanatory; “who would carve the world that way?” If Q) is very unnatu-
ral and no natural paradigm entails inductive method x, then this may provide
an explanation for why inductive method « is disfavored: one would have to
possess a very strange conceptual framework in order to acquire it, and given
that we do not possess such strange conceptual frameworks, inductive method
x is not justified. Typically, the paradigm @ determining inductive method x
is natural, and the conclusion is that inductive method z is justified because
we possess Q) as a conceptual framework. | do not actually argue that we do
possess any particular paradigm as a conceptual framework. Rather, “inductive
method = is justified because we possess paradigm @ is meant to indicate the
form of a possible explanation in Paradigm Theory. A fuller explanation would
provide some evidence that we in fact possess ) as conceptual framework.

A second type of mathematical statement is one stating that every parad-
igm entails an inductive method in the class Z. The explanatory value of such a
statement is straightforward: every conceptual framework leads to such induc-
tive methods, and therefore one cannot be a skeptic about inductive methods in
Z; any inductive method not in Z is simply not rational. A sort of mathemati-
cal statement that sometimes arises in future sections is slightly weaker: every
paradigm @ of such and such type entails an inductive method in the class Z.
The explanatory value of this is less straightforward, for it depends on the sta-
tus of the “such and such type.” For example, open-mindedness is of this form
for the Personalistic (of Subjective) Bayesian on the hypothesis set H = [0, 1]:
every prior that is open-minded (everywhere positive density) converges in the
limit to the observed frequency. If the type of paradigm is extremely broad and
natural, and every paradigm not of that type is not natural, then one can con-
clude that inductive skepticism about inductive methods in Z is not possible,
unless one is willing to possess an unnatural paradigm; inductive skepticism
about inductive methods in Z is not possible because every non-artificial con-
ceptual framework leads to Z. Similar observations hold for arguments of the
form, “no paradigm @ of such and such type entails an inductive method in the
classY.”

These claims of the “naturalness” of paradigms emanate from our (often)
shared intuitions concerning what properties are natural. The naturalness of a
paradigm is not judged on the basis of the naturalness of the inductive method
to which it leads; this would ruin the claims of explanatoriness.
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3.2 Applications

3.21 Simplepreiminary applications

By way of example we apply the Basic and Paradigm Theories to some prelim-
inary applications, first presented in Changizi and Barber (1998).

Collapsing to the Principle of Indifference

Paradigm Theory (and the Basic Theory) gives the uniform distribution when
the paradigm is empty. This is important because, in other words, Paradigm
Theory collapses to a uniform prior when no properties are acknowledged, and
this is a sort of defense of the Classical Principle of Indifference: be ignorant
and acknowledge nothing...get a uniform prior. More generally, a uniform
distribution occurs whenever the paradigm is totally symmetric. Since being
totally symmetric means that there are no distinctions that can be made among
the hypotheses, we can say that Paradigm Theory collapses to a uniform prior
when the paradigm does not have any reason to distinguish between any of
the hypotheses. Only the Principle of Symmetry—and not the Principle of
Type Uniformity—needs to be used to found the Principle of Indifference as a
subcase of Paradigm Theory.

Archimedes Scale

Given a symmetrical scale and (allegedly) without guidance by prior experi-
ment Archimedes (De aequilibro, Book I, Postulate 1) predicts the result of
hanging equal weights on its two sides. The hypothesis set in this case is plau-
sibly the set of possible angles of tilt of the scale. Let us take the hypothesis
set to include a finite (but possibly large) number, N, of possible tilting angles,
including the horizontal, uniformly distributed over the interval [—9(7, 90°].
Archimedes predicts that the scale will remained balanced, i.e., he settles on
# = 0° as the hypothesis. He makes this choice explicitly on the basis of the
obvious symmetry; that for any 8 # (° there is the hypothesis —8 which is
“just as good” as 6, but # = 0° has no symmetric companion.

To bring this into Paradigm Theory, one natural paradigm is the one that
acknowledges the amount of tilt but does not acknowledge which way the tilt
is; i.e., @ = {{—6,0}|0° < 6 < 90°}. # = 0° is the only hypothesis in a
single-element set in @, and it is therefore invariant. Furthermore, every other
hypothesis can be permuted with at least its negation, and so 6 = (F is the only
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invariant hypothesis. With the paradigm as stated, any pair —6, 6 (with 6 > (?)
can permute with any other pair, and so there are two symmetry types: {(°}
and everything else. Thus, 0° receives prior probability 1/2, and every other
hypothesis receives the small prior probability 1/(2 - (N — 1)). Even if N is
naturally chosen to be 3—the three tilting angles are —9(°, 0° and 90°—the
prior probabilities are 1/4, 1/2 and 1/4, respectively.

Now let the paradigm be the one acknowledging the property of being
within §° from horizontal, for every § € [0°,90°]. For each § € H, {—6,0}
is a symmetry type, and this includes the case when 6 = (°, in which case the
symmetry type is just {0°}. Each symmetry type receives equal prior proba-
bility by the Principle of Type Uniformity, and by the Principle of Symmetry
each 6 # 0° gets half the probability of its symmetry type. (° gets all the
probability from its symmetry type, however, as it is invariant. Therefore it is,
a priori, twice as probable as any other tilting angle. If N is chosen to be 3,
the prior probabilities for —90°, 0° and 90° are as before: 1/4, 1/2 and 1/4,
respectively.

Explanations for such simple cases of symmetry arguments can sometimes
seem to be assumptionless, but certain a priori assumptions are essential. Parad-
igm Theory explains Archimedes’ prediction by asserting that he possessed
one of the paradigms above as a conceptual framework (or some similar sort of
paradigm). He predicts that the scale will remained balanced because, roughly,
he acknowledges the angle of tilt but not its direction. Most natural paradigms
will entail priors favoring # = 0°, and | suspect no natural paradigm favors any
other.

Leibniz’'s Triangle

To a second historical example, I noted earlier the connection of Paradigm The-
ory to Leibniz’s Principle of Sufficient Reason (interpreted non-metaphysically),
and | stated that Paradigm Theory is a sort of generalization of the principle,
giving precise real-valued degrees to which a hypothesis has sufficient reason
to be chosen. Let us now apply Paradigm Theory to an example of Leibniz. In
a 1680s essay, he discusses the nature of an unknown triangle.

And so, if we were to imagine the case in which it is agreed that a triangle
of given circumference should exist, without there being anything in the givens
from which one could determine what kind of triangle, freely, or course, but
without a doubt. There is nothing in the givens which prevents another kind of
triangle from existing, and so, an equilateral triangle is not necessary. However,
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all that it takes for no other triangle to be chosen is the fact that in no triangle
except for the equilateral triangle is there any reason for preferring it to others.
(Ariew and Garber, 1989, p. 101.)

Here the hypothesis set is plausibly {(¢,62,65)| 61 + 62 + 65 = 180°},
where each 3-tuple defines a triangle, 6; being the angle of vertex i of the
triangle. Now consider the paradigm that acknowledges the three angles of a
triangle, but does not acknowledge which vertex of the triangle gets which an-
gle, i.e., Q = {{<91, 92, (93>, <93, 91, 92>, <92, 93, 91>, <93, 92, 91>, <917 93, 92>,
(02,61,03)} | 61 + 02 + 65 = 180°}. This natural paradigm, regardless of the
hypothesis set’s underlying measure, results in (60°, 60°, 60°) being the only
invariant hypothesis. In fact, every other of the finitely many symmetry types
is of the size continuum, and thus every hypothesis but the 60° one just men-
tioned receives infinitesimal prior probability. An explanation for why Leibniz
believed the equilateral triangle must be chosen is because he possessed the
conceptual framework that acknowledged the angles but not where they are.

Straight Line

Consider a hypothesis set H consisting of all real-valued functions consistent
with a finite set of data falling on a straight line (and let the underlying measure
be cardinality). It is uncontroversial that the straight line hypothesis is the most
justified hypothesis. Informally, I claim that any natural paradigm favors—if
it favors any function at all—the straight line function over all others, and that
this explains why in such scenarios we all feel that it is rational to choose the
straight line. For example, nothing but the straight line can be invariant if one
acknowledges any combination of the following properties: ‘is continuous’, ‘is
differentiable’, “has curvature x’ (for any real number ), ‘has n zeros’ (for
any natural number n), ‘has average slope of m’ (for any real number m),
‘changes sign of slope k times’ (for any natural number k). One can extend
this list very far. For specificity, if the curvature properties are acknowledged
for each &, then the straight line is the only function fitting the data with zero
curvature, and for every other value of curvature there are multiple functions
fitting the data that have that curvature; only the straight line is invariant and
Paradigm Theory gives it highest probability. The same observation holds for
the ‘changes sign of slope k& times’ property. What is important is not any
particular choice of natural properties, but the informal claim that any natural
choice entails that the straight line is favored if any function is. The reader is
challenged to think of a natural paradigm that results in some other function in
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H receiving higher prior probability than the straight line.

Reference

For a consistent set of sentences, each interpretation of the language making
all the sentences true can be thought of as a hypothesis; that is, each model of
the set of sentences is a hypothesis. The question is: Which model is, a priori,
the most probable? Consider the theorems of arithmetic as our consistent set
of sentences. There is one model of arithmetic, called the “standard model,”
that is considered by most of us to be the most preferred one. That is, if a
person having no prior experience with arithmetic were to be presented with
a book containing all true sentences of arithmetic (an infinitely long book),
and this person were to attempt to determine the author’s interpretation of the
sentences, we tend to believe that the standard model should receive the greatest
prior probability as the hypothesis. Is this preference justified?

Suppose that one’s paradigm acknowledges models “fitting inside” other
models, where a model M fits inside Ms if the universe of M is a subset
(modulo any isomorphism) of that of M and, when restricted to the universe of
M, both models agree on the truth of all sentences® Intuitively, you can find a
copy of M, inside Ms yet both satisfactorily explain the truth of each sentence
in the set. As such, M, is unnecessarily complex.” Does this paradigm justify
the standard model? The standard model of arithmetic has the mathematical
property that it fits inside any model of arithmetic; it is therefore invariant for
this paradigm. We do not know of a proof that there is no other invariant (for
this paradigm) model of arithmetic, but it is strongly conjectured that there is
no other (M. C. Laskowski, private communication). If this is so, then the
standard model is the most probable one (given this paradigm).

Paradigm Theory can be used to put forth a conceptual framework-based
probabilistic theory of reference in the philosophy of language: to members of
a conceptual framework represented by paradigm @, the reference of a symbol
in a language is determined by its interpretation in the most probable model,
where the prior probabilities emanate from (Q and are possibly conditioned via
Bayes' Theorem if evidence (say, new sentences) comes to light. (See Putnam
(1980, 1981, p. 33) for some discussion on underdetermination of interpretation
and its effect on theories of reference, and Lewis (1984) for some commentary
and criticism of it.

®In logic it is said in this case that A/; embeds elementarily into Ms.
"This is a sort of “complexification;” see Subsection 3.2.3.
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3.2.2 Enumerative Induction

I consider enumerative induction on two types of hypothesis set: (i) the set of
strings of the outcomes (0 or 1) of NV experiments or observations, and | denote
this set Hy; (ii) the set of possible physical probabilities p in [0, 1] of some
experiment, with the uniform underlying measure. Three types of enumerative
induction are examined: no- , frequency- , and law-inductions. No-induction
is the sort of inductive method that is completely rationalistic, ignoring the ev-
idence altogether and insisting on making the same prediction no matter what.
Freguency-induction is the sort of inductive method that converges in the limit
to the observed frequency of experimental outcomes (i.e., the ratio of the num-
ber of Os to the total number of experiments). Law-induction is the sort of
inductive method that is capable of giving high posterior probability to laws.
‘all 0s’ and “all 1s’ are the laws when H = Hy,and ‘p = 0" and ‘p = 1" are
the laws when H = [0, 1].

For reference throughout this section, Table 3.1 shows the prior probability
assignments for the paradigms used in this section on the hypothesis set H;.

No-Induction

The sort of no-induction we consider proceeds by predicting with probability
.5 that the next experimental outcome will be O, regardless of the previous
outcomes.

H = Hy

First we consider no-induction on the hypothesis set Hy, the set of out-
come strings for IV binary experiments. Table 3.1 shows the sixteen possible
outcome strings for four binary experiments. The first column of prior prob-
abilities is the uniform assignment, and despite its elegance and simplicity, it
does not allow learning from experience. For example, suppose one has seen
three 0s so far and must guess what the next experimental outcome will be. The
reader may easily verify that P(0]000) = P(1]|000) = 1/2; having seen three
0s does not affect one’s prediction that the next will be 0. The same is true
even if one has seen one million Os in a row and no 1s. This assignment is the
one Wittgenstein proposes (1961, 5.15-5.154), and it is essentially Carnap’s
m! (Carnap, 1950) (or A = o).

Recall that a totally symmetric paradigm is one in which every pair of hy-
potheses is symmetric. Any totally symmetric paradigm entails the uniform
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Table 3.1: Theprior probability assignments for various
paradigms over the hypothesis set H, (the set of possible
outcome strings for four experiments) are shown. Qiqw,,

is shorthand for Q.., With Q1 as secondary paradigm.
The table does not indicate that in the Q;,., cases the ‘all

0s' and ‘all 1s' acquire probability 1/4 no matter the value
of N (inthiscase, N = 4); for the other paradigmsthisis
not the case.

String Qs QL Qrep Qlaw QlawL
0000 | 1/16 | 1/5 1/8 1/4 1/4

0001 | 1/16 | 1/20 | 1/24 | 1/28 1/24
0010 | 1/16 | 1/20 | 1/24 | 1/28 1/24
0100 | 1/16 | 1/20 | 1/24 | 1/28 1/24
1000 | 1/16 | 1/20 | 1/24 | 1/28 1/24
0011 | 1/16 | 1/30 | 1/24 | 1/28 1/36
0101 | 1/16 | 1/30 | 1/8 | 1/28 1/36
0110 | 1/16 | 1/30 | 1/24 | 1/28 1/36
1001 | 1/16 | 1/30 | 1/24 | 1/28 1/36
1010 | 1/16 | 1/30 | 1/8 | 1/28 1/36
1100 | 1/16 | 1/30 | 1/24 | 1/28 1/36
0111 | 1/16 | 1/20 | 1/24 | 1/28 1/24
1011 | 1716 | 1/20 | 1/24 | 1/28 1/24
1101 | 1716 | 1/20 | 1/24 | 1/28 1/24
1110 | 1716 | 1/20 | 1/24 | 1/28 1/24
1111 | 1716 | 1/5| 1/8 1/4 1/4
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assignment on Hy. Therefore, any totally symmetric paradigm results in no-
induction on Hy. This is true because there is just one symmetry type for a to-
tally symmetric paradigm, and so the Principle of Symmetry gives each string
the same prior probability. | have let (s denote a generic totally symmetric
paradigm in Table 3.1.

The uniform assignment on Hyy; is usually considered to be inadequate on
the grounds that the resulting inductive method is not able to learn from experi-
ence. There is a problem with this sort of criticism: it attributes the inadequacy
of a particular prior probability assignment to the inadequacy of the inductive
method to which it leads. If prior probabilities are chosen simply in order to
give the inductive method one wants, then much of the point of prior probabil-
ities is missed. Why not just skip the priors altogether and declare the desired
inductive method straightaway? In order to be explanatory, prior probabilities
must be chosen for reasons independent of the resulting inductive method. We
want to explain the lack of allure of the uniform prior on Hy without referring
to the resulting inductive method.

One very important totally symmetric paradigm is the empty one, i.e., the
paradigm that acknowledges nothing. If one considers Hy to be the hypothesis
set, and one possesses the paradigm that acknowledges no properties of the hy-
potheses at all, then one ends up believing that each outcome string is equally
likely. I believe that for Hy the paradigm that acknowledges nothing is far from
natural, and this helps to explain why no-induction is treated with disrepute. To
acknowledge nothing is to not distinguish between the ‘all 0s’ string and any
“random” string; for example, 0000000000 and 1101000110. To acknowledge
nothing is also to not acknowledge the relative frequency. More generally, any
totally symmetric paradigm, no matter how complicated the properties in the
paradigm, does not differentiate between any of the outcome strings and is sim-
ilarly unnatural. For example, the paradigm that acknowledges every outcome
string is totally symmetric, the paradigm that acknowledges every pair of out-
come strings is totally symmetric, and the paradigm that acknowledges every
property is also totally symmetric. No-induction is unjustified because we do
not possess a conceptual framework that makes no distinctions on Hy. On the
other hand, if one really does possess a conceptual framework that makes no
distinctions among the outcome strings, then no-induction is justified.

There are some ad hoc paradigms that do make distinctions but still entail
a uniform distribution over Hy. For example, let paradigm @ acknowledge
{1}, {1,2},4{1,2,3}, ..., {1, ..., 16}, where these numbers denote the corre-
sponding strings in Table 3.1. Each string is then invariant, and therefore can
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be distinguished from every other, yet the probability assignment is uniform by
the Principle of Type Uniformity. For another example, let the paradigm con-
sistof {1,...,8}and {1,...,16}. There are two symmetry types, {1,...,8}
and {9,...,16}, each subset can be distinguished from the other, but the re-
sulting prior probability assignment is still uniform. These sorts of paradigms
are artificial—we have not been able to fathom any natural paradigm of this
sort. The explanation for why no-induction is unjustified is, then, because we
neither possess conceptual frameworks that make no distinctions nor possess
conceptual frameworks of the unnatural sort that make distinctions but still give
a uniform distribution.

H=0,1]

Now we take up no-induction on the hypothesis set H = [0, 1], the set
of physical probabilities p of a repeatable experiment. In no-induction it is
as if one believes with probability 1 that the physical probability of the ex-
periment (say, a coin flip) is .5, and therefore one is incapable of changing
this opinion no matter the evidence. In fact this is exactly what the uniform
probability assignment over Hy is equivalent to. That is, the prior on [0, 1]
leading to no-induction gives p = .5 probability 1, and the probability density
over the continuum of other hypotheses is zero. What was an elegant, uniform
distribution on Hy has as its corresponding prior on [0, 1] an extremely inel-
egant Dirac delta prior. With [0, 1] as the hypothesis set instead of Hy, there
is the sense in which no-induction is even more unjustified, since the prior is
so clearly arbitrary. The reason for this emanates from the fact that [0, 1] is a
“less general” hypothesis set than Hy, for, informally, [0, 1] lumps all of the
outcome strings in a single complexion into a single hypothesis (recall, two
strings are in the same complexion if they have the same number of 0s and 1s);
Hyy is capable of noticing the order of experiments, [0, 1] is not. This prop-
erty of [0, 1], that it presumes exchangeability, severely constrains the sort of
inductive methods that are possible and makes frequency-induction “easier” to
achieve in the sense that any open-minded prior converges asymptotically to
the observed frequency; no-induction is correspondingly “harder” to achieve
in [0, 1].

In fact, within Paradigm Theory no-induction on [0,1] is impossible to
achieve for the simple reason that paradigms always result in open-minded
priors. The reason we believe no-induction is unjustified on [0,1] is because no
paradigm leads to no-induction.
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Frequency-Induction

If an experiment is repeated many times, and thus far 70% of the time the
outcome has been 0, then in very many inductive scenarios most of us would
infer that there is a roughly 70% chance that the next experiment will result
in 0. This is frequency-induction, and is one of the most basic ways in which
we learn from experience, but is this method justifiable? Laplace argued that
such an inference is justified on the basis of his Rule of Succession. It states
that out of n + 1 experiments, if O occurs r times out of the first n, then the
probability that O will occur in the next experiment is % As n — oo, this
very quickly approaches -; and when r = n, it very quickly approaches 1.
Derivations of this rule depend (of course) on the prior probability distribution;
see Zabell (1989) for a variety of historical proofs of the rule. In this section
we demonstrate how Paradigm Theory naturally leads to the Rule of Succession
when H = Hy and H = [0, 1].

H = Hy

The second column of probabilities in Table 3.1, headed “Qr,” shows the
probability assignment on Hy needed to lead to Laplace’s Rule of Succession®
Notice, in contrast to Qs, that for this column P(0/000) = (1/5)/(1/5 +
1/20) = 4/5, and so P(1|000) = 1/5; it learns from experience. Laplace’s
derivation was via a uniform prior on the hypothesis set H = [0, 1] (with
uniform underlying prior), but on Hy something else is required. Johnson’s
Combination Postulate and Permutability Postulate (Johnson, 1924, pp. 178—
189) together give the needed assignment. The Combination Postulate—which
states that it is a priori no more likely that 0 occurs 4 times than j times in
n experiments—assigns equal probability to each complexion, and the Per-
mutability Postulate—which states that the order of the experiments does not
matter—distributes the probability uniformly within each complexion. Car-
nap’s logical theory with m* (Carnap, 1950, p. 563) does the same by assigning
equal probability to each structure-description (analogous to the complexions),
and distributing the probability uniformly to the state-descriptions (analogous
to the individual outcome strings) within each structure-description (see the
earlier discussion of the “Basic Theory”).

In order for Paradigm Theory to give this prior probability assignment it
suffices to find a paradigm whose induced symmetry types are the complex-

8A discussion on the difference between Q. and Q. can be found in Carnap (1989).
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ions. If a paradigm satisfies this, the Principle of Type Uniformity assigns
each complexion the same prior probability, and the Principle of Symmetry
uniformly distributes the probability among the outcome strings within each
complexion. In other words, if one’s conceptual framework distinguishes the
complexions, then one engages in frequency-induction via the Rule of Suc-
cession. Explanatorily, the Rule of Succession is justified because we possess
paradigms that distinguish the complexions.

For distinguishing the complexions it is not sufficient to simply acknowl-
edge the complexions; if the paradigm consists of just the complexions, then
there are three symmetry types in Hy as in Table 3.1: {0000,1111}, {0001,
0010, 0100, 1000, 1110, 1101, 1011, 0111}, and the “middle” complexion.
There are very natural paradigms that do induce symmetry types equal to the
complexions. One such paradigm is employed in the following theorem whose
proof may be found in the appendix to this chapter.

Theorem 4 Let Qy, (‘L' for ‘Laplace’) be the paradigm containing each com-
plexion and the set of all sequences with more Os than 1s. The probability
assignment of ()7, on H  via Paradigm Theory is identical to that of Johnson,
and so @y, resultsin Laplace’s Rule of Succession. A

Note that @)y, is quite natural. It is the paradigm that acknowledges the com-
plexions, and in addition acknowledges the difference between having more 0s
than 1s and not more Os than 1s. An explanation for the intuitive appeal of the
Rule of Succession is that we often acknowledge exactly those properties in
Q1, and from this the Rule of Succession follows.

Since there are only finitely many inductive methods that may result given
H y via Paradigm Theory, the theory is not capable of handling a continuum of
frequency-inductive methods as in Johnson and Carnap’s A-continuum, which
says if r of n outcomes have been 1 in a binary experiment, the probability of
the next outcome being a 1 is ”:{jf. | have not attempted to determine the class
of all X\ such that there exists a paradigm that entails the A-rule, but it seems
that the only two natural sorts of paradigms that lead to an inductive method in
the A-continuum with H = Hy are totally symmetric paradigms and those that
have the complexions as the symmetry types. The first corresponds to A = oo,
and the second corresponds to A = 2. Reichenbach’s Straight Rule (where,
after seeing » of n outcomes of 1 in a binary experiment, the probability that
the next will be 1 is r/n), or A = 0, does not, therefore, seem to be justifiable
within Paradigm Theory.
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Laplace’s Rule of Succession needs the assumption on Hy that, a priori,
it is no more likely that 1 is the outcome 4 times than j times in n experiments.
Call a repetition the event where two consecutive experiments are either both
1 or both 0; two strings are in the same repetition set if they have the same
number of repetitions. Why, for example, should we not modify Johnson’s
Combination Postulate (or Principle of Indifference on the complexions) to say
that, a priori, it is no more likely that a repetition occurs i times than j times
in n experiments? The prior probability assignment resulting from this does
not lead to Laplace’s Rule of Succession, but instead to the “Repetition” Rule
of Succession. ‘RE P’ denotes the assignment of equal probabilities to each
repetition set, with the probability uniformly distributed among the strings in
each repetition set; this is shown for H, in Table 3.1 under the heading Q).
If one has seen r repetitions of 1 thus far with n experiments, the probabil-
ity the outcome of the next experiment will be the same as the last outcome,
via REP, is ;ﬁ The proof is derivable from Laplace’s Rule of Succession
once one notices that the number of ways of getting r repetitions in a length
n binary sequence is 2C"~!; the proof is omitted. This result can be naturally
accommodated within Paradigm Theory.

Theorem 5 Let Q,, be the paradigm that acknowledges the number of rep-
etitions in a sequence as well as acknowledging the sequences with less than
half the total possible number of repetitions. The probability assignment of
Qrep isidentical to that of REP, and so Q,,, results in the Repetition Rule of
Succession. A

Whereas all of the previously mentioned paradigms on Hy entail prior proba-
bility assignments that are de Finetti exchangeable, Q)..,, does not. It is Markov
exchangeable, however: where strings with both the same initial outcome and
the same number of repetitions have identical prior probability. A conceptual
framework that acknowledges both the number of repetitions and which (0 or
1) has the greater number of repetitions results in the Repetition Rule of Suc-
cession. When our inductive behavior is like the Repetition Rule, it is because
we possess Q. (or something like it) as our conceptual framework.

Qr and Q,., generally give very different predictions. However, they
nearly agree on the intuitively clear case where one has seen all of the experi-
ments give the same result. For example, Laplace had calculated the probabil-
ity that the sun will rise tomorrow with his Rule of Succession; “It is a bet of
1,826,214 to one that it will rise again tomorrow” (Laplace, 1820). The Repe-
tition Rule of Succession says that the odds are 1,826,213 to one that tomorrow
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will be the same as the past with respect to the sun rising or not, and since we
know it came up today, those are the odds of the sun rising tomorrow.

H=[0,1]

Now we consider frequency-induction on the hypothesis set H = [0, 1]
with the natural uniform underlying measure. We noted earlier that [0, 1] “more
easily” leads to frequency-induction than Hy; disregarding the order of exper-
iments puts one well on the path toward frequency-induction. We should sus-
pect, then, that it should be easier to acquire frequency-inductions with [0, 1] as
the hypothesis set than Hy via Paradigm Theory. In fact, frequency-induction
is guaranteed on [0, 1] since paradigms lead to open-minded priors which, in
turn, lead to frequency-induction. One cannot be a skeptic about frequency-
induction in [0, 1]. Frequency-induction on [0,1] is justified because every con-
ceptual framework leads to it.

For Laplace’s Rule of Succession, Laplace assigned the uniform prior prob-
ability distribution over the underlying measure, from which the Rule follows.
Here is the associated result for Paradigm Theory.

Theorem 6 Any totally symmetric paradigm entails the uniform assignment
on [0, 1]. Therefore, any totally symmetric paradigm results in Laplace’'s Rule
of Quccession. A

If one acknowledges nothing on [0, 1], or more generally one makes no dis-
tinctions, Paradigm Theory collapses to a sort of Principle of Indifference (see
Subsection 3.2.1) and one engages in frequency-induction via Laplace’s Rule
of Succession. Laplace’s Rule of Succession is justified because when pre-
sented with hypothesis set [0, 1] we possess a conceptual framework that does
not distinguish between any hypotheses.

L aw-Induction

Frequency-induction allows instance confirmation, the ability to place a prob-
ability on the outcome of the very next experiment. C. D. Broad (1918) chal-
lenged whether frequency-induction, Laplace’s Rule of Succession in particu-
lar, is ever an adequate description of learning. The premises that lead to the
Rule of Succession also entail that if there will be N experiments total and
one has conducted n so far, all of which are found to be 1 (i.e.,, » = n), then
the probability that all outcomes will be 1is (n + 1)/(N + 1). If N is large
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compared to n, (n + 1)/(INV + 1) is small; and this is the origin of Broad’s
complaint. In real situations NV, if not infinite, is very large. Yet we regularly
acquire high degree of belief in the general law that all outcomes will be 1 with
only a handful of experiments (small n). For example, we all conclude that all
crows are black on the basis of only a small (say 100) sample of black crows.
If, by ‘crow,” we mean those alive now, then NV is the total number of living
crows, which is in the millions. In this case, after seeing 100 black crows,
or even thousands, the probability via the Rule of Succession premises of the
law ‘all crows are black’ is miniscule. The probability that all crows are black
becomes high only as n approaches N—only after we have examined nearly
every crow! Therefore, the premises assumed for the Rule of Succession can-
not be adequate to describe some of our inductive methods.

Carnap (1950, pp. 571-572) makes some attempts to argue that instance
confirmation is sufficient for science, but it is certain that we (even scientists)
do in fact acquire high probability in universal generalizations, and the question
is whether (and why) we are justified in doing so.

Jeffreys (1955) takes Broad’s charge very seriously. “The answer is obvi-
ous. The uniform assessment of initial probability says that before we have
any observations there are odds of NV — 1 to 2 against any general law holding.
This expresses a violent prejudice against a general law in a large class” (ibid.,
p. 278). He suggests that the prior probability that a general law holds be a
constant > 0, independent of N. This allows learning of general laws. For
example, fix a probability of .1 that a general law holds, .05 for the *all 0s’
law, .05 for the “all 1s” law, the probability uniformly distributed over the rest.
After seeing just five black crows the probability of the *all 0s” law is .64, and
after seeing ten black crows the probability becomes .98; and this is largely
independent of the total number of crows N.

The problem with this sort of explanation, which is the sort a Personalistic
Bayesian is capable of giving, is that there seems to be no principled reason for
why the general laws should receive the probability assignments they do; why
not .06 each instead of .05, or why not .4 each? Paradigm Theory determines
exact inductive methods capable of giving high posterior probability to laws,
and it does so with very natural paradigms.

H=Hy

Beginning with Hy as the hypothesis set, suppose one acknowledges only
two properties: being a general law and not being a general law. With this
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comprising the paradigm Q;,, the induced symmetry types are the same as the
acknowledged properties. Paradigm Theory gives probability .5 to a general
law holding—.25 to “all 0s’, .25 to *all ones’—and .5 uniformly distributed to
the rest; see the “Q;q.,”" column in Table 3.1. Largely independent of the total
number of crows, after seeing just one black crow the probability that all crows
are black is .5. After seeing 5 and 10 black crows the probability becomes
.94 and .998, respectively—near certainty that all crows are black after just a
handful of observations. | record this in the following theorem whose proof
may be found in the appendix to this chapter.

Theorem 7 If there will be N experiments and 1 < n < N have been con-
ducted so far, all which resulted in 1, then the probability that all N experi-
ments will result in 1, with respect to the paradigm @,,,., on the hypothesis set
Hy;, is approximately )

2 A

14271

One is open to the confirmation of universal generalizations if one acknowl-
edges being a law and acknowledges no other properties. Of course, the the-
orem holds for any paradigm that induces the same symmetry types as (q.-
For example, suppose that a paradigm Q..+ acknowledges the constituents,
from Hintikka (1966), where a constituent is one possible way the world can
be in the following sense: either all things are 0, some things are 0 and some
are 1, or all things are 1. The induced symmetry types are the same as those
induced by Q.-

Similar results to Theorem 7 follow from any paradigm that (i) has {‘all
0s’,‘all 1s’} as a symmetry type (or each is alone a symmetry type), and (ii)
there is some natural number k such that for all IV the total number of sym-
metry types is k. Qqw and Qconst are special cases of this, with £ = 2. Each
paradigm satisfying (i) and (ii) entails an inductive method that is capable of
giving high posterior probability to universal generalizations. This is because
the two laws each receive the probability 1/(2k) (or 1/k if each is invariant)
no matter how large is the number of “crows in the world” N.

There is a problem with paradigms satisfying (i) and (ii). Paradigms sat-
isfying (i) and (ii) are not able to engage in frequency-induction when some
but not all experiments have resulted in 1. This is because frequency-induction
on Hy requires that one distinguish among the N + 1 complexions, and this
grows with IV, and so (ii) does not hold. Specifically considering ()., and
Qconst, the most natural paradigms satisfying (i) and (ii), when some but not
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all experiments have resulted in 1 the Q. and Qconst aSsignment does not
learn at all. This is because the probabilities are uniformly distributed over
the outcome strings between the ‘all 0s’ and “all 1s’ strings, just like when the
paradigm is Q, from earlier.

To “fix” this problem it is necessary to employ a secondary paradigm. We
concentrate only on fixing 4., for the remainder of this subsection, but the
same goes for Q.. as well. What we need is a secondary paradigm on the set
of strings between ‘all 0s” and “all 1s’ that distinguishes the complexions, i.e.,
has them as symmetry types. Let the secondary paradigm be the one acknowl-
edging the complexions and the property of having more 0s than 1s, which is
like the earlier Qr,, and let the hypothesis set be H —{“all 0s’,‘all 15’} instead
of Hy. The resulting inductive behavior is like Laplace’s Rule of Succession
for strings that are neither ‘all zeros’ nor ‘all ones’, and similar to that of (..,
described in Theorem 7 for the “all 0s’ and ‘all 1s’ strings. We denote this
paradigm and secondary paradigm duo by ()., , and one can see the resulting
prior probability on Hy in Table 3.1. The proof of part (a) in the following
theorem emanates, through de Finetti’s Representation Theorem, from part (a)
of Theorem 9; (b) is proved as in Theorem 4.

Theorem 8 (4., assigns prior probabilities to Hy (n < N) such that if 1
occurs r times out of n total, then (a) if r = n > 0 the probability that all
outcomes will be 1 is approximately Z—i},} and (b) if 0 < r < n the probability
that the next outcome will bea 1is %Jr; (i.e., the inductive method is like that

of Qr). A

After seeing 5 and 10 black crows, the probability that all crows are black is
approximately .75 and .85, respectively.

How natural is the primary/secondary paradigm pair (J4,,,? It acknowl-
edges being a law (or in Q.onst’S Case, acknowledges the constituents), ac-
knowledges the complexions, and acknowledges having more Os than 1s. But
it also believes that the laws (or constituents) are more important (or “more
serious” parts of the ontology) than the latter two properties. “Primarily, the
members of our paradigm acknowledge laws; we acknowledge whether or not
all things are 0, and whether or not all things are 1. Only secondarily do we
acknowledge the number of Os and 1s and whether there is a greater number of
0s than 1s.” Having such a conceptual framework would explain why one’s in-
ductive behavior allows both frequency-induction and law-induction. Note that
if 1, were to be primary and ()., secondarily applied to each symmetry type
induced by @, then the result would be no different than @7, alone. The same
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is true if we take as primary paradigm the union of both these paradigms. Thus,
if being a law is to be acknowledged independently of the other two properties
at all, it must be via relegating the other two properties to secondary status.

The above results on universal generalization are related to one inductive
method in Hintikka’s two-dimensional continuum (Hintikka, 1966). g,
(and Qconst,) corresponds closely to Hintikka’s logical theory with @ = 0
(ibid., p. 128), except that Hintikka (primarily) assigns probability 1/3 to each
constituent: 1/3 to “all 0s’, 1/3 to “all 1s’, and 1/3 to the set of strings in be-
tween. In Qq.w (@nd Qeonse) “all 0s” and “all 1s” are members of the same sym-
metry type, and so the probabilities were, respectively, 1/4, 1/4, 1/2. Then
(secondarily) Hintikka divides the probability of a constituent evenly among
the structure-descriptions, which are analogous to our complexions. Finally,
the probability of a structure-description is evenly divided among the state-
descriptions, which are analogous to our outcome strings. (}q.,,, then, ac-
knowledges the same properties as does Hintikka’s “a = 0”-logical theory,
and in the same order.

It is possible for Paradigm Theory to get exactly Hintikka’s o = 0 as-
signment, but the only paradigms | have found that can do this are artificial.
For example, a paradigm that does the job is the one that acknowledges ‘all
0s’ and the pairs {‘all 1s’, o} such that o is a non-law string. “all 0s’ and
‘all 1s” are now separate symmetry types, and the non-law strings in between
comprise the third. Each thus receives prior probability 1/3 as in Hintikka’s
“a = 0”-Logical Theory. This paradigm is indeed artificial, and | do not be-
lieve Paradigm Theory can give any natural justification for the o = 0 inductive
method.

With Qjq., in hand we can appreciate more fully something Paradigm
Theory can accomplish with secondary paradigms: a principled defense and
natural generalization of Hintikka’s “a = 0”-logical theory. Well, not exactly,
since as just mentioned the nearest Paradigm Theory can naturally getto o = 0
IS With Qjaw,, (OF Qconst,,)- 1gnoring this, Paradigm Theory gives us a princi-
pled reason for why one should engage in law-induction of the o = 0 sort:
because one holds Q;q., (Or Qconst) as the conceptual framework, and Qy, sec-
ondarily. Paradigm Theory also allows different notions of what it is to be a
law, and allows different properties to replace that of being a law. The & = 0
tactic can be applied now in any way one pleases.

H =10,1]
We have seen in Subsection 3.2.2 that [0, 1] as the hypothesis set makes frequency-
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induction easier to obtain than when the hypothesis set is Hy. Informally, one
must expend energy when given Hy o as to treat the complexions as the primi-
tive objects upon which probabilities are assigned, whereas this work is already
done when given [0, 1] instead. To do this job on Hy for law-induction we re-
quired secondary paradigms in order to have frequency-induction as well, but
it should be no surprise that on [0, 1] having both comes more easily.

As in the previous subsubsection we begin with the paradigm that acknowl-
edges being a law and not. We call it by the same name, Q. although this
is strictly a different paradigm than the old one since it is now over a differ-
ent hypothesis set. There are two symmetry types, {0,1} and (0,1). Thus,
p = 0 and p = 1 each receives probability .25, and the remaining .5 is spread
uniformly over (0,1). This is a universal-generalization (UG) open-minded
prior probability distribution, where not only is the prior probability density
always positive, but the p = 0 and p = 1 hypotheses are given positive prob-
ability; this entails an inductive method capable of learning laws. It is also
open-minded, and so is an example of frequency-induction as well; we do not
need secondary paradigms here to get this. In fact, because the prior is uniform
between the two endpoints the inductive behavior follows Laplace’s Rule of
Succession when the evidence consists of some 0s and some 1s. The following
theorem records this; the proof of () is in the appendix to this chapter, and (b)
is derived directly from Laplace’s derivation of the Rule of Succession.

Theorem 9 Q;4,, 0N [0, 1] entails the prior probability distribution such that if
1 occurs r times out of . total, then (a) if r = n > 0 the probability that p = 1
is Z—ié and (b) if 0 < r < n the probability that the next outcome will bea 1

e T+1
is =45 A

If one holds [0,1] as the hypothesis set and acknowledges being a law
and nothing else, one is both able to give high probability to laws and con-
verge to the relative frequency. Turned around, we should engage in law- and
frequency-induction (of the sort of the previous theorem) because our concep-
tual framework acknowledges the property of being a law. One need make
no primitive assumption concerning personal probabilities as in Personalistic
Bayesianism, one need only the extremely simple and natural Q..

Similar results to Theorem 9 can be stated for any paradigm such that the
two laws appear in symmetry types that are finite (the laws are distinguished, at
least weakly). For any such paradigm the two laws are learnable because they
acquire positive prior probability, and frequency-induction proceeds (asymp-
totically, at least) because the prior is open-minded. In an informal sense, “any”
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natural paradigm acknowledging the laws results in both law- and frequency-
induction.

3.23 Simplicity-Favoring

Occam’s Razor says that one should not postulate unnecessary entities, and
this is roughly the sort of simplicity to which I refer (although any notion of
simplicity that has the same formal structure as that described below does as
well). Paradigm Theory is able to provide a novel justification for simplic-
ity: when the paradigm acknowledges simplicity, it is “ usually” the case that
simpler hypotheses are less arhitrary and therefore receive higher prior prob-
ability. This explanation for the preferability of simpler hypotheses does not
assume that we must favor simpler hypotheses in the paradigm (something the
paradigm does not have the power to do anyway). The paradigm need only
acknowledge which hypotheses are simpler than which others? In a sentence,
Paradigm Theory gives us the following explanation for why simpler hypothe-
ses are preferred: simpler hypotheses are less arbitrary.

For any hypothesis there are usually multiple ways in which it may be
“complexified”—i.e., unnecessary entities added—to obtain new hypotheses.
Each complexification itself may usually be complexified in multiple ways,
and so may each of its complexifications, and so on. A complexification tree
is induced by this complexification structure, starting from a given hypothesis
as the root, its complexifications as the children, their complexifications as the
grandchildren, etc.1°

Recall from Subsection 3.1.2 that certain paradigms are representable as
graphs. Consider the following two special cases of trees whose associated
paradigms result in the root being the lone maximally defensible element; the
proof is found in the appendix to this chapter. A tree is full if every leaf is at
the same depth in the tree.

Theorem 10 The paradigm associated with any full tree or finite-depth binary
tree places the root as the lone maximally defensible element. But not every
paradigm associated with a tree does so, and these two cases do not exhaust
the trees that do so. A

®|n fact, it suffices to acknowledge the two-element subsets for which one element is simpler
than the other; after all, paradigms as defined for the purposes of this chapter do not allow
relations.

101 am ignoring the possibility that two hypotheses may “complexify” to the same hypothesis,
in which case the structure is not a tree.
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If a hypothesis set H consists of A, all of its complexifications and all of their
complexifications and so on, and the paradigm on H is the complexification
tree with root h—i.e., the paradigm acknowledges the pairs of hypotheses for
which one is a complexification of the other—then the paradigm puts & alone
at the top of the hierarchy if the tree is full or finite binary** Informally,
“most” natural notions of hypothesis and complexification imply complexifi-
cation trees that are full. Such paradigms naturally accommodate Occam’s
Razor; acknowledging simplicity results in setting the lone most defensible el-
ement to what Occam’s Razor chooses for many natural (at least finite binary
and full) complexification trees. The hypothesis that posits the least unneces-
sary entities is, in these cases, the lone most defensible hypothesis, and thus
acquires the greatest prior probability (via Theorem 3).

Full Complexification Trees

Let @y, be the paradigm represented by the full tree below.

25%

3% 3% 3% 3% 3% 3% 3% 3%

There are four symmetry types (one for each level), so each receives proba-
bility 1/4. The approximate probability for each hypothesis is shown in the
figure. Only the Basic Theory is needed here—i.e., the Principles of Type Uni-
formity and Symmetry—the Principle of Defensibility does not apply. If there
are m such trees, the m roots each receive probability ﬁ, the 2m children
each receive 8im the 4m grandchildren each receive 1f+m and the 8m leaves

e are assuming that the paradigm acknowledges only those pairs of hypotheses such that
one is an “immediate” complexification of the other, i.e., there being no intermediate complex-
ification in between. Without this assumption the complexification trees would not be trees at
all, and the resulting graphs would be difficult to illustrate. However, the results in this section
do not depend on this. If the paradigm acknowledges every pair such that one is simpler than
the other, then all of the analogous observations are still true.



214 CHAPTER 3

each receive ﬁ The following theorem generalizes this example. Recall that
the depth of the root of a tree is zero.

Theorem 11 Suppose the paradigm’s associated graph consists of m full b-
ary (b > 2) trees of depth n, and that hypothesis h is at depth ¢ in one of them.
Then P(h) = m A

This tells us that the prior probability of a hypothesis drops exponentially the
more one complexifies it, i.e., the greater 7 becomes. For example, consider
base 10 numbers as in the hypothesis set H = {2;2.0,..., 2.9;2.00,...,
2.09;...;2.90,...2.99}, and suppose the paradigm is the one corresponding
to the complexification tree. Here we have a 10-ary tree of depth two; 2 is
the root, the two-significant-digit hypotheses are at depth one, and the three-
significant-digit hypotheses are at depth two. P(2) = 1/3, the probability of
a hypothesis at depth one is 1/30, and the probability of a hypothesis at depth
two is 1/300.

When there are multiple trees, the roots may be interpreted as the “seri-
ous” hypotheses, and the complexifications the “ridiculous” ones. Theorem 11
tells us that when one acknowledges simplicity and the resulting paradigm is
represented by multiple b-ary trees of identical depth, one favors the serious
hypotheses over all others. This is a pleasing explanation for why prior proba-
bilities tend to accrue to the simplest hypotheses, but it results in each of these
hypotheses being equally probable. A conceptual framework may be more
complicated, acknowledging properties capable of distinguishing between the
different complexification trees. In particular, a secondary paradigm may be
applied to the set of roots, with the understanding that the properties in the
secondary paradigm are acknowledged secondarily to simplicity.

Asymmetrical Complexification Trees

We saw in Theorem 10 that any—even an asymmetrical—finite binary tree
results in the root being the lone most defensible element. The Principle of
Defensibility tends to apply non-trivially when trees are asymmetrical, unlike
when trees are full where it makes no difference. The next example shows an
asymmetrical tree where Paradigm Theory “outperforms” the Basic Theory. To
demonstrate the last sentence of Theorem 10, that ‘full” and “finite binary’ do
not exhaust the trees that result in a lone most defensible root, we have chosen
the tree to be non-binary. We leave it as an exercise to find the probabilities for
a similar asymmetrical binary tree.
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Let Hosymm = {a, ..., p}, and Qasymm b€ as pictured.

With semicolons between the equivalence types, the invariance levels are A
= {4, k, I, m; n, o, p}, Al = {f, g;h,i}, A?> = {d,e}, A3 = {b,c} and
A* = {a}. Paradigm Theory assigns the probabilities as follows: P(n) =
P(o) = P(p) = 7/231 =~ 3%. P(j) = ... = P(m) = 1/44 =~ 2%.
P(f) = ... = P(i) = 9/154 = 6%. P(d) = P(e) = 45/616 =~ 7%.
P(b) = P(c) = 135/1232 =~ 11%. P(a) = 135/616 ~ 22%. Notice how
the Principle of Defensibility is critical to achieve this assignment. The Basic
Theory alone agrees with this assignment on the leaves, but on the others it
assigns each a probability of 1/11 ~ 9% instead. The Basic Theory does not
notice the structure of the invariant hypotheses and so gives them each the same
probability.

This example brings out the importance of the Principle of Defensibility.
The Basic Theory can be viewed as a natural generalization of Carnap’s ni*-
logical theory. Except for cases where the tree is full, the Basic Theory is
inadequate, ignoring all the structure that we know is there. The Basic Theory’s
weakness is, as discussed in Subsection 3.1.3, that it is capable of seeing only
two degrees of detail. The Principle of Defensibility simply says that among the
invariant hypotheses there are, from the point of view of the paradigm already
before you (i.e., no secondary paradigm is needed), those that are more and
less defensible—notice this. It is this principle that allows Paradigm Theory to
break the bonds of a simple generalization of Carnap’s m*-logical theory and
secure a full explanation and justification for simplicity-favoring.
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Discussion

I am in no way elucidating the difficult question of What is simplicity? or What
counts as fewer entities?; if ‘grue’ is considered simpler than ‘green’, then it
may well end up with greater prior probability. In this subsection we have
discussed why simpler hypotheses, supposing we agree on what this means,
should be favored. When one acknowledges—not favors—simplicity in the
paradigm and the paradigm can be represented as a (full or finite binary, among
others) tree, the simpler hypotheses receive higher prior probability. This oc-
curs not because they are simpler, but because they are less arbitrary.

Let me address what could be a criticism of this explanation of the justifi-
cation of simplicity-favoring. This explanation depends on the resulting graph
associated with the paradigm being a tree, with the simpler hypotheses near
the root. This occurs because, so | asserted, there are usually multiple ways of
complexifying any given hypothesis; and these complexifications are a hypoth-
esis” daughters in the tree. What if this is not true? For example, what if one
is presented with a hypothesis set consisting of one simple hypothesis and just
one of its complexifications? Acknowledging simplicity here does not entail
simplicity-favoring; each hypothesis is equally probable. I claim that holding
such a hypothesis set is uncommon and unnatural. Most of the time, if we con-
sider a complexification of a hypothesis and notice that it is a complexification,
then we also realize that there are other complexifications as well. Choosing to
leave the others out of the hypothesis set and allowing only the one to remain is
ad hoc. Worse than this example, suppose for each hypothesis there are multi-
ple simplifications rather than multiple complexifications for each hypothesis?
If this is so, Paradigm Theory ends up favoring more complex hypotheses in-
stead. While certainly one can concoct hypothesis sets where acknowledging
simplicity results in a simplification tree instead of a complexification tree, |
do not believe there to be very many (if any) natural examples. And if such
a hypothesis set is presented to one acknowledging simplicity, the most com-
plex hypothesis is indeed the most favorable. These observations are not un-
expected: unusual conceptual frameworks may well entail unusual inductive
behavior.

For the sake of contrast it is helpful to look at the reasons I have given in
this section for favoring simpler hypotheses compared to those of other theo-
rists: (i) they are more susceptible to falsification (Popper, 1959), (ii) they are
more susceptible to confirmation (Quine, 1963), (iii) they are practically easier
to apply (Russell, 1918; Pearson, 1992; Mach, 1976), (iv) they have greater a
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priori likelihood of being true (Jeffreys, 1948), (v) they have been found in the
past to be more successful (Reichenbach, 1938), (vi) following the rule ‘pick
the simplest hypothesis’ leads with high probability to true hypotheses (Ke-
meny, 1953), (vii) they are more informative (Sober, 1975), (viii) they are more
stable (Turney, 1990), and (ix) they have higher estimated predictive accuracy
(Forster and Sober (1994)). Paradigm Theory’s reason for favoring simpler
hypotheses is that we acknowledge simplicity and, since for each hypothesis
there tends to be multiple complexifications (and not multiple simplifications),
simpler hypotheses are less arbitrary.

3.24 Curve-Fitting

In curve-fitting the problem is to determine the best curve given the data points.
The phenomenon that needs to be explained is that a curve that is a member of
an n parameter family, or model *? is typically favored over curves that require
n + 1 parameters, even when the latter fits the data better than the former.
I derive within Paradigm Theory a class of information criteria dictating the
degree to which a simpler curve (say, a linear one) is favored over a more
complex one.

In curve-fitting generally, the data are presumed to be inaccurate, and no
hypothesis can be excluded a priori. | concentrate only on the hypothesis set
of polynomials, and consider only those up to some finite degree. For definite-
ness | presume that each dimension is bounded to a finite range, and that the
underlying measure is uniform in each M’ — M (where M’ is a model with
one more dimension than M). The first of these conditions on the hypothesis
set is perhaps the only questionable one. The parameter bounds may be set
arbitrarily high, however; so high that it is difficult to complain that the bound
is too restrictive.

Suppose we have models M, and My, My with parameter ag and M; with
parameters ay and a;, where the parameters range over the reals within some
bound and the models are such that for some value of ¢;, M7 makes the same
predictions as M. In cases such as this Jeffreys (1948) (see also Howson,
1987, pp. 210-211] proposes that My and My — M, each receive prior proba-
bility 1/2. We shall denote M, and M; — M, as, respectively, Sy and Sp (“S”
for symmetry type). Paradigm Theory gives a principled defense for Jeffreys’
prior probability assignment: if the conceptual framework acknowledges the

2Do not confuse this notion of model with that discussed in Subsection 3.2.1. There is no
relation.
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two models, then there are two symmetry types—AM and M; — My—=each
receiving prior probability 1/2 via the Principle of Type Uniformity, and the
probability density is uniform over each symmetry type via the Principle of
Symmetry.1?

How the prior probability density compares in 5 and S; depends on the
choice of underlying measure. Let us first suppose that the measure is the Eu-
clidean one, where length is always smaller than area, area always smaller than
volume, etc. Because M is one dimension smaller than M, the prior probabil-
ity density on Sy is infinitely greater than that on S;. Thus, any specific curve
in Sy receives prior probability density that is vanishingly small compared to
the prior probability of a curve in &. More generally, consider My, M, .. .,
M;, where each model is the superset of the previous one resulting from adding
one parameter, ranging over the reals within some bound, to allow polynomi-
als of one higher degree. Each subset My and My 1 — M for0 <k <lisa
symmetry type—denoted, respectively, by & and Si1 for 0 < k < [—and re-
ceives prior probability 1/(1 4 1). With the Euclidean underlying measure, the
probability density over the symmetry types decreases infinitely as the num-
ber of extra parameters is increased. Generally, then, curves that are members
of models with fewer parameters are a priori favored because we possess a
conceptual framework that acknowledges the models (and nothing else).

The Euclidean underlying measure is very strong, resulting in simpler cur-
ves having greater posterior probability density no matter the data. Since each
curve in Sy has a prior probability density that is infinitely greater than each
in Sy for k& > 0, this effectively means that one restricts oneself to the poly-
nomials of least degree. Perhaps less radical underlying measures should be
used, ones that agree that higher degrees have greater underlying measure (in-
tuitively, more polynomials), but not infinitely greater (intuitively, not infinitely
more polynomials). Suppose, instead, that the underlying measure is s in .,
and m times greater in each successive degree of greater dimension; i.e., S
has as underlying measure sm” for some positive real number m. One may
find it convenient to act as if the hypothesis set is finite, and that there are (the
truncation of) sm* curves in Sj.. Then one can say that a curve in .S, has prior
probability equal to so and so, rather than probability density equal to so and so.
At any rate, the important supposition behind the discussion below is that the
underlying measure is m times greater as the degree is increased, not whether
the hypothesis set is finite or not. Under these conditions, individual curves

BBecause My is a subset of M, elements inside M, cannot be interchanged with those
outside without affecting the paradigm. This is true regardless of the measure of the two regions.
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have probability as stated in the following theorem.

Theorem 12 Let the hypothesis set H, ; ,, be asjust described above, i.e., the
set of polynomials such that (i) each has degree less than or equal to Z, and (ii)
M, — M, hasa uniformunderlying measure equal to sm?* within some finite
range. Let Q4. b€ the paradigm that acknowledges the models over H s ,.
If curve hisin Si for some 0 < k < [, then its prior probability density is

1
(I4+1)smk A

The symmetry types Sy, each receive prior probability 1/(I 4+ 1) by the Prin-
ciple of Type Uniformity. A hypothesis in S, must share its probability with
a measure of sm” hypotheses, and by the Principle of Symmetry the theorem
follows. If one imagines that H, , ,, is finite, then a curve h in S, receives prior
probability equal to m (where | 2| stands for the truncation of x).

One can see from the m " term that curves requiring a greater number of
parameters receive exponentially lower prior probability density. Acknowledge
the natural models. . . exponentially favor polynomials of lower degree. This
observation holds regardless of the value of [ and s. As for m, larger values
mean that curves requiring a greater number of parameters are more disfavored.

There are a class of curve-fitting techniques called “information criteria”
which prescribe picking the model that has the largest value for log I, — ~k,
where k is the number of parameters of the model, log is the natural logarithm,
Ly, is the likelihood (P(e|h)) of the maximum likely hypothesis in the model of
k*® dimension M, and ~ depends on the specific information criterion. [See
Smith and Spiegelhalter (1980, pp. 218) for many of the information criteria
(my ~ is their m/2) and references to the original papers defending them; see
also Aitkin (1991).] Once this model is determined, the maximum likely hy-
pothesis in it is chosen, even though it may well not be the maximum likely
hypothesis in the entire hypothesis set. Paradigm Theory natural leads to a
class of information criteria emanating from the supposition that the paradigm
IS Qmoder @nd the underlying measure of S, is m times greater than that of
Sk

Our task is now to find the curve, or hypothesis, with the greatest posterior
probability density given that models M, through M; are acknowledged in the
paradigm (i.e., Qmoder 1S the paradigm). For simplicity, | will for the moment
treat H, ; ,,, as if it is finite, with (the truncation of) sm¥ curves in S;,. We want
to find & such that it maximizes, via Bayes’ Theorem, P(e|h)P(h)/P(e) (e
represents the data); that is, we wish to find A with maximum posterior proba-
bility. It suffices to maximize the natural logarithm of the posterior probability,
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or
log P(e|h) + log P(h) — log P(e).

P(e) is the same for every hypothesis, and we may ignore it. Theorem 12
informs us of the P(h) term, which is the prior probability of i given Q,oder,
and we have

log P(e|h) + log| ]

(I +1)smF

if i is in Sg. This manipulates easily to
log P(e|h) — (logm)k — log(l + 1) — log s.

[ and s are the same for each hypothesis, and so they may also be ignored. This
allows [, the maximum degree of polynomials allowed in the hypothesis set, to
be set arbitrarily high. When the hypothesis set is treated as finite, s can be set
arbitrarily high, thereby allowing the set to approximate an infinite one. Thus,
the hypothesis with the maximal posterior probability is the one that maximizes

log P(e|h) — (logm)k.

This may be restated in the information criterion form by saying that one should
choose the model that has the largest value for

log Ly, — (logm)k,

and then choose the maximum likely hypothesis in that model. | have just
proven the following theorem, which | state for records sake, and retranslate
into its corresponding infinite hypothesis set form.

Theorem 13 Let the hypothesis set be Hj ; ,,, and the paradigm be Q,,oq.1; €t
the prior probability distribution be determined by Paradigm Theory. The hy-
pothesis with the greatest posterior probability density is determined by choos-
ing the model with the largest value for log i, — (log m)k and then picking the
maximum likely hypothesis in that model. A

Notice that log m is filling the role of the ~ in the information criteria equation.
As m increases, goodness of fit is sacrificed more to the simplicity of the curves
requiring fewer parameters since the number of parameters k gets weighed
more heavily.
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Consider some particular values of m. m < 1 means that the underlying
measure of Sy is less than that of Sy; that there are, informally, fewer poly-
nomials of the next higher degree. This is very unnatural, and the correspond-
ing information criterion unnaturally favors more complex curves over simpler
ones. m = 1 implies that moving to higher dimensions does not increase the
underlying measure at all. In this case, the second term in the information
criterion equation becomes zero, collapsing to the Maximum Likelihood Prin-
ciple. When moving up in degree and dimension, it is only natural to suppose
that there are, informally, more polynomials of that degree. With this in mind,
it seems plausible that one chooses m > 1. m = 2 implies that moving to
the next higher dimension doubles the underlying measure, which intuitively
means that the number of hypotheses in Sy is twice as much as in Si. The
value of v for m = 2 is v = log m =~ .69. Smith and Spiegelhalter (1980, pp.
219) observe that when v < .5 more complex models still tend to be favored,
and this does not fit our curve-fitting behavior and intuition; it is pleasing that
one of the first natural values of m behaves well. (My ~ is Smith and Spiegel-
halters’ m /2. Their m is not the same as mine.) When m = e, the resulting in-
formation criterion is precisely Akaike’s Information Criterion. This amounts
to a sort of answer to Forster and Sobers’ (1994, p. 25) charge, “But we do
not see how a Bayesian can justify assigning priors in accordance with this
scheme,” where by this they mean that they do not see how a prior probability
distribution can be given over the curves such that the resulting information
criterion has v = 1. Paradigm Theory’s answer is that if one acknowledges the
natural models, and one assigns underlying measures to degrees in such a way
that the next higher degree has e times the underlying measure of the lower
degree, then one curve-fits according to Akaike’s Information Criterion. When
m = 3, v ~ 1.10, and the resulting inductive method favors simpler curves just
slightly more than in Akaike’s. Finally, as m — oo, the underlying measure
on My — M, becomes larger and larger compared to that of M, and all curves
requiring more than the least allowable number of dimensions acquire vanish-
ingly small prior probability density; i.e., it approaches the situation in Jeffreys’
prior discussed above. (There is also a type of Bayesian Information Criterion,
called a “global” one (Smith and Spiegelhalter, 1980), where v = (logn)/2
and n is the number of data (Schwarz, 1978).)

The question that needs to be answered when choosing a value for m is,
“How many times larger is the underlying measure of the next higher degree?,”
or intuitively, “How many times more polynomials of the next higher degree
are to be considered?” Values for m below 2 seem to postulate too few polyno-
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mials of higher degree, and values above, say, 10 seem to postulate too many.
The corresponding range for ~ is .69 to 2.30, which is roughly the range of
values for v emanating from the information criteria (Smith and Spiegelhal-
ter, 1980). For these “non-extreme” choices of m, curves requiring fewer pa-
rameters quickly acquire maximal posterior probability so long as their fit is
moderately good.

Paradigm Theory’s explanation for curve-fitting comes down to the follow-
ing: We favor (and ought to favor) lines over parabolas because we acknowl-
edge lines and parabolas. The reasonable supposition that the hypothesis set
includes more curves of degree & + 1 than & is also required for this explana-
tion.

Paradigm Theory’s class of information criteria avoids at least one diffi-
culty with the Bayesian Information Criteria. The Personalistic Bayesian does
not seem to have a principled reason for supposing that the prior probabilities
of My, My — My, etc., are equal (or are any particular values). Why not give
My much more or less prior probability than the others? Or perhaps just a little
more or less? In Paradigm Theory the models induce My, My — My, etc., as the
symmetry types, and the Principle of Type Uniformity sets the priors of each
equal.

Another advantage to Paradigm Theory approach is that the dependence on
the models is explicitly built in through the paradigm. Any choice of subsets is
an allowable model choice for Paradigm Theory.

3.2.5 Bertrand’'s Paradox

Suppose a long straw is thrown randomly onto the ground where a circle is
drawn. Given that the straw intersects the circle, what is the probability that
the resulting chord is longer than the side of an inscribed equilateral triangle
(call this event B). This is Bertrand’s question (Bertrand, 1889, pp. 4-5). The
Principle of Indifference leads to very different answers depending on how one
defines the hypothesis set H.

Hy If the hypothesis set is the set of distances between the center of the chord
and the center of the circle, then the uniform distribution gives P(B) =
1/2.

H; If the hypothesis set is the set of positions of the center of the chord, then
the uniform distribution gives P(B) = 1/4.

H, If the hypothesis set is the set of points where the chord intersects the circle,
then the uniform distribution gives P(B) = 1/3.
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Kneale (1949, pp. 184-188) argues that the solution presents itself once the
actual physical method of determining the chord is stated, and a critique can be
found in Mellor (1971, pp. 136-146). Jaynes (1973) presents a solution which
I discuss more below. Marinoff (1994) catalogues a variety of solutions in a
recent article. | approach Bertrand’s Paradox in two fashions.

Generalized Invariance Theory

In the first Paradigm Theory treatment of Bertrand’s Paradox | take the hypoth-
esis set to be the set of all possible prior probability distributions over the points
in the interior of the circle—each prior probability distribution just isa hypoth-
esis. To alleviate confusion, when a hypothesis set is a set of prior probability
distributions over some other hypothesis set, | call it a prior set; | denote the
elements of this set by p rather than h, and denote the set H,.

I wish to determine a prior probability assignment on H,. What “should”
the paradigm be? Jaynes (1973) argues that the problem statement can often
hold information that can be used to determine a unique distribution. In the case
of Bertrand’s Problem, Jaynes argues that because the statement of the problem
does not mention the angle, size, or position of the circle, the solution must
be invariant under rotations, scale transformations, and translations. Jaynes
shows that there is only one such solution (in fact, translational invariance alone
determines the solution), and it corresponds to the H, case above, with P(B) =
1/2: the probability density in polar coordinates is

1
2rRr’

where R is the radius of the circle. The theory sanctioning this sort of determi-
nation of priors | call the Invariance Theory (see Changizi and Barber, 1998).
I will interpret the information contained in the problem statement more
weakly. Instead of picking the prior distribution that has the properties of ro-
tation, scale, and translational invariance as Jaynes prescribes, suppose one
merely acknowledges the invariance properties. That is, the paradigm is com-
prised of the subsets of prior probability distributions that are rotation, scale,
and translation invariant, respectively. For every non-empty logical combina-
tion of the three properties besides their mutual intersection there are contin-
uum many hypotheses. Supposing that each subset of the prior set correspond-
ing to a logical combination of the three properties has a different measure,
Paradigm Theory induces five symmetry types: TNRNS, -TNRNS, RN-.S,
—RNSand —~RN-S (three logical combinations are empty), where I, Rand S

P(r,0) = 0<r<R, 0<6<2rm
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denote the set of translation-, rotation- and scale-invariant priors, respectively.
Each receives prior probability 1/5, and since 7N RN S = {32} and the
other symmetry types are infinite, P(ﬁ) = 1/5 and every other prior re-
ceives negligible prior probability; 1/(2xRr) is the clear choice. In as much
as the properties of this paradigm are objective, being implicitly suggested by
the problem, this solution is objective 14

This “trick” of using Paradigm Theory parasitically on the Invariance The-
ory can be employed nearly whenever the latter theory determines a unique
invariant distribution; and in all but some contrived cases the unique distribu-
tion is maximally probable. Some contrived cases may have it that, say, in
the prior set p; is the unique prior that is scale and rotation invariant (where |
suppose now that these are the only two properties in the paradigm), but that
there is exactly one other prior p, that is neither scale nor rotation invariant
(and there are infinitely many priors for the other two logical combinations).
Here there are at most four symmetry types, {p1 }, {p2}, RN—-Sand -RN S.
Each of these two priors receives prior probability 1/4, and so p is no longer
the maximally probable prior.

Now, as a matter of fact, the invariance properties people tend to be in-
terested in, along with the prior sets that are typically considered, have it that
there are infinitely many priors that are not invariant under any of the invari-
ance properties. And, if the Invariance Theory manages to uniquely determine
a prior, there are almost always going to be multiple priors falling in every
logical combination of the invariance properties except their mutual intersec-
tion. If this is true, then Paradigm Theory’s induced symmetry types have the
unique prior as the only prior alone in a symmetry type, i.e., it is the only in-
variant prior in Paradigm Theory’s definition as well. Given that this is so, by
Theorem 2 this prior has the greatest prior probability.

Paradigm Theory need not, as in the treatment of Bertrand’s Problem above,
give infinitely higher prior probability to the unique invariant prior than the oth-
ers, however. Suppose, for example, that the Invariance Theory “works” in that
there is exactly one prior gy that is both scale and rotation invariant, but that
there are exactly two priors p; and p that are scale invariant and not rotation
invariant, exactly three priors p3, p4 and ps that are rotation and not scale in-
variant, and infinitely many priors that are neither (again, where only rotation
and scale invariance are the properties in the paradigm). There are now four

“And the solution seems to be correct, supposing the frequentist decides such things, for
Jaynes claims to have repeated the experiment and verified that P(B) ~ 1/2, although see
Marinoff’s comments on this (Marinoff, 1994, pp. 7-8).
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symmetry types, each receiving prior probability 1/4. The probability of the
unique invariant prior is 1/4, that of each of the pair is 1/8, and that of each
of the triplet is 1/12. The point | mean to convey is that Paradigm Theory not
only agrees with the Invariance Theory on a very wide variety of cases, but it
tells us the degree to which the Invariance Theory determines any particular
prior. In this sense Paradigm Theory brings more refinement to the Invariance
Theory. In the cases where Paradigm Theory does not agree with the Invariance
Theory, as in the “contrived” example above, there is a principled reason for
coming down on the side of Paradigm Theory if the invariance properties are
just acknowledged and not favored. Also, not only can Paradigm Theory be ap-
plied when the Invariance Theory works, it can be applied when the Invariance
Theory fails to determine a unique prior; in this sense, Paradigm Theory allows
not only a refinement, but a sort of generalization of the Invariance Theory.

H isthe Sample Space

The second way of naturally approaching Bertrand’s Paradox within Paradigm
Theory takes the hypothesis set to be the set of possible outcomes of a straw
toss. In determining the hypothesis set more precisely, one informal guide is
that one choose the “most general” hypothesis set. This policy immediately
excludes H, (see the beginning of this subsection) since it does not uniquely
identify each chord in the circle. H; and H, are each maximally general and
are just different parametrizations of the same set. | choose H, as, in my opin-
ion, the more natural parametrization, with the underlying measure being the
obvious Euclidean area.

What “should” the paradigm be? The problem has a clear rotational sym-
metry and it would seem very natural to acknowledge the distance between the
center of the chord and the center of the circle; this set of distances just is H
and we will be “packing in” Hjy into the paradigm. Rather than acknowledg-
ing all of the distances, suppose that one acknowledges n of them (n equally
spaced concentric rings within the circle); we will see what the probability dis-
tribution looks like as n approaches infinity. Each ring has a different area, and
so each is its own symmetry type. Therefore each has a probability of 1/n. The
probability density is

_1/n 1/n n

P(r,0) = A = @i = R = @i R r € [iR/n,(i+1)R/n],

where, i = 1,...,n, A; is the area of the i*" concentric ring from the center.
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As n gets large, iR/n ~ r, 50 i =~ rn/R. Thus

P0) = GrJR—1Re ~ (s = Rj2)27R

and since n is large, rn — R/2 ~ rn, giving

1
2w Rr

which is exactly what Jaynes concludes. Acknowledge how far chords are
from the center of the circle and accept one of the more natural parametriza-
tions. .. get the “right” prior probability density function.

If instead of acknowledging the distance from the center of the circle one
acknowledges the property of being within a certain radius, then the sets in the
paradigm are nested and the resulting symmetry types are the same as before,
regardless of the underlying measure.

P(r,0) =

3.3 “Solution” toriddle and theory of innateness

The intuition underlying Paradigm Theory is that more unique is better, or ar-
bitrariness is bad, and this is related to the idea that names should not matter,
which is just a notion of symmetry. The more ways there are to change a hy-
pothesis’ name without changing the structure of the inductive scenario (i.e.,
without changing the paradigm), the more hypotheses there are that are just
like that hypothesis (i.e., it is less unique), which means that there is less “suf-
ficient reason” to choose it. The principles of Paradigm Theory link with this
intuition. The Principle of Type Uniformity and Principle of Symmetry give
more unique hypotheses greater prior probability, and the Principle of Defen-
sibility entails that among the more unique hypotheses, those that are more
unique should receive greater prior probability. Recall (from Subsection 3.1.3)
that these are the links of the principles to the “more unique is better” motto—
the principles do not actually say anything about the uniqueness of hypotheses,
but are motivated for completely different, compelling reasons of their own.
Nevertheless, it is a convenient one-liner to say that Paradigm Theory favors
more unique hypotheses, and not just qualitatively, but in a precise quantitative
fashion. In this sense the theory is a quantitative formalization of Leibniz’s
Principle of Sufficient Reason, interpreted nonmetaphysically only.

The favoring of more unique hypotheses, despite its crudeness, is sur-
prisingly powerful, for it is a natural, radical generalization of both Carnap’s
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m*-logical theory and (through the use of secondary paradigms) Hintikka’s
“a = 0”-logical theory, arguably the most natural and pleasing inductive meth-
ods from each continuum. Besides these achievements, Paradigm Theory gives
explanations for a large variety of inductive phenomena:

e it “correctly” collapses to the Classical Theory’s Principle of Indifference when no dis-
tinctions are made among the hypotheses,

e it suggests a conceptual framework-based solution to the problem of the underdetermi-
nation of interpretation for language,

e it explains why no-inductions are rarely considered rational,
e itexplains why frequency-inductions and law-inductions are usually considered rational,

e it gives a foundation for Occam’s Razor by putting forth the notion that simpler hy-
potheses are favored because one acknowledges simplicity, and simpler hypotheses are
(usually) less arbitrary,

e it accommodates curve-fitting by supposing only that one acknowledges the usual mod-
els—constants, lines, parabolas, etc.,

e it allows a sort of generalization of the Invariance Theory for choosing unique prior
probability distributions, and this is used to solve Bertrand’s Paradox,

e and it accounts for Bertrand’s Paradox in another fashion by acknowledging the distance
from the center of the circle.

In the first section of this chapter I laid out the goals of a theory of logical
induction, and the related goals of a theory of innateness. How does Paradigm
Theory fare in regard to these goals?

How Paradigm Theory “solves’ theriddle of induction

Let us briefly recall our basic aim for a logical theory of induction. Ultimately,
we would like to reduce all oughts in induction and inference—you ought to
choose the simplest hypothesis, you should believe the next fish caught will
be a bass, it is wrong to draw a parabola through three collinear points, and
so on—to just a small handful of basic, axiomatic, or primitive oughts. The
hope is that all oughts we find in induction can be derived from these primitive
oughts. We would then know, given just a set of hypotheses and the evidence,
exactly what degrees of confidence we should have in each hypothesis. If we
had this, we would have a solution to the riddle of induction.
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Alas, as discussed at the start of this chapter, this is impossible; there is
no solution to the riddle of induction. There are, instead, multiple inductive
methods, and although some may well be irrational or wrong, it is not the case
that there is a single right inductive method. This was because any inductive
method makes what is, in effect, an assumption about the world, an assump-
tion which is left hanging without defense or justification for why it should be
believed.

If we are to have a theory of logical induction, we must lower the bar. We
would still, however, like the theory to consist of a small handful of primitive
oughts. But we are going to have to resign ourselves to the persistence of a
leftover variable of some kind, such that different settings of the variable lead
to different inductive methods. A theory of logical induction would, at best,
allow statements of the form

If the variable is X, then the primitive oughts entail that one should proceed with
inductive method M.

But it would defeat the whole purpose of our theory if this variable stood for
variable a priori beliefs about the world, because the theory would then only
be able to say that if you started out believing X, then after seeing the evidence
you should believe Y. We want to know why you should have started out
believing X in the first place. How did you get those beliefs in ignorance about
the world?

And this was the problem with the Bayesian approach. The Bayesian ap-
proach was good in that it declares a primitive ought: one should use Bayes’
Theorem to update probabilities in light of the evidence. And to this extent,
Paradigm Theory also utilizes Bayes’ Theorem. But the Bayesian approach
leaves prior probabilities left over as a free-for-the-picking variable, and priors
are just claims about the world.

With this in mind, we required that the variable in any successful theory
of logical induction not stand for beliefs or claims about the world. Because
any choice of the variable leads, via the primitive principles of ought, to an
inductive method, any choice of variable ends up entailing a claim about the
world. But that must be distinguished from the variable itself being a claim
about the world. We required that the variable have some meaningful, non-
inductive interpretation, so that it would be meaningful to say that an inductive
agent entered the world with a setting of the variable but nevertheless without
any a priori beliefs about the world. We would then say that the agent, being
rational, should follow the primitive principles of ought and thereby end up
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with what are claims about the world. But the claims about the world were
not inherent to the variable, they only come from joining the variable with the
principles of ought.

In this chapter I introduced a kind of variable called a “paradigm,” which
is central to Paradigm Theory. Paradigms are not about the world. Instead,
they are conceptualizations of the world, and more exactly, conceptualizations
of the space of hypotheses. Paradigms say which hypotheses are deemed to be
similar to one another, and which are not. More precisely, a paradigm is the
set of properties of hypotheses the inductive agent acknowledges. The set of
properties of hypotheses acknowledged does not comprise a claim about the
world, nor does it possess any ‘ought’s. It is just a way of looking at the set
of hypotheses, and no more than that. Paradigms, then, are non-inductive and
have a meaningful interpretation. This is the kind of variable we wanted in a
theory of logical induction.

But we also needed principles capable of taking us from the variable—
the paradigm in Paradigm Theory—to an inductive method. Paradigm Theory
achieves this via three primitive principles of ought, along with the Bayesian
principle of evidence (Bayes’ Theorem). The three principles concern non-
arbitrariness in the assignment of prior probabilities, and given a paradigm the
principles entail a unique prior probability distribution. The Bayesian principle
of evidence finishes the job by stating how one ought to modify prior proba-
bilities to posterior probabilities as evidence accumulates. In sum, Paradigm
Theory allows statements like this:

If, before knowing anything about the world, you conceptualize the space of
hypotheses in a fashion described by paradigm @, then via the three primitive
principles of prior probability determination you should have certain prior proba-
bilities Pg (h) on those hypotheses. And, furthermore, when evidence is brought
to bear on the logical probabilities of the hypotheses, one should obtain posterior
probabilities by using Bayes’ Theorem.

The most important thing to notice about this is that the statement begins with
the inductive agent not making any claim about the world. The statement does
not simply say that if you have certain beliefs you ought to have certain others.
It requires only that the completely-ignorant-about-the-world inductive agent
enter the world with a way of looking at it. Without any preconceptions about
the world (although he has preconceptions about the properties of hypotheses),
the theory nevertheless tells the agent how he ought to proceed with induction.
The theory thereby reduces all inductive oughts to a few primitive principles of



230 CHAPTER 3

ought, and these primitive oughts are the only inductive primitives one needs
for a theory of induction. At base, to justifiably follow an inductive method isto
have a paradigm and to follow certain abstract principles of non-arbitrariness
and principles of evidence.

Some readers might say that this is all well and good, but does it really get
us anywhere? We are still stuck with paradigms, and there is no way to justify
why an inductive agent has the paradigm he has. We have simply pushed the
indeterminacy of inductive methods downward, to prior probabilities, and then
further downward to paradigms. We still have not answered the question of
which inductive method we should use, because we have not given any reason
to pick any one paradigm over another. That is, suppose that—poof—a rational,
intelligent agent suddenly enters a universe. We still do not know what he
should do in regards to learning, and so Paradigm Theory is useless for him.

The response to this kind of criticism is that it is essentially taking Paradigm
Theory to task for not being a solution to the riddle of induction. To see this,
note that the criticism can be restated as, “If Paradigm Theory is so great, why
isn’t it telling us what one should believe given just the hypothesis set and the
evidence?” But this is just to ask why Paradigm Theory does not solve the
riddle of induction. The answer, of course, is that there is no solution to the
riddle of induction; i.e., there is no single way that one ought to take a set of
hypotheses and evidence and output posterior probabilities in the hypotheses.
This kind of criticism has forgotten to lower the bar on what we should be
looking for in a theory of logical probability. At best, we can only expect of a
theory of logical probability that it reduce inductive oughts to a small number
of primitive ones, and to some variable that is not about the world. We cannot
expect to have no variable left over.

It should be recognized that it was not prima facie obvious, to me at least,
that it would even be possible to obtain this lowered-bar theory of logical in-
duction. Prima facie, it seemed possible that there would be no way, even
in principle, to reduce inductive oughts to a few primitive oughts and some
meaningful, non-inductive variable. Paradigm Theory is an existence proof; a
lowered-bar theory of logical probability exists. | have presented no argument
that no other theory of logical probability could not also satisfy these require-
ments | have imposed; there probably exist other such theories, perhaps others
with superiorities over Paradigm Theory.
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How Paradigm Theory servesas a theory of innateness

Paradigm Theory provides a kind of best-we-can-hope-for solution to the rid-
dle of induction. But I had also stated at the start of this chapter that we were
simultaneously looking for a theory that would serve as a theory of innateness,
and | had put forth requirements we demanded of such a theory. The require-
ments were that we be able to model rational intelligent agents as following
certain fixed learning principles, and that any innate differences in their resul-
tant inductive method would be due to some setting of a variable with a weak,
non-inductive, meaningful interpretation. Under the working assumption that
the brain is rational, the theory would apply to the brain as well. The the-
ory of innateness would provide a way of economically explaining why differ-
ent agents—or different kinds of brain—innately engage in different inductive
methods. We would not have to commit ourselves to a belief that the principles
of learning may be innately chosen willy nilly; there is a single set of learning
principles that anyone ought to follow. We would also not be committed to a
view that brains enter the world with a priori beliefs about it, a view that seems
a little preposterous. Instead, brains would only have to innately be equipped
with some other kind of difference, although what that difference might be will
depend on the kind of theory of innateness that is developed.

Recall that the Bayesian framework is a nice step forward in this regard,
and has accordingly been taken up in psychology, neuroscience, computer and
the decision sciences to study learning and interactions with an uncertain world.
All innate differences in inductive methods will be due not to innate differences
in how evidence is to be used to modify the degrees of confidence in hypothe-
ses. All innate differences stem from innate differences in prior probabilities,
and here lies the problem with the Bayesian framework as a theory of innate-
ness: prior probabilities are a priori beliefs about the world, and thus they are
not non-inductive, as we require for a theory of innateness.

The Bayesian framework should not, however, be abandoned: it gets the
evidence principle right. What we would like is to dig deeper into prior prob-
abilities and find principles of prior probability determination that any agent
should follow, so that from some non-inductive innate variable comes prior
probabilities via these principles. And this is where Paradigm Theory en-
ters. Objects called “paradigms” were introduced which were interpreted as
conceptual frameworks, or ways of conceptualizing the space of hypotheses.
Paradigms were not about the world. Paradigm Theory introduced principles
of prior probability determination saying how, given a paradigm, one ought to
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assign prior probabilities. Paradigm Theory, then, appears to satisfy the re-
quirements of a theory of innateness.

But, someone might criticize, we are still left with innate paradigms, or
innate ways of conceptualizing the set of hypotheses, or innate ways of lumping
some hypotheses together as similar or of the same type. Is this any better than
innate prior probabilities? Perhaps it is strange to hypothesize that brains have
a priori beliefs about the world, but is it not also strange to hypothesize that
brains have a priori ways of carving up the space of hypotheses?

As a response, let me first admit that it is, prima facie, a bit strange. How-
ever, one has to recognize that if a brain engages in an inductive method, then
it must have entered the world with some innate structure that is sufficient to
entail the inductive method. Such innate “structure” will either be learning al-
gorithms of some kind unique to that kind of brain, or perhaps the Bayesian
evidence principle along with prior probabilities unique to that kind of brain,
or perhaps the Bayesian evidence principle and principles of prior probability
determination along with a paradigm unique to that kind of brain, etc. It may
seem prima facie odd to believe that any of these kinds of “structures” could
be innate. One reason for this first reaction to innate structures is that there
is, | believe, a tendency to revert to thinking of brains as blank slate, universal
learning machines: brains enter the world completely unstructured, and shape
themselves by employing universal learning algorithms to figure out the world.
But as we have discussed, there is no universal learning algorithm, and so there
cannot be brains that enter the world without innate learning-oriented struc-
tures. We are, then, stuck with innate learning-oriented structure, no matter
how strange that might seem. Thus, the fact that innate paradigms strike us as
strange is not, alone, an argument that Paradigm Theory is supposing some-
thing outlandish.

But, one may ask, are paradigms any less outlandish than prior probabili-
ties? What have we gained by moving from innate structure in the form of prior
probabilities to innate structure in the form of paradigms? We have gained in
two ways. First, we have isolated further principles of rationality that induc-
tive agents ought to follow; namely, the non-arbitrariness principles of prior
probability determination (the Principles of Type Uniformity, Symmetry and
Defensibility). Second, paradigms are a much weaker innate structure, being
only about the kinds of hypotheses there are, rather than about the degree of
confidence in the hypotheses.

Note that Paradigm Theory as a theory of innateness is not necessarily com-
mitted to actual innate paradigms in the head, whatever that might mean. It is
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commonplace for researchers to hypothesize that different kinds of organisms
have what are, in effect, different innate prior probabilities, but such researchers
do not commit themselves to any view of what mechanisms may instantiate
this. Prior probabilities are primarily a theoretical construct, and allow us to un-
derstand brains and learning agents within the Bayesian framework. Similarly,
Paradigm Theory is not committed to any particular mechanism for implement-
ing innate paradigms. Rather, paradigms are a theoretical construct, allowing
us to describe and explain the behaviors of inductive agents and brains in an
economical fashion.

Paradigm Theory is a theory of innateness satisfying the requirements we
set forth, but there is no reason to believe there are not others also satisfying
the requirements, perhaps better theories in many ways.

Appendix to chapter: Some proofs

This section consists of some proofs referred to in this chapter.

Here are some definitions. §(h) = v (h isy-Q-invariant in H) if and only
if h € A7. 6(h) is the ordinal number indicating the invariance level of h. Say
that ¢ is a Q7-symmetry type in H if and only if ¢ is a @ M HY-symmetry type
in H7. Let k,, be the cardinality of H™ (which is also the number of singleton
Q" -symmetry types), let s, be the number of non-singleton *-symmetry
types, and let e(h) be the cardinality of the @-equivalence type of h. Notice
that k41 = card(I(Q™, H™)) (‘card(A)’ denotes the cardinality of set A).
We denote igi by r; and call it the singleton symmetry typeratio at level i.
The foIIowmg theorem states some of the basic properties of Paradigm Theory.

Theorem 14 The following are true concerning Paradigm Theory.
1. P(H"Y) =r,P(H") (P(H®) =1).
2. P(H"‘H) =rori--Th
3. P(A™) = (1—r,)P(H").

4. P(h) = o p(HIM),

e(R)Ks(n)+1

5. P(h) = 000

e(h)ksny41”
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Proof. Proving 1, there are s, + kp+1 Q"-Symmetry types, and «,.1 of them
are singletons which “move up” to the n + 1** level. Since each Q™-symmetry
type gets the same probability, H"*! gets the fraction

Rn+1
Sn + Kn+1

of the probability of H™. 2 is proved by solving the recurrence in 1. 3 follows
from 1 by recalling that P(A") = P(H™) — P(H™*1). To prove 4, notice that
the probability of a hypothesis 4 is

P(A)

ssmye(h)”

Substituting P(A%(")) with the formula for it from 3 and some algebraic ma-
nipulation gives the result. Finally, 5 follows from 2 and 4. A

P(AY)

Proof of Theorem 3. To prove 1, it suffices to show that for all 1, <

P(fii“). By Theorem 14,
i+1
i Si i
P(AY) = P(HY)
Si + Kit1
and
P(AY) = Sit1 P(H™Y) = Sit1 Rit1 P(H?)
Sit1 + Kit2 Si+1 + Kit2 i + Kit1

By substitution we get

P(AH_I) o P(Az) Ri4+1

Si+1 Si  Si+1t+ RKit2

It therefore suffices to show that

s
1< —
Si+1 T Kit2

and this is true because the denominator is the total number of ! symmetry
types, which must be less than or equal to the numerator, which is the total
number of hypotheses in H**!. 2 follows easily from 1. A
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It is not the case that less defensible equivalence types always have less
probability. It is also not the case that more defensible hypotheses never have
lower probability than less defensible hypotheses. A more defensible hypoth-
esis hy can have less probability than a less defensible hypothesis 7 if the
equivalence type of h; is large enough compared to the equivalence type of h.
The following theorem states these facts.

Theorem 15 The following are true about Paradigm Theory.

1. Thereareequivalence typesd, lessdefensible than d, suchthat P(d;) =
P(ds).

2. There are hypotheses h; not more defensible than h, such that P(hy) £
P(hs).

Proof. To prove 1, consider a paradigm represented by a two-leaf binary tree.
The root comprises one equivalence type, and the pair of leaves is the other.
Each equivalence type is also a symmetry type here, and so each gets probabil-
ity 1/2.

Proving 2, consider the tree on H; from Section 3.1.2. The reader may
verify that h and ¢ receive probability % but e, f, and g receive probability
M1 -1 A
1518 18
Proof of Theorem 4. When n is even there are 2n complexions and Laplace’s
method gives each a probability of 1/2n. For each complexion there is a sym-
metrical one with respect to )z, with which it may be permuted (without chang-
ing Q1.), so there are n symmetry types, each receiving via @y, a probability of
1/n. Each symmetry type contains exactly two complexions of equal size, and
so each complexion gets a probability assigned of 1/2n. (The non-complexion
set in Q1 does not come into play when n is even.)

When n is odd there are 2n — 1 complexions and Laplace’s method gives
each a probability of 1/(2n—1). Now there are an odd number of complexions,
and the “middle” one is not symmetrical with any other complexion. Further-
more, because @y, contains the set of all sequences with more 0s than 1s, and
this set is asymmetrical, none of the complexions are symmetrical with any
others. Thus, each complexion is a symmetry type, and each complexion re-
ceives a probability of 1/(2n — 1). A

Proof of Theorem 7. There are 2V — 2 sequences that are not predicted by the
‘all 15 or “all 0s” laws, and these must share the .5 prior probability assignment.
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There are 2V =" —1 sequences of length N with the first n experiments resulting
in 1 but not all the remaining N — n experiments resulting in 1; the total prior
probability assigned to these strings is therefore

12N
1= 58 —9—

The probability that after seeing » 1s there will be a counterexample is

q
25+4q

With some algebra, the probability that after seeing n 1s the remaining will all

belis
1 oN _9

22N (27 4 2-1) — 2’
which, for any moderately sized N becomes, with some algebra, approximately

2n—1
— A
14 2n-t

Proof of (a) in Theorem 9. We want the probability that p = 1 given that we
have seen n 1s and no 0s (n > 0); i.e., P(p = 1|1™), where 1™ denotes the
string with n 1s. By Bayes’ Theorem

Pp=11") =

Pp=1)P1"p=1)
P(p=1)P(1"[p=1)+ P(p € (0,1))P(1"]p € (0,1)) + P(p = 0)P(1"|p = 0)
The only term that is not immediately obvious is P(1"*|p € (0, 1)), which is
Jy p"dp = 1/(n + 1). Thus we have

25(1)
25(1) + .57 +.25(0)

and with a little manipulation this becomes Z—ié AN

Proof Sketch of Theorem 10. 1 is simple and 2 is proved by induction on the
depth of the binary tree. 1 and 2 do not exhaust the types of trees that result in
the root being the lone maximally defensible element; see the H,symm/Qasymm
example in Section 3.2.3 for a non-binary non-full tree that puts the root alone
at the top. Informally, most trees put the root at the top. We have made no
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attempt to characterize the class of trees that put the root at the top. See the
following tree for 3.

A

Proof of Theorem 11. There are n + 1 symmetry types (one for each level),
each receiving probability 1/(n + 1). The symmetry type at depth i has ¥ ele-
ments. A
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