
Chapter 1

Scaling in Nervous Networks

Why are biological structures shaped or organized like they are? For example,
why is the brain in the head, why is the cortex folded, why are there cortical
areas, why are neurons and arteries shaped like they are, and why do animals
have as many limbs as they do? Many aspects of morphology can be usefully
treated as networks, including all the examples just mentioned. In this chapter
I introduce concepts from network theory, or graph theory, and discuss how we
can use these ideas to frame questions and discover principles governing brain
and body networks.

The first topic concerns certain scaling properties of the large-scale con-
nectivity and neuroanatomy of the entire mammalian neocortical network. The
mammalian neocortex changes in many ways from mouse to whale, and these
changes appear to be due to certain principles of well-connectedness, along
with principles of efficiency (Changizi, 2001b). The neocortical network must
scale up in a specific fashion in order to jointly satisfy these principles, leading
to the kinds of morphological differences between small and large brains.

As the second topic I consider the manner in which complexity is accom-
modated in brain and behavior. Do brains use a “universal language” of basic
component types from which any function may be built? Or do more com-
plex brains have new kinds of component types from which to build their new
functions?

The final topic concerns the nervous system at an even larger scale, dealing
with the structure of the nervous system over the entirety of the animal’s body.
I show that the large-scale shape of animal bodies conforms to a quantitative
scaling law relating the animal’s number of limbs and the body-to-limb pro-
portion. I explain this law via a selective pressure to minimize the amount of
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limb material, including nervous tissue (Changizi, 2001a). That is, because we
expect nervous systems to be “optimally wired,” and because nervous systems
are part and parcel of animal bodies, reaching to the animal’s extremities, we
accordingly expect—and find—the animal’s body itself to be optimally shaped.

One feature connecting the kinds of network on which we concentrate in
this chapter is that each appears to economize the material used to build the
network: they appear to be volume optimal. It is not a new idea that organism
morphology might be arranged so as to require the least amount of tissue vol-
ume [see, for example, Murray (1927)], but in recent years this simple idea has
been applied in a number of novel ways. There are at least three reasons why
optimizing volume may be evolutionarily advantageous for an organism. The
first is that tissue is costly to build and maintain, and if an organism can do the
same functions with less of it, it will be better off. The second reason, related
to the first, is that minimizing tissue volume gives the organism room with
which to pack in more functions. The third reason is that minimizing tissue
volume will tend to reduce the transmission times between regions of the tis-
sue. These three reasons for volume optimization in organisms are three main
reasons for minimizing wire in very large-scale integrated (VLSI) circuit de-
sign (e.g., Sherwani, 1995); we might therefore expect organisms to conform to
principles of “optimal circuit design” as made rigorous in the computer science
fields of graph theory and combinatorial optimization theory (e.g., Cormen et
al., 1990). . . . and we might have this expectation regardless of the low level
mechanisms involved in the system.

Y junctions

The first quantitative application of a volume optimization principle appears to
be in Murray (1926b, 1927), who applied it to predict the branching angles of
bifurcations in arteries and trees (e.g., aspen, oak, etc.). He derived the optimal
branch junction angle (i.e., the angle between the two children) to be

cos θ =
w2

0 − w2
1 − w2

2

2w1w2
,

where w0, w1 and w2 are the cross-sectional areas of the junction’s parent and
two children. One of the main consequences of this equation is that, for sym-
metrical bifurcations (i.e., w1 = w2), the junction angle is at its maximum
of 120◦ when the children have the same cross-sectional area as the parent
segment, and is 0◦ when the children’s cross-sectional area is very small. [Ac-
tually, in this latter case, the branch angle falls to whatever is the angle between



SCALING IN NERVOUS NETWORKS 3

the source node of the parent and the termination nodes for the two children.]
That is, when trunks are the same thickness as branches the branch angle that
minimizes the volume of the entire arbor is 120◦. This is very unnatural, how-
ever, since real world natural arbors tend to have trunks thicker than branches.
And, if you recall your experience with real world natural arbors, you will
notice that they rarely have junction angles nearly as high as 120◦; instead,
they are smaller, clustering around 60◦ (Cherniak, 1992; Changizi and Cher-
niak, 2000). Prima facie, then, it seems that natural arbors are consistent with
volume optimality. Murray also derived the equation for the volume-optimal
angle for each child segment relative to the parent, and one of the main conse-
quences of this is that the greater the assymmetry between the two children’s
cross-sectional areas, the more the thinner child will branch at 90◦ from the
parent. We find this in natural arbors as well; if there is a segment out of
which pokes a branch at nearly a right angle, that branch will be very thin com-
pared to the main arbor segment from which it came. Qualitatively, then, this
volume optimality prediction for branch junctions fits the behavior of natural
junctions. And it appears to quantitatively fit natural junctions very well too:
These ideas have been applied to arterial branchings in Zamir et al. (1983), Za-
mir et al. (1984), Zamir and Chee (1986), Roy and Woldenberg (1982), Wold-
enberg and Horsfield (1983, 1986), and Cherniak (1992). Cherniak (1992)
applied these concepts to neuron junctions, showing a variety of neuron types
to be near volume-optimal; he also provided evidence that neuroglia, Eucalyp-
tus branches and elm tree roots have volume optimal branch junctions. [Zamir
(1976, 1978) generalized Murray’s results to trifurcations, applying them to
arterial junctions.]

Although it is generally difficult to satisfy volume optimality in systems,
one of the neat things about this volume optimization for natural branch junc-
tions is that there is a simple physical mechanism that leads to volume opti-
mization. Namely, the equation above is the vector-mechanical equation gov-
erning three strings tied together and pulling with weights w0, w1 and w2 [see
Varignon (1725) for early such vector mechanical treatments]. If each of the
three junction segments pulls on the junction with a force, or tension, propor-
tional to its cross-sectional area, then the angle at vector-mechanical equilib-
rium is the volume-optimizing angle (Cherniak, 1992, Cherniak et al., 1999).
Natural arbors conforming to volume optimality need not, then, be implement-
ing any kind of genetic solution. Rather, volume optimality comes for free
from the physics; natural arbors like neurons and arteries self-organize into
shapes that are volume optimal (see, e.g., Thompson, 1992). In support of this,
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many non-living trees appear to optimize volume just as well as living trees,
from electric discharges (Cherniak, 1992) to rivers and deltas (Cherniak, 1992;
Cherniak et al., 1999).

In addition to this physics mechanism being advantageous for a network
to have minimal volume, natural selection may favor networks whose average
path between root and leaves in the network is small—shortest-path trees—and
one may wonder the degree to which this mechanism simultaneously leads to
shortest-path trees. Such shortest-path trees are not necessarily consistent with
volume optimization (Alpert et al., 1995; Khuller et al., 1995), but the near-
volume-optimal natural trees tend to come close to minimizing the average path
from the root. Considering just a y-junction, the shortest path tree is the one
which sends two branches straight from the root; i.e., the junction occurs at the
root. An upper bound on how poorly a volume-optimal junction performs with
respect to the shortest-path tree can be obtained by considering the case where
(i) the root and two branch terminations are at the three vertices of an equilat-
eral triangle with side of unit length, and (ii) the volume per unit length (i.e.,
cross-sectional area) is the same in all three segments. The volume-optimal
branch junction angle is 120◦ and occurs at the center of mass of the triangle.
The distance from the root to one of the branches along this volume-optimal
path can be determined by simple geometry to be 1.1547, or about 15% greater
than the distance in the shortest-path tree (which is along one of the unit-length
edges of the triangle). This percentage is lower if the relative locations of the
root and branch terminations are not at the three vertices of an equilateral tri-
angle, or if the volume per unit length of the trunk is greater than that of the
branches (in which case the junction point is closer to the root). In sum, nat-
ural selection has stumbled upon a simple vector-mechanical mechanism with
which it can simultaneously obtain near volume-optimal and near-shortest-path
trees.

Multi-junction trees

The applications of a “save volume” rule mentioned thus far were for single
branch junctions. Kamiya and Togawa (1972) were the first to extend such
applications to trees with multiple junctions, finding the locally optimal multi-
junction tree for a dog mesenteric artery to be qualitatively similar to the actual
tree. Schreiner and Buxbaum (1993), Schreiner et al. (1994) and Schreiner
et al. (1996) constructed computer models of large vascular networks with
realistic morphology by iteratively adding locally volume-optimal y-junctions.
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Traverso et al. (1992) were the first to consider modeling natural arbors, neural
arbors in particular, with multiple junctions using the concept of a Steiner tree
(Gilbert and Pollak, 1968) from computer science, which is the problem of
finding the length-minimal tree connecting n points in space, where internodal
junctions are allowed (i.e., wires may split at places besides nodes). Branch
junctions in Steiner trees have angles of 120◦, and Traverso et al. (1992) found
that some sensitive and sympathetic neurons in culture have approximately this
angle.

Most neurons and other natural arbors, however, have branch junction an-
gles nearer to 60◦ or 70◦ (Cherniak, 1992; Changizi and Cherniak, 2000);
the Steiner tree model is inadequate because it assumes that trunks have the
same volume cost per unit length (i.e., same cross-sectional area) as branches,
when it is, on the contrary, almost always the case that trunks are thicker than
branches. To determine if natural trees have volume-optimal geometries a gen-
eralized notion of Steiner tree is needed, one that allows trunks to be thicker
than branches. Professor Christopher Cherniak and myself invented such a
notion and showed that axon and dendrite trees (Cherniak et al., 1999), coro-
nary arterial trees (Changizi and Cherniak, 2000) and Beech trees (Cherniak
and Changizi, unpublished data) optimize volume within around 5%, whereas
they are around 15% from surface area optimality and around 30% from wire-
length optimality. [The average values for the unpublished tree data are from
eight 4-leaf Beech tree arbors, and are 4.63% (±3.21%) from volume optimal-
ity, 10.94% (±6.56%) from surface area optimality, and 26.05% (±12.92%)
from wire length optimality (see Cherniak et al., 1999, for methods).]

The studies mentioned above concentrated on the morphology of individual
natural trees, e.g., individual neurons. We may move upward from individual
neurons and ask, How economically wired are whole nervous systems? This
has been asked and answered in a variety of ways.

Larger scales

At the largest scale in the nervous system, Cherniak (1994, 1995) showed that
animals with brains making more anterior connections than posterior connec-
tions should have, in order to minimize volume, the brain placed as far for-
ward as possible; this explains why the brain is in the head for vertebrates and
many invertebrates. Radially symmetric animals, on the other hand, are ex-
pected to have a more distributed neural network, as is the case (e.g., Brusca
and Brusca, 1990, p. 87). In what is to date the most stunning conformance
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to volume optimality, Cherniak (1994, 1995) showed that, of approximately
forty million possible positions of the ganglia in Caenorhabditis elegans, the
actual placement of the ganglia is the wire-optimal one. He also provides sta-
tistical evidence that the placement of cortical areas in cat (visual cortex) and
rat (olfactory cortex) are consistent with the hypothesis that the total length of
area-to-area connections is minimized.

Ruppin et al. (1993) show that each of the following facts about the brain
decrease the overall required volume of the brain: (i) that gray matter is sep-
arated from white matter, (ii) that gray matter is a shell on the surface of the
brain with white matter in the center (rather than vice versa), and (iii) that the
gray matter has convolutions. Van Essen (1997) also argues that the convo-
lutions of the cortex are a fingerprint of low wiring. Wire-minimization has
also been used in a number of ways to explain local connectivity patterns in
the visual cortex (e.g., stripes, blobs or patches) (Durbin and Mitchison, 1990;
Mitchison, 1991, 1992; Goodhill et al., 1997; Chklovskii, 2000; Chklovskii
and Koulakov, 2000; Koulakov and Chklovskii, 2001).

Well-connectedness

As we will see later, the neocortical network not only reveals principles of
volume optimization, it also reveals principles of well-connectedness, where
by that I refer, intuitively, to properties of the network which bear on how
“close,” in some sense, vertices are to one another. One way to measure neuron-
interconnectedness is via the average percent neuron-interconnectedness of
neurons, where a given percent neuron-interconnectedness of a neuron is the
percentage of all neurons to which it connects. It has been recognized, how-
ever, that it is prohibitive to maintain an invariant average percent neuron-
interconnectedness as the network size is scaled up (Deacon, 1990; Stevens,
1989; Ringo, 1991), because this requires that the average degree of a vertex
[the degree of a vertex is the number of edges at a vertex] scales up proportion-
ally with network size, and thus the total number of edges in the network scales
as the square of network size. Average percent neuron-interconnectedness is an
overly strong notion of neural interconnectedness, however. A weaker measure
might be the characteristic path length, which I will call the network diameter,
which is defined as, over all pairs of neurons, the average number of “edges”
(i.e., axons) along the shortest path connecting the pair. Intuitively, network
diameter measures how close—in terms of connectivity—neurons are to one
another, on average.
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For most random networks the diameter is “low.” [In a random network
each pair of nodes has the same probability of having an edge between them.]
In particular, the network diameter is approximately (log N)/(log δ) (Bollobás,
1985, p. 233), where N is the network size and δ the average degree. [This
also requires assuming N >> δ >> log N >> 1.] While keeping the average
percent neuron-interconnectedness invariant requires that degree (the number
of neurons to which a neuron connects) scale proportionally with network size,
the network diameter can remain invariant even if the degree grows dispro-
portionately slowly compared to the network size. Suppose, for example, that
N ∼ δb, where b > 1; that is, the degree grows disproportionately slowly as a
function of network size, but as a power law. [A power law is an equation of
the form y = axb, where a and b are constants.] Then in a random network the
diameter is approximately

log(Cδb)
log δ

= b +
log C

log δ
,

where C is a proportionality constant. In the limit of large brains, the network
diameter is invariant, approaching b, even though the degree is scaling dispro-
portionately slowly.

This observation is not particularly useful for biological systems, however,
because few biological networks are random. However, in what has now be-
come a seminal paper, Watts and Strogatz (1998) noticed that highly ordered
networks can have random-network-like diameter by merely adding a small
number of “shortcuts” connecting disparate regions of the network; they named
such networks small world networks. A firestorm of papers have since been
published showing that many natural networks appear to be small world, in-
cluding nervous systems and social networks. Nature has, indeed, hit upon
one useful kind of network, allowing highly ordered clustering, and yet low
network diameter. With these ideas in mind, we will be able to see that the
mammalian neocortex has low and invariant network diameter, and, in fact, it
is approximately 2.

1.1 The mammalian neocortex

Mice, men and whales have brains, and as they are all mammals, their cor-
tex mostly consists of something called the neocortex, which is found only in
mammals. When researchers talk of the cortex, they are almost always refer-
ring to the neocortex. This is the part of the mammalian brain that excites
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most researchers, as it appears to be the principal anatomical feature separating
mammalian brains from other vertebrate brains; it is where the key to mam-
malian intelligence will be found. The neocortex consists of gray matter which
lies on the surface of the brain, and white matter which is in the interior. The
gray matter consists of neurons of many types, synapses, and glial cells. The
white matter consists of axons which reach from neurons in one part of the gray
matter to make synapses with neurons in another part of the gray matter. The
neocortical gray matter is characterized by what appears to be layers as one
moves from the surface of the gray matter inward toward the center, and six
layers are usually distinguished. There are also distinct cortical areas at differ-
ent locations on the cortical sheet, inter-area connections being made primarily
via white matter connections, and intra-area connections being made primarily
by local connections not traveling into the white matter.

Although all mammals have a neocortex, many of the basic properties of
the neocortex change radically from small brains to large brains. The changes
are so dramatic that one might justifiably wonder whether the neocortex in
mouse and whale are really the same kind of organ. And if they are the same
kind of organ, then why the radical changes? Are there some underlying prop-
erties that are being kept constant—these properties being the key ones, the
ones that really define the neocortex—and the properties that change are chang-
ing for the purpose of keeping these key properties invariant? It is these ques-
tions we examine in this section. I will describe the ways in which the neo-
cortex changes as it increases in size, and describe a theory (Changizi, 2001b)
that aims to explain what the central features of the neocortex are, such that all
these other properties must change as they do.

To understand how the neocortical network scales up in larger brains, we
need to understand the notion of a power law. Power laws are of the form
y = axb, where a and b are constants. a is a proportionality constant, and
it often depends on the specific nature of the studied systems. For example,
the volume of a cube is V = D3, where D is the diameter; i.e., a = 1 and
b = 3. The volume of a sphere, however, is V = (4/3)π(D/2)3 , which
is V = (π/6)D3; i.e., a = π/6 ≈ 0.5 and b = 3. The volume of both
cubes and spheres scale as the diameter cubed, but the proportionality constants
are different. So long as the geometrical shape is similar, the proportionality
constant will not change, and it is often appropriate to ignore it, writing y ∼ xb

to mean that y is proportional to xb. Power laws are particularly appropriate for
neocortical scaling [and in biology more generally (see Calder, 1996; Schmidt-
Nielson, 1984)]. It turns out that many of the properties of the neocortex scale
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Table 1.1: Measured scaling exponents for neocortical
variables against gray matter volume Vgray. The mea-
sured exponents are in most cases acquired from scaling data
against brain volume. To obtain exponents against Vgray, I
have assumed that Vgray is proportional to brain volume.
This proportionality is empirically justified, as measured ex-
ponents for Vgray to brain volume are near one: 0.983
(Prothero, 1997a), 0.982 (Hofman, 1991), 1.054 (Hofman,
1989), 1.04 (Prothero and Sundsten, 1984), 1.06 (Frahm et
al., 1982) and 1.08 (Jerison, 1982).

Variable description Variable Measured
exponent

References

# areas to which an area connects D 0.30     Here

Neuron number N 0.62     Jerison, 1973
0.67     Passingham, 1973

Neuron density ρneuron -0.312     Prothero, 1997b
-0.28     Prothero, 1997b
-0.28     Tower, 1954
-0.32     Tower, 1954

Number of areas A 0.40     Changizi, 2001b

Thickness T 0.092     Prothero, 1997a

0.115     Prothero, 1997a
0.129     Hofman, 1991
0.197     Hofman, 1989
0.08     Prothero and Sundsten, 1984
0.17     Jerison, 1982

Total surface area S 0.905     Prothero, 1997a
0.893     Prothero, 1997a
0.922     Prothero, 1997a
0.901     Hofman, 1991
0.899     Hofman, 1989
0.89     Hofman, 1985
0.91     Prothero and Sundsten, 1984
0.91     Jerison, 1982

Module diameter m 0.135     Manger et al, 1998

Soma radius R0 0.10     Changizi, 2001b

Axon radius R1 0.105     Shultz and Wang, 2001

Volume of white matter Vwhite 1.318     Allman, 1999
0.985     Prothero, 1997b
1.28     Hofman, 1991

1.37     Hofman, 1989
1.31     Frahm et al., 1982
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against gray matter volume as a power law. That is, if Y is the property of
interest and Vgray is the gray matter volume, then it has been empirically found
that Y = aV b

gray for some constants a and b. Ignoring the proportionality
constant, we say that Y ∼ V b

gray. When we say how a neocortical quantity
scales up, we can, then, just report the scaling exponent for it against gray
matter volume. Table 1.1 shows the scaling exponents measured thus far for
neocortex, and which I will explain below. I only show plots here if they have
not yet appeared elsewhere in the literature (and this is only for the number of
areas to which an area connects, and for module diameter).

Before presenting a theory of neocortical scaling, I begin by making some
simplifying assumptions about the neocortical network. Because about 85% of
neocortical neurons are pyramidal cells (Schüz, 1998) and only pyramidal cells
appear to significantly change in degree of arborization from mouse to whale
(Deacon, 1990), it is changes to pyramidal cells that must account for the de-
creasing neuron density. Accordingly, I will idealize the neocortical network to
consist only of pyramidal neurons. Also, because most (over 90%) of the neo-
cortical connections are from one part of neocortex to another (Braitenberg,
1978), the other neocortical connections are probably not the principal drivers
of neocortical scaling; I will therefore concentrate on the cortico-cortical con-
nections only, and I will assume that a single pyramidal neuron’s axon can
innervate only one area.

There are multiple principles shaping the neocortex, and we will see that
the exponents are not all due to the same underlying explanation. There are, in
fact, three central principles, and they are

• Economical well-connectedness.

• Invariant computational units.

• Efficient neural branching diameters.

The exponents each of these principles explains are shown in Table 1.2. I will
take up each principle in turn, and derive the exponents which follow from it.

1.1.1 Economical well-connectedness

The principles

Consider that an area in the gray matter connects to other areas (i.e., it has
neurons connecting to neurons in other areas). The fraction of the total number
of areas to which it connects is called the percent area-interconnectedness. It
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Table 1.2: The exponent predicted by my theory, along with the approximate value
for the measured exponent. The exponents are partitioned into three groups, each which
is explained by the principle stated above it.

Variable description Variable
name

Measured
exponent

Predicted
exponent

Economical well-connectedness ⇒
    - Number of areas to which an area connects D 0.30 1/3≈0.33
    - Neuron number N 0.65 2/3≈0.66
    - Neuron density ρneuron -0.3 -1/3≈-0.33
    - Number of areas A 0.40 1/3≈0.33
Invariant computational units ⇒
    - Thickness T 0.13 1/9≈0.11
    - Total surface area S 0.90 8/9≈0.89
    - Module diameter m 0.135 1/9≈0.11

Efficient neural branching diameters ⇒
    - Soma radius R0 0.10 1/9≈0.11
    - Axon radius R1 0.105 1/9≈0.11
    - Volume of white matter Vwhite 1.3 4/3≈1.33

seems a plausible and natural hypothesis that, for an area’s efforts to be useful,
it must make its results known to an invariant percentage of the areas in the
neocortex. That is, suppose that for a mouse brain to work, each area must talk
to about one tenth of the areas. Then, so the idea goes, in a whale brain each
area must also connect to one tenth of the areas. Whether the percentage is
one tenth or one half I do not know; the claim is only that what is good for the
mouse in this regard is also good for the whale. This is recorded as the

Principle of Invariant Area-Interconnectedness, which states that the average

percent area-interconnectedness remains roughly constant no matter the total

number of areas. (See Figure 1.1.)

There is some direct evidence for this hypothesis. From it we expect that
the total number of area-to-area connections E should scale as the number of
areas A squared; or A ∼ E1/2. Data exist for only two species—cat and
macaque—but we may use disjoint proper subsets of each animal’s neocortex
as distinct data points. Figure 1.2 shows these data, where the relationship fits
A ∼ E0.45, or closely fitting Hypothesis 1.

Moving to the second invariance principle associated with well-connected-
ness, areas are composed of many neurons, and thus a connection from one
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A B

Figure 1.1: Illustration of invariant percent area-interconnectedness. The average percent
area-interconnectedness in a small and large neocortex. The outer part of each ring depicts
the gray matter, the inner part the white matter. Each neocortex has multiple areas. (a) Each
of the four areas in this small neocortex connects to one other area. The average percent area-
interconnectedness is thus 1/4. (b) Each of the eight areas in this large neocortex connects to
two other areas. The average percent area-interconnectedness is thus 2/8 = 1/4, the same as
for the small brain.
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area to another is always from a neuron in the first area to a certain percentage
of the neurons in the second area. We might call this percentage the percent
area-infiltration. It is, again, natural and plausible to hypothesize that when an
area tells another area about its efforts, it must tell a certain invariant percentage
of the neurons in the area in order for the area to understand and appropriately
respond to the information. That is, if white matter axons in mouse connect to
roughly, say, one tenth of the number of neurons in an area, then, so the idea
goes, in a whale brain each such neuron connects to one tenth of the neurons in
an area. We record this as the

Principle of Invariant Area-Infiltration, which states that, no matter the neocor-

tical gray matter volume, the average percent area-infiltration stays roughly the

same. (See Figure 1.3.)

I know of no data directly confirming this principle. It is here a hypothesis only,
and it will stand or fall to the extent that it is economically able to account for
the observed scaling exponents.

The two above invariance principles (invariant percent area-interconnected-
ness and invariant percent area-infiltration) concern the degree of well-connect-
edness of the neocortex, and we might summarize the pair of above principles
by a single principle labeled the Principle of Invariant Well-Connectedness.

We have not yet made use of the idea of economical wiring, but I men-
tioned much earlier that the neocortical network appears to be driven, in part,
by economical wiring. . . which leads us to the next principle. All things equal,
it is advantageous for a nervous system to use less neural wiring, and as we
saw at the start of the chapter many aspects of neuroanatomy and structural
organization have been found to be consistent with such wire-optimization hy-
potheses. With this in mind we might expect that the neocortex would satisfy
the Principle of Invariant Well-Connectedness, but that it would do so in a fash-
ion sensitive to the connection costs. In particular, we would expect that the
average number of neurons to which a neuron’s axon connects—the average
neuron degree, δ—will not be much greater than that needed to satisfy invari-
ant well-connectedness. The reason for this is as follows: Connecting to more
neurons requires a greater number of synapses per neuron, and this, in turn,
requires greater arborization—more wire. In terms of scaling, this save-wire
expectation can be weakened to the expectation that average neuron degree
scales no faster than needed to satisfy invariant well-connectedness. I record
this third principle as the
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y = 0.4497x + 0.3236
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Figure 1.2: Logarithm (base 10) of the number of cortical areas versus logarithm of the
number of area-to-area connections, for disjoint proper subnetworks within cat and macaque.
Data points are as follows. Cat visual (A = 26, E = 264), cat auditory (A = 20, E = 153),
and cat somato-motor (A = 27, E = 348) are from Scannell and Young (1993). Macaque
visual (A = 30, E = 300), macaque auditory (A = 16, E = 95), and macaque somato-motor
(A = 17, E = 100) are from Young (1993).
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A B

Figure 1.3: Illustration of the invariance of percent area-infiltration. The average percent
area-infiltration for small and large areas. Each rectangle depicts an area, and each small
circle a pyramidal neuron. (a) Each of these two areas has four neurons, and the left area
connects via a pyramidal axon to two neurons in the right area. The percent area-infiltration
is 2/4 = 1/2. The other neurons’ connections are not shown. (b) Each of the two areas
has eight neurons, and the left area connects to four neurons in the right area. The percent
area-infiltration is 4/8 = 1/2, the same as for the small area.

Principle of Economical Wiring, which states that the average neuron degree

scales as slowly as possible consistent with an invariant well-connectedness.

Informally, the conjunction of these three above principles says that, no
matter the neocortex size, an area talks to a fixed fraction of all the areas,
and when an area talks to another area it informs a fixed fraction of the neu-
rons in the area; furthermore, this is done in a volume-optimal manner. I
will call the conjunction of these principles the Principle of Economical Well-
Connectedness.

Scaling exponents derived from economical well-connectedness

Now let us consider the consequences of this principle. There are a few sym-
bols we will need. First, recall that δ is the average neuron degree, defined
as the average number of neurons to which a neuron’s axon connects. Let A
denote the total number of cortical areas, D the average number of areas to
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which an area connects, and W be the average number of neurons in an area.
The first invariance principle stated that the percent area-interconnectedness is
invariant, and this means that D/A is invariant, i.e., D ∼ A. The second in-
variance principle stated that the percent area-infiltration is invariant, and this
means that δ/W is invariant, i.e., δ ∼ W . Since an area connects to D areas
and each neuron in an area can connect to neurons in only one area, there must
be at least D neurons in an area; i.e., W ≥ D. The Principle of Economical
Wiring stated that δ must scale up as slowly as possible given the other con-
straints. Since we have already seen that δ ∼ W , economical wiring therefore
implies that W must scale up as slowly as possible given the other constraints.
Since we already saw that W ≥ D, we can now also say that W scales no
faster than D, and thus that W ∼ D. To sum up for a moment, we have now
concluded the following proportionalities:

A ∼ D,D ∼ W,W ∼ δ.

By the transitivity of proportionality, it follows that all these are proportional
to one another; i.e.,

A ∼ D ∼ W ∼ δ.

This will be useful in a moment. Now notice that the total number of neurons
N is proportional to the number of areas times the number of neurons per area.
That is, N ∼ AW . But we already have seen that A ∼ W , and thus N ∼ A2,
and so A ∼ N1/2. In fact, it follows that all those four mutually proportional
quantities are proportional to N1/2. That is,

A ∼ D ∼ W ∼ δ ∼ N1/2.

In particular, we will especially want to remember that

δ ∼ N1/2.

I have just related δ to N , and in this paragraph I will relate δ to Vgray.
With both of these relationships we will then be able to say how N and Vgray

relate. A combination of empirical and theoretical argument suggests that, to a
good approximation, a pyramidal neuron connects to almost as many different
neurons as its number of axon synapses (Schüz, 1998). We do not here need
to be committed to a claim as strong as this. Instead, all we need is that the
neural degree δ is proportional to the number of axon synapses per neuron s. [I
am here using the fact that the number of axon synapses scales identically with
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the total number of synapses per neuron. This must be true since every axon
synapse is someone else’s dendrite synapse.] Well, since

s ∼ ρsynapseVgray

N
,

it follows that

δ ∼ ρsynapseVgray

N
.

We may use the fact that ρsynapse is invariant [see Abeles, 1991, and also
Changizi, 2001b for an explanation of this that is not presented here] to then
say that

δ ∼ Vgray

N
.

Thus far, we have seen that δ ∼ N1/2, and we have seen that δ ∼ Vgray/N .
But then it follows that

N1/2 ∼ Vgray/N.

Solving for N we can finally conclude that

N ∼ V 2/3
gray.

It also, of course, immediately follows, that

ρ ∼ V −1/3
gray .

And, since D ∼ A ∼ N1/2, we also conclude that

D ∼ V 1/3
gray

and
A ∼ V 1/3

gray.

These scaling relationships are very close to the measured ones in Table 1.1.
The number of cortical areas increases in bigger brains, then, not because of
some kind of pressure to have more specialized areas, but because by not in-
creasing the number of areas the network would become decreasingly well-
connected, or would no longer be economically wired. [There are other theories
hypothesizing that cortical areas may be due to issues of economical wiring, in-
cluding Durbin and Mitchison (1990), Mitchison (1991, 1992), Ringo (1991),
Jacobs and Jordan (1992) and Ringo et al. (1994).] Note that this theory also
predicts that the number of neurons in an area, W , scales with gray matter
volume with exponent 1/3.
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Invariant network diameter of 2

I will now show that the Principle of Invariant Well-Connectedness has the re-
markable consequence that the neocortical network has an invariant network
diameter of around 2. (See start of this chapter for the definition of network
diameter.) How may we compute its network diameter? The neocortex is cer-
tainly not a random network, so we cannot straightforwardly use the network
diameter approximation for random networks discussed in the introduction of
this chapter. But recall the notion of a small world network introduced there:
because pyramidal neurons usually make long range connections, or “short-
cuts,” via the white matter, the neocortical network is almost surely a small
world network, and thus would have a network diameter nearly as low as that
for a random network, namely approximately log(N)/ log(δ). [This also re-
quires that N >> δ >> log N >> 1. For the mammalian neocortex this is
true; N ≈ 107 to 1011, δ ≈ 104 to 105 (Schüz, 1998).] The scaling results
described thus far have informed us that N ∼ δ2. The network diameter is,
then,

Γ ≈ log(Cδ2)
log δ

= 2 +
log C

log δ
,

where C is a proportionality constant. That is, for sufficiently large Vgray , the
neuron degree δ becomes large and thus the network diameter Γ approaches 2;
in the limit there are on average only two edges—one neuron—separating any
pair of neurons. A rough estimate of the constant C can be obtained by com-
paring actual values of the neuron number N and the average neuron degree
δ. For a mouse, N ≈ 2 · 107 and δ ≈ 8, 000 (Schüz, 1998), so the constant
C ≈ N/δ2 = 0.3. Common estimates for human are around N ≈ 1010 and
δ ≈ 50, 000 (Abeles, 1991), making the constant C ≈ 4. What is important
here is that these estimates of C (i) are on the order of 1, and (ii) are well be-
low the estimates of δ. Thus (log C)/(log δ) ≈ 0 and the network diameter is
approximately 2. As a point of comparison, note that the network diameter for
C. Elegans—the only nervous system for which the network diameter has been
explicitly measured—is 2.65 (Watts and Strogatz, 1998); its network diameter
computed via the random network approximation is 2.16. This suggests the
conjecture that a network diameter around 2 is a feature common to all central
nervous systems.
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1.1.2 Invariant computational units

To derive the scaling exponent for the thickness of the gray matter sheet and
the total surface area, it suffices to note another invariance principle to which
the neocortex appears to conform. It is the

Principle of Invariant Minicolumns, which states that the number of neurons in a

“minicolumn”—which is a neuroanatomical structure lying along a line through

the thickness of the gray matter, from pia to white matter—is invariant. (An

invariance principle of this form was first put forth by Prothero (1997a).)

The motivation is that, independent of brain size, these minicolumns are funda-
mental computational units, and that more “computational power” is achieved
by increasing the number of such units, not by changing the nature of the fun-
damental computational units themselves. Evidence exists for this invariance
from Rockel et al. (1980). [Rockel et al. (1980) mistakenly concluded that
the surface density was invariant, but the latter could only be concluded if the
number of neurons under, say, a square millimeter of surface was invariant.
This, however, is not the case (Haug, 1987). See Prothero (1997b) for a cogent
resolution to this issue.] The line density along a line from pia (the outside
boundary of the neocortex) to white matter (the inside boundary), λ, scales as

λ ∼ ρ1/3 ∼ (V −1/3
gray )1/3 = V −1/9

gray .

Since the number of neurons along this line is invariant, the sheet must be
thickening, namely

T ∼ V 1/9
gray.

It follows immediately that

S ∼ V 1−1/9
gray = V 8/9

gray.

These are very close to the measured exponents, as shown in Table 1.1. The
gray matter surface area scales more quickly than V

2/3
gray , then—and thus be-

comes convoluted—for two principal reasons. First, it is because the neuron
density is decreasing—and this, in turn, is because the number of synapses
per neuron is increasing in order to economically maintain satisfaction of the
Principle of Economical Well-Connectedness. Second, it is because the pia-
to-white-matter structure of the cortex remains the same (e.g., same number of
neurons in a minicolumn, same number of layers) across mammals. If, instead,
the number of neurons along a thin line through the cortical sheet increased in
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larger brains, the new neurons would not have to spread only along the surface,
but could spread into deeper regions of the gray matter; the surface would then
not have to scale up so quickly. This, however, would require modifying the
basic, uniform structure of the gray matter every time the brain was enlarged; it
would demand inventing new basic computational architectures in each brain,
whereas by keeping the structure the same, larger brains can work with the
same “primitive computational units” as in smaller brains.

A related issue concerns modules found in the neocortex, such as columns,
blobs, bands, barrels and clusters. They are intermediate features, smaller
than cortical areas, and larger than minicolumns. The simplest hypothesis is
that modules conform to the following invariance principle,

Principle of Invariant Modules, which states that the number of minicolumns in

a module is invariant.

The motivation is similar to that for the Principle of Invariant Minicolumns.
If this principle holds for neocortex, then from the neuron density decrease
it follows that the diameter of a module (when measured along the cortical
surface), m, should scale as V

1/9
gray . Manger et al. (1998) measured module size

across mammals varying over four orders of magnitude in brain size, and one
may compute from their data that the exponent is 0.135 (see Figure 1.4), or
very close to the predicted 1/9. The number of neurons in a module therefore
appears to be independent of brain size.

1.1.3 Efficient neural branching diameters

Murray’s Law

As far as I know, every kind of tree in nature has thicker trunks when the
trunk supports more leaves (Cherniak, 1992; Cherniak et al., 1999; Changizi
and Cherniak, 2000). The same is therefore expected of neurons—the soma
being the ultimate trunk of a neuron—and certainly appears to be the case (e.g.,
Cherniak, 1992; Cherniak et al., 1999). But in exactly what quantitative manner
do we expect trunk diameter to scale as a function of the number of leaves in
the tree? Many natural trees conform to a relationship called Murray’s Law
(1926a), which says that, for any two depths, i and j, in a tree, the sum of
the cubes of the diameters at depth i is identical to the sum of the cubes of
the diameters at depth j. So, for example, the cube of a trunk diameter must
equal the sum of the cubes of its daughter segment diameters. Murray’s Law
is expected to apply for any tree where (i) there is laminar fluid flow, and (ii)
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Figure 1.4: Logarithm (base 10) of the mean module diameter versus logarithm of brain
size. Data from Manger et al. (1998).

the power required to distribute the fluid is minimized. In fact, it is well known
that there is fluid flow in neural arbors (Lasek, 1988), and that the fluid flow
is laminar follows from the facts that fluid flow in pipes of diameter less than
one millimeter tends to be laminar (Streeter and Wylie, 1985) and that neural
arbors have diameters on the micron scale. Murray’s Law, in fact, appears to
apply to neural trees, as shown in Cherniak et al. (1999). I record this principle
as the

Principle of Efficient Neural Branching Diameters, which states that neural seg-

ment diameters are set so as to maximize power efficiency.

Soma and axon radius

From this principle—i.e., from Murray’s Law—we may derive the expected
scaling relationship between trunk diameter, t, and the number of leaves in the
tree. Murray’s Law states that the trunk diameter, t, cubed should be the same
value as the sum of the cubes of all the diameters of the leaf segments in the
tree. Let s be the number of leaves in the tree, and d be the diameter of each
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leaf segment. Then the relationship is,

t3 = sd3.

Given that the leaf segments in neurons—i.e., synapses—do not vary in size as
a function of brain size, we may conclude that

t3 ∼ s.

[West et al., 1997, use elaborations on ideas like this to derive metabolic scal-
ing exponents. Their arguments require space-filling, fractal-like networks,
whereas the argument here does not require this. Murray himself back in 1927
might well have noted this scaling feature.] That is, trunk diameter—whether
we treat the soma or the source axon as the trunk—of a neuron scales as the
1/3 power of the number of synapses in the neuron. From earlier developments
we know that s ∼ V

1/3
gray , and thus we may derive that

R ∼ V 1/9
gray,

where I am now using R for trunk radius rather than trunk diameter (since
they are proportional). Measured scaling relationships conform well to this,
for both soma (or neuron body) radius and for the radius of a white matter axon
(see Table 1.1). [Note that Murray’s Law states that t3 = b3

1 + b3
2, where b1 and

b2 are the two daughter branch diameters of a trunk with diameter t, and thus,
in general, trunk diameter t ≈ 2b, where b is the average daughter diameter,
and thus t ∼ b. This is why it is justified to treat soma and axon radius as
proportional.]

White matter volume

Finally, there is the issue of white matter volume, Vwhite. White matter vol-
ume is composed entirely of myelinated (and some unmyelinated) axons from
pyramidal neurons sending cortico-cortical connections. Thus, white matter
volume is equal to the total number of white matter axons, Nwhiteaxon, times
the volume of a white matter axon, Vwhiteaxon. That is,

Vwhite = NwhiteaxonVwhiteaxon.

All we need to do is to figure out how these two quantities scale with gray
matter volume.
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There must be one white matter axon for every neuron, and thus Nwhiteaxon

∼ N , and so Nwhiteaxon ∼ V
2/3
gray. The volume of a white matter axon,

Vwhiteaxon, is proportional to the length, L, of the axon times the square of
its radius, R1; i.e.,

Vwhiteaxon ∼ LR2
1.

White matter axons travel roughly a distance proportional to the diameter of
the white matter, and so L ∼ V

1/3
white. Also, we saw just above that R1 ∼ V

1/9
gray.

Thus,
Vwhiteaxon ∼ V

1/3
white(V

1/9
gray)

2,

and so
Vwhiteaxon ∼ V

1/3
whiteV

2/9
gray.

Recalling that Vwhite = NwhiteaxonVwhiteaxon, we can now combine our
conclusions and get the following.

Vwhite = NwhiteaxonVwhiteaxon,

Vwhite ∼ [V 2/3
gray] · [V 1/3

whiteV
2/9
gray].

Now we just need to solve for Vwhite, and we can then conclude that

Vwhite ∼ V 4/3
gray,

very close to the measured exponents, as shown in Table 1.1.
White matter volume scales disproportionately quickly as a function of

gray matter volume because of the increasing axon radius, and this, in turn, is
due to the satisfaction of Murray’s law for efficient flow. The exponent would
fall from 4/3 to 1 if axon radius were invariant.

1.1.4 Wrap-up

It is instructive to summarize the principles that appear to govern the neocortex.

1. Efficiency Principles

• Efficient Neural Diameters: neural diameters are set for maximum power effi-
ciency for the distribution of materials through the arbor.

• Economical Wiring: invariant well-connectedness is achieved in a volume-optimal
manner.

2. Invariance Principles
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• Invariant Well-Connectedness

– Invariant Area-Interconnectedness: the fraction of the total number of areas
to which an area connects is invariant.

– Invariant Area-Infiltration: the fraction of the number of neurons in an area
to which a white matter axon connects is invariant.

– (And these lead to an invariant network diameter of 2.)

• Invariant Computational Units

– Invariant Minicolumns: the number of neurons in a minicolumn is invariant.

– Invariant Modules: the number of minicolumns in a module is invariant.

Why are these principles advantageous for the neocortex? The answer is
obvious for the two efficiency principles. Invariant well-connectedness is use-
ful, lest larger brains have networks that become more and more widely sepa-
rated, in terms of the average minimal path length between neurons. It is less
obvious why a network would maintain invariant computational units. In the
next section this will be taken up in more detail, where we will see that in a wide
variety of network—including neocortex—there appears to be scale-invariant
“functional units,” and I will show that this is to be expected if network size
is optimized. The basic idea underlying the argument can be seen here in Fig-
ure 1.5. Thus, that the neocortex has invariant computational units is derivable
from a network optimization principle. This allows us to simplify the above so
as to state the least number of principles from which it is possible to explain
neocortical scaling.

1. Efficiency Principles

• Efficient Neural Diameters: neural diameters are set for maximum power effi-
ciency for the distribution of materials through the arbor.

• Economical Wiring: invariant well-connectedness is achieve in a volume-optimal
manner.

• Optimal Network Size: network size scales up no more quickly than “needed” (see
next section), from which invariant computational units are derivable.

2. Invariant Well-connectedness Principles

• Invariant Area-Interconnectedness: the fraction of the total number of areas to
which an area connects is invariant.

• Invariant Area-Infiltration: the fraction of the number of neurons in an area to
which a white matter axon connects is invariant.

• (And these lead to an invariant network diameter of 2.)
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Figure 1.5: There are broadly two ways to increase complexity in networks, as we will
discuss in Section 1.2. Top. In the “universal language approach” there are a fixed number of
node types with which all functional units are built. In this case, networks with greater numbers
of functional unit types must accommodate the new function types by having longer functional
units. In the figure, the small network under the universal language approach begins with 4
functional unit types, each of length 2, and a language of 2 node types; the total number of
nodes required for this is 8. In order to accommodate 8 functional unit types in the larger
network, the length of functional units must be increased since the expressive power for length-
2 functions has already been exhausted. The larger network, which has 8 functional units, has
functional units of length 3, and the total number of nodes required is 24. Bottom. Consider
now, in contrast, the “invariant length approach” to complexity increase. Since functional
units have an invariant length in this approach, in order to achieve greater numbers of types of
functional units, new node types must be invented. In the figure the small network is identical
to the small network under the universal language approach. The large network under this
approach has, as in the universal language case, 8 functional unit types. However, to achieve it
one new node type must be added. The total number of nodes in the larger network is 16, which
is smaller than the 24 nodes in the universal language case. The invariant length approach is
optimal in the sense that network size grows minimally. Note that it also entails that the number
of types must be increased, and we will see in Section 1.2 that this is indeed true for neocortex,
and for networks generally.
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1.2 Complexity in brain and behavior

I took up brain scaling in the previous section, and we saw that many of the
ways in which larger brains are “more complex” are consequences of brains
maintaining an invariant degree of economical well-connectedness. That is,
bigger brains seem more complex since they are more highly convoluted, they
have more synapses per neuron, and they have a greater number of cortical
areas; but these greater “complexities” are not due to the brains themselves
being “smarter” in any fashion. Rather, these “complexities” are purely due to
the brains being bigger. These seemingly complex qualities of larger brains are
thus epiphenomenal, where by that I mean that their increase does not signify
any increasing functional complexity of the brain.

In this section I concentrate on brain complexity, both in the nervous net-
work itself, and in the behaviors exhibited by brains. I will be interested in
understanding how greater complexity is achieved. First, however, we will
need to become clear concerning what I mean by complexity.

The central intuitive notion of ‘complexity’ I rely upon here is that an entity,
or system, is more complex if it can do more kinds of things. For example, if
my radio has one more type of function than does yours—say, scanning—mine
is more complex. Note that under this idea of ‘complexity,’ doing more of the
same kinds of thing does not make something more complex. For example, a
book is complex in some sense, but stapling together two copies of the same
book does not create a more complex book; in each of these two cases all
the same sentences are uttered. Similarly, if two birds have the same song
repertoires, they have the same complexity even if one sings twice as often.
Complexity, then, concerns the diversity of things done by an entity. Rather
than referring to these things that are done by an entity as “things,” I will call
them expressions, and a system or entity of some kind is more complex than
another of that kind if it has, or does, more expression types. The number of
expression types, E, is thus the complexity of the entity, and I will sometimes
refer to this number, E, as the expressive complexity of the entity.

The question we are interested in asking in this section is, How does a
system, or entity, of a given kind accommodate greater expressive complexity?
For example, how is greater song repertoire size handled in birds? And, how
is greater brain complexity achieved? The first-pass answer to these questions
is that expressions are always built out of lower-level components that come in
different types. For example, bird songs are built out of bird syllables of distinct
types. And functional expressions of the brain are built out of combinations of
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neurons of distinct types. Let L be the average number of components in an
expression (for some given kind of entity); L is the expression length. For
example, for bird song L is the number of syllables per song. Also, let C be
the total number of component types from which the E expression types of the
system are buildable. For bird song, C is the total number of syllable types in
the repertoire of a bird (from which that bird’s E different songs are built).

If expressions are of length L, and each spot in the expression can be filled
by one of C component types, then there are a maximum of E = CL many
expression types buildable. For example, if there are C = 2 component types—
labeled A and B—and expression length L = 4, then there are E = 24 = 16
expression types, namely AAAA, AAAB, AABA,..., BBBB. However, this
is insufficiently general for two reasons. First, only some constant fraction α of
these expression types will generally be grammatical, or allowable, where this
proportionality constant will depend on the particular kind of complex system.
The relationship is, then, E ∼ CL. Second, the exponent, L, assumes that all L
degrees of freedom in the construction of expressions are available, when only
some fixed fraction β of the L degrees of freedom may generally be available
due to inter-component constraints. Let d = β ·L (where, again, what β is will
depend on the particular kind of system). Call this variable d the combinatorial
degree. The relationship is, then

E ∼ Cd,

where C and d may each possibly be functions of E. Using the same example
as above, let us suppose now that As always occur in pairs, and that Bs also al-
ways occur in pairs. The “effective components” in the construction of expres-
sions are now just AA and BB, and the expression types are AAAA, AABB,
BBAA, and BBBB. The number of degrees of freedom for an expression is
just 2, not 4, and thus E = 22 = 4. d is a measure of how combinatorial the
system is. The lowest d can be is 1, and in this case there is effectively just
one component per expression, and thus the system is not combinatorial at all.
Higher values of d mean the system is more combinatorial.

Given this above relationship between expressive complexity E, the num-
ber of component types C , and combinatorial degree d, let us consider a few of
the ways that a system might increase its expressive complexity.

The first way is the universal language approach. The idea here is that
there exists a fixed number of component types from which any expression
type is constructable. For example, for computable functions there exists such
a language: from a small number of basic computable functions it is possible
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to build, with ever longer programs, any computable function at all. If this
universal language approach were taken, then the number of component types,
C , would not change as a function of the expressive complexity, E. Something
would change, however, and that is that the average length, L, of an expression
increases as a function of E. In particular, since C is invariant in the equation
E ∼ Cd, it follows that d ∼ log E. This approach may be advantageous for
systems where new component types are costly, or where there is little cost to
increasing the expression length; it is generally difficult to achieve however,
since the invention of a universal language is required.

The second way to increase expressive complexity is via the specialized
component types approach. In this case, for each new expression type, a new
specialized set of component types is invented just for that expression type.
Here the expression length L may or may not be > 1, but the combinatorial
degree d = 1. Thus, E ∼ C . Note that if this possibility holds for a com-
plex system, then a log-log plot of C versus E should have a slope of 1. The
advantage of this approach is that expressions are short, and no complex gram-
matical rules need to be invented. The disadvantage is that the number of new
component types must be scaled up very quickly (namely, proportionally with
expressive complexity).

The third way to raise E is via the invariant-length approach. This is
like the previous approach in that the combinatorial degree d (and expres-
sion length L) is invariant, except that now it is > 1. Thus, it is combinatorial
(d > 1), and its “degree of combinatorialness” remains invariant. The expected
relationship is the power law E ∼ Cd, with d invariant and > 1. On a log-log
plot of C versus E, we expect a straight line with slope of 1/d. A log-log
straight line with fractional slope means that a small increase in the number
of component types gives a disproportionately large number of new expression
types; and this is characteristic of combinatorial systems. An advantage to this
approach is that the rate at which new component types must be invented is very
slow (C ∼ E1/d, where d is constant and > 1). The disadvantage is that ex-
pressions tend to be longer, and that there must exist a relatively sophisticated
set of rules, or grammar, allowing the expressions to be built in a combinatorial
fashion.

The final way to increase expressive complexity is via the increasing-C-
and-d approach. This is similar to the previous case, except that now expres-
sive complexity increase is accommodated by increasing C and increasing d. If
d increases logarithmically with E, then this is the universal language approach
from above, where C does not increase. Thus, d must increase sublogarithmi-
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cally, such as d ∼ [log E]/[log log E]. In this case, it follows that C ∼ log E;
C is increasing here less quickly than a power law. As in the previous possibil-
ity, a small increase in C gives a disproportionately large increase in E, except
that now the size of the combinatorial explosion itself increases as a function of
E (since d is increasing). This is a kind of middle ground between the universal
language approach and the invariant-length approach.

These are the four key manners in which expressive complexity may be
increased in complex systems, and our central question may be stated more
rigorously now: In which of these ways do complex systems related to brain
and behavior increase expressive complexity? And why? In the next two sub-
sections we discuss behavioral and brain complexity in light of the above ideas.
(See Changizi (2001e) for the connections between these above ideas and the
notion of ‘hierarchy’.)

1.2.1 Complexity of languages and behaviors

Behavior is a complex system, consisting of behavioral expressions, which are
built out of multiple behavioral components of some kind. The main question
concerning behavior here is, In what manner is behavioral repertoire size—i.e.,
expressive complexity—increased? That is, which of the earlier approaches
to increasing complexity holds for behaviors? Do animals have a “univer-
sal language” of component behaviors from which any complex behavior may
be built, or do animals with more behaviors have more behavioral component
types? We examine this question in three distinct kinds of behavior: human lin-
guistic behavior, bird vocalization behavior, and traditional non-vocal animal
behaviors.

Ontogeny of language

Human natural language is a complex system, where components of various
kinds are combined into expressions. For example, phonemes are combined
into words, and words into sentences. We begin by studying expressive com-
plexity increase during the development of language in children. That is, in
light of the earlier approaches to increasing complexity, how do children in-
crease their expressive complexity? We already know a few things about the
development of language in children. First, we know that children increase the
number of component types (e.g., their phoneme repertoire and word reper-
toire) as they age. That is, C increases. Second, we know that their ability to
string together components increases with age (Pascual-Leone, 1970; Case et
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age (wks) # words # sentences

61 8 5.49
62 9 5.49
63 10 5.49
64 11 9.42
65 12 13.34
66 13 21.19
67 14 21.19
68 15 29.04
69 16 29.04
70 17 32.97
71 18 36.89
72 19 40.82
73 20 48.67
74 21 52.59
75 22 52.59
76 23 56.51
77 24 60.44
78 25 60.44
79 26 68.29
80 27 68.29
81 28 72.21
82 29 83.99
83 30 123.23
84 31 201.73
85 32 233.12
86 33 256.67
87 34 256.67
88 35 295.92
89 36 315.54
90 37 339.09
91 38 358.71
92 39 374.41
93 40 421.51
94 41 452.90
95 42 495.00

Figure 1.6: Top. Logarithm (base 10) of the number of word types versus logarithm of the
number of sentences, as produced by one child named Damon from 12 to 22 months (Clark,
1993). Bottom. Semi-log plot of the same data. Plot is confined to multiword utterance ages,
which began at about 14 months. On the right are shown the data; sentence data is fractional
because I obtained it via measuring from Clark’s plots. [Note that Damon grew up and went
on to do some research on aspects of how the brain scales up.]
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al., 1982; Siegel and Ryan, 1989; Adams and Gathercole, 2000, Robinson and
Mervis, 1998; Corrigan, 1983). However, from this increasing combinatorial
ability we cannot straightforwardly conclude that the child’s combinatorial de-
gree, d, will keep pace. Recall that d is measured by the relative rates of growth
of the number of component types C and the number of expression types E.
A child’s combinatorial ability could increase, and yet the child could sim-
ply choose not to speak much, in which case the combinatorial ability growth
would not be reflected in the combinatorial degree measured from the C versus
E plot (since E would not increase much). Nevertheless, learning new com-
ponent types is costly, and efficiency considerations would lead one to expect
that new component types are added no more quickly than needed for the given
level of expressive complexity. If this were true, we would expect the com-
binatorial degree to increase as a function of E, and thus the log-log slope of
C versus E to fall as E increases. That is, the increasing-C-and-d approach
would be used, and C ∼ log E. We examine this prediction for the develop-
ment of words and sentences, and also for the development of phonemes and
words.

The number of word types and number of distinct sentences uttered by a
single child named Damon for 41 weeks from 12 to 22 months of age (Clark,
1993) are shown in Figure 1.6. One can see that, as expected, the combinatorial
degree (i.e., the inverse of the slope in the log-log plot) falls as a function of E.
At the start, the combinatorial degree is 1, which means that the child is not yet
using words in a combinatorial fashion. Note that the data here are only for the
multi-word utterance stage of the child; thus, although the child may seem to
be using words in a combinatorial manner since his sentences have more than
one word, he is not. By the end of the recorded data, the combinatorial degree
has increased to about 2.5. This combinatorial degree range is similar to the
sentence length range for children of this period (Robinson and Mervis, 1998).
Since the combinatorial degree and number of component types are increasing,
the increasing-C-and-d length approach is being employed for increasing ex-
pressive complexity, and thus we expect C ∼ log E. Indeed, a plot of C versus
log E appears linear.

The growth in the number of phonemes and distinct morphemes was com-
piled from Velten (1943), as produced by a child named Jean from 11 to 30
months of age. [A morpheme is the smallest meaningful linguistic unit; or, a
word that is not decomposable into meaningful parts.] Figure 1.7 shows the
log-log plot of the number of phoneme types versus the number of morpheme
types, and one can see that the slope tends to decrease somewhat through
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Figure 1.7: Top: Logarithm (base 10) of the number of phoneme types versus logarithm of
the number of morphemes, as produced by one child named Jean from 11 to 30 months (Velten,
1943). Bottom: Semi-log plot of the dame data. Morphemes are the smallest meaningful
linguistic unit, and are mostly words in this case. On the right are shown the data.
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development, meaning the combinatorial degree is increasing. The plot of
(unlogged) number of phoneme types versus the logarithm of the number of
morphemes is comparatively linear, again implicating the increasing-C-and-
d approach, as predicted above. The combinatorial degree begins at around
2 (“ma”), and increases to around 4 (“baby”). The number of phonemes per
morpheme—i.e., expression length—increases over a similar range during this
period (Changizi, 2001d, 2001e).

In each of these language development cases, we see that the expressive
complexity is increased via the increasing-C-and-d invariant approach, and that
the combinatorial degree appears to increase in proportion to the child’s ability
to combine components. This accords with the efficiency hypothesis mentioned
above, that children will learn component types no more quickly than needed
to express themselves.

English throughout history

Here I consider complexity in the English language. Not the complexity of the
language of one English speaker as above, but, instead, the complexity of the
entire English language. Our “individual” here is the entire English-speaking
community. This individual has, over history, said more and more new ex-
pression types. Namely, new distinct sentences are being uttered throughout
history. How has this increase in expressive complexity been accommodated?
Via an increase in the average length of a sentence, or via the addition of new
vocabulary words—word types—with which sentences may be built, or via a
combination of the two? That is, which of the earlier approaches to complexity
increase is employed in the evolution of the English language?

I estimated the growth in the number of English word types by using the
Oxford English Dictionary (OED), Second Edition. It is possible to search for
years within only the etymological information for all entries in the OED. In
this way it was possible to estimate the number of new word types per decade
over the last 800 years. To obtain an estimate of the growth rate for the number
of sentences the English-speaking entity expresses, I used the number of books
published in any given year as an estimate of the number of new sentences
in that year. This would be a problematic measure if different books tended
to highly overlap in their sentences, but since nearly every written sentence is
novel, never having been uttered before, there is essentially no overlap of sen-
tences between books. This would also be a problematic measure if the length
of books, in terms of the number of sentences, has been changing through time;
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Table 1.3: The data for the history of English from 1200 to the present.
Decades covering century or half-century years do not include those years
(since they tend to be overcounted). The new words were measured from the
Oxford English Dictionary, and the number of new books from WorldCat.

decade # new words # new books decade
# new 
words

# new 
books

1210 36 3 1610 161 3705
1220 40 5 1620 606 4174
1230 43 4 1630 130 4736
1240 29 3 1640 140 6321
1250 24 0 1650 125 17891
1260 36 5 1660 169 13976
1270 42 1 1670 144 11274
1280 59 3 1680 181 16548
1290 41 8 1690 202 21868
1300 65 10 1700 117 16962
1310 72 12 1710 156 15513
1320 77 4 1720 111 17398
1330 78 5 1730 207 15685
1340 73 5 1740 273 17717
1350 33 5 1750 146 16113
1360 42 9 1760 296 21161
1370 61 3 1770 231 25254
1380 104 8 1780 214 33542
1390 83 7 1790 295 38186
1400 54 7 1800 315 54326
1410 54 7 1810 372 99069
1420 72 12 1820 440 129734
1430 56 6 1830 481 114817
1440 63 5 1840 602 148800
1450 18 4 1850 454 158774
1460 51 10 1860 452 234706
1470 51 13 1870 554 257161
1480 83 38 1880 661 290921
1490 107 79 1890 809 391372
1500 65 103 1900 686 402769
1510 75 139 1910 685 541294
1520 126 134 1920 425 587809
1530 171 265 1930 484 680614
1540 167 468 1940 397 808427
1550 201 626 1950 206 730849
1560 223 814 1960 249 1354217
1570 178 1038 1970 216 2600020
1580 195 1363 1980 120 4594985
1590 163 1688 1990 35 5618350
1600 372 2055
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I have no data in this regard, but it seems plausible to assume that any such trend
is not particularly dramatic. The number of new books published per year was
obtained by searching for publication dates within the year for literature listed
in WorldCat, an online catalog of more than 40 million records found in thou-
sands of OCLC (Online Computer Library Center) member libraries around the
world. In this way I was able to estimate the number of new books per decade
over the last 800 years, the same time period for which I obtained word type
data. These data are shown in Table 1.3.

Figure 1.8 shows the logarithm of the number of new word types and books
per decade over the last 800 years, measured as described above. Note that the
plot shows estimates for the number of new word types per decade, and the
number of new sentences per decade; i.e., it measures dC/dt and dE/dt versus
time. The plot does not, therefore, show the growth in the actual magnitude of
the number of word types or the number of sentences. But it is the scaling
relationship between the actual magnitudes of C and E we care about, so what
can we do with a plot of growth rates over time? Note first that the growth rate
for each is exponential (this is because the plots fall along straight lines when
the y axis is logarithmic and the x axis not). If a growth rate for some quantity
u increases exponentially with time, then this means du/dt ∼ ert. And if you
recall your calculus, it follows that the quantity itself scales exponentially with
time, and, in fact, it scales proportionally with the growth rate: i.e., u ∼ du/dt.
Thus, Figure 1.8 has effectively measured the growth in the number of word
types and the number of books. By looking at the growth in the number of
word types compared to that for the number of books, we can determine how
the first scales against the second.

From the figure we can, then, determine that

dC/dt ∼ C ∼ 100.001725t ∼ e0.003972t,

and
dE/dt ∼ E ∼ 100.008653t ∼ e0.01992t.

We may now solve for C in terms of E, and we obtain

C ∼ E0.003972t/0.01992t = E0.1994.

The number of word types scales as a power law against the number of sen-
tences, and, unsurprisingly, the slope is less than one and thus English is com-
binatorial. Thus, greater expressive complexity was achieved over the last 800
years not by increasing the combinatorial degree (or average sentence length),
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Figure 1.8: Growth rates in the decades from the years 1200 to 1990 for the number of new
English word types and the number of new English books. Regression equations and correlation
coefficients are shown for each (79 data points each). Unsure etymological dates tend to cluster
at century and half century marks and therefore century and half-century marks tend to be
overcounted; accordingly, they were not included in the counts. The OED is conservative and
undercounts recently coined word types; consequently, the exponential decay region (the last
five square data points) was not included when computing linear regression. I do not have
any way to similarly measure the number of word type extinctions per year, and so I have not
incorporated this; my working assumption is that the extinction rate is small compared to the
growth rate, but it should be recognized that the estimated combinatorial degree is therefore an
underestimate.
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Figure 1.9: Distribution of numbers of content words per sentence in English. Arrow in-
dicates the log-transformed mean. 984 sentences from 155 authors were measured from texts
in philosophy, fiction, science, politics and history. I chose the second sentence on each odd
numbered page. A word was deemed a function word if it was among a list of 437 such words
I generated. A string of words was deemed a sentence if it represented a complete thought
or proposition. So, for example, semicolons were treated as sentence delimiters, multiple sen-
tences combined into one long sentence by “, and” were treated as multiple sentences, and
extended asides within dashes or parentheses were not treated as part of the sentence.

but, instead, by increasing the number of word types with which to build sen-
tences. The scaling exponent of around 0.2 implies an estimated combinatorial
degree of about 5. There appears to be nothing about the English grammar
that implies a fixed combinatorial degree (or sentence length), much less any
particular value of it. What explains this value of 5? [Or, a little more than 5;
see legend of Figure 1.8 concerning word type extinctions.] It cannot simply
be due to the typical number of words in an English sentence, since there are
typically many more words than that, namely around 10 to 30 words (Scudder,
1923; Hunt, 1965).

To make sense of the combinatorial degree, we must distinguish between
two kinds of word in English: content and function. The set of content words,
which refer to entities, events, states, relations and properties in the world,
is large (hundreds of thousands) and experiences significant growth (Clark
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and Wasow, 1998). The set of function words, on the other hand, which in-
cludes prepositions, conjunctions, articles, auxiliary verbs and pronouns, is
small (around 500) and relatively stable through time (Clark and Wasow, 1998).
The scale-invariant combinatorial degree of English suggests that the average
number of words per sentence is invariant. Imagine, for simplicity, that there
on average n places for content words in a sentence, and m places for function
words, and that these values, too, are invariant. (And thus the average sentence
length is n + m.) The total number of possible sentences is then

E ∼ NnMm,

where N is the total number of content words in English and M the total num-
ber of function words. n and m are invariant, as mentioned just above, and so
is the total number of function words M . Thus, the equation above simplifies
to the power law equation

E ∼ Nn.

Also, note that the number of content words, N , is essentially all the words,
since it dwarfs the number of function words; i.e., C ≈ N . Thus, E ∼ Cn,
and so,

C ∼ E1/n.

That is, the combinatorial degree is expected to be equal to the typical num-
ber of content words per sentence—not the typical total number of words per
sentence—and, up to a constant factor, they may be combined in any order.
To test this reasoning, I measured the number of content words in nearly one
thousand sentences (see legend of Figure 1.9). The distribution is log-normal
(Figure 1.9), and the mean of the logs is 0.7325 (±0.2987); the log-transformed
mean is thus 5.401, and one standard deviation around this corresponds to the
interval [2.715, 10.745]. This provides confirmation of the hypothesis that the
combinatorial degree is due to there being five content words per sentence.

But why are there typically five content words per sentence? One obvi-
ous hypothesis is that sentences can convey only so much information before
they overload the utterer’s or listener’s ability to understand or absorb it. In
this light, five content words per sentence is probably due to our neurobiolog-
ical limits on working memory, which is a bit above five (Miller, 1956). The
fingerprint of our working memory may, then, be found in the relative rate at
which new words are coined compared to the number of sentences uttered by
the English-speaking community.
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Table 1.4: Number of syllable types and song types for a variety of species of bird.

Number of Number of
Species syllable types song types Citation

Turdus nudigenis (Bare-eyed Thrush) 1.20 1.19 Ince and Slater (1985)
Turdus tephronotus (African Bare-eyed Thrush) 3.83 1.26 Ince and Slater (1985)
Turdus iliacus (Redwings) 2.93 1.31 Ince and Slater (1985)
Turdus torquatus (Ring Ouzels) 5.49 3.79 Ince and Slater (1985)
Turdus viscivorus (Song and Mistle Thrush) 43.08 15.74 Ince and Slater (1985)
Turdus pilaris (Fieldfare) 80.65 32.05 Ince and Slater (1985)
Turdus merula (Blackbird) 216.09 38.97 Ince and Slater (1985)
Turdus abyssinicus (Olive Thrush) 43.08 49.99 Ince and Slater (1985)
Turdus migratorius (American Robin) 30.10 71.33 Ince and Slater (1985)
Turdus philomelos (Song Thrush) 309.22 158.77 Ince and Slater (1985)
Catherpes mexicanus (Canyon Wren) 9 3 Kroodsma (1977)
Cistothorus palustris (Long-billed Marsh Wren) 44⎯118 40⎯114 Kroodsma (1977)
Cistothorus platensis (Short-billed Marsh Wren) 112 110 Kroodsma (1977)
Salpinctes obsoletus (Rock Wren) 69⎯119 69⎯119 Kroodsma (1977)
Thryomanes bewickii (Bewick's wren) 25⎯65 9⎯22 Kroodsma (1977)
Thryomanes bewickii (Bewick's wren) 87.5 20 Kroodsma (1977)
Thryomanes bewickii (Bewick's wren) 56 17.5 Kroodsma (1977)
Thryomanes bewickii (Bewick's wren) 50 16 Kroodsma (1977)
Thryomanes bewickii (Bewick's wren) 40.5 10 Kroodsma (1977)
Thryomanes bewickii (Bewick's wren) 35.5 17.5 Kroodsma (1977)
Thryothorus ludovicianus (Carolina Wren) 22 22 Kroodsma (1977)
Troglodytes troglodytes (Winter wren) 89⎯95 3⎯10 Kroodsma (1977)
Gymnorhina Tibicen (Australian Magpie) 29 14 Brown et al. (1988)
Paridae bicolor (Tufted titmouse) 3 11.25 Hailman (1989)
Parus wollweberi (Bridled titmouse) 3 3 Hailman (1989)
Serinus canaria (Canary) 101 303 Mundinger (1999)
Empidonax alnorum (Alder Flycatcher) 3 1 Kroodsma (1984)
Empidonax traillii (Willow Flycatcher) 4 3 Kroodsma (1984)
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Bird vocalization

Bird songs are built out of bird syllables, and the question we ask is, Do birds
with more songs in their repertoire have longer songs, or more syllables, or
both? In particular, which of the four earlier approaches to expressive com-
plexity increase is used in bird vocalization?

To answer this I surveyed the bird vocalization literature and compiled all
cases where the authors recorded the number of syllable types and the number
of song types in the repertoire of the bird. Although song repertoire size counts
are common, syllable type counts are much rarer, especially when one is look-
ing for papers recording both. Table 1.4 shows the data and the sources from
which I obtained them.

Plotting the number of syllable types, C , versus the number of song types,
E, on a log-log plot (Figure 1.10) reveals that (i) they are related by a power
law (i.e., the data are much more linear on a log-log plot than on a semi-log
plot), and (ii) the exponent is approximately 0.8. That is, C ∼ E0.8. Since the
relationship is a power law, the combinatorial degree is an invariant; i.e., there
appears to be no tendency for the combinatorial degree (or expression length)
to increase in birds with greater numbers of songs. Instead, greater expressive
complexity is achieved entirely through increasing the number of bird syllable
types. Since the exponent is about 0.8, the combinatorial degree is its inverse,
and is thus about 1.25, which is not much above 1. In fact, it is not significantly
different from 1 (Changizi, 2001d). Birds with twice as many songs therefore
tend to have roughly twice as many syllable types, and thus bird vocalization
may not be combinatorial at all, and, at most, it is not very combinatorial. Birds
therefore appear to conform to the specialized component types approach to
complexity increase. Using bird vocalization as a model for language is thus
inappropriate. Note that the combinatorial degree for bird vocalization is near
1 despite the fact that birds have, on average, around 3 or 4 syllables per song
(Read and Weary, 1992; Changizi, 2001d).

Traditional animal behavior

Thus far, the cases of behavior we have discussed have been vocalizations,
whether bird or human. Now we wish to consider run-of-the-mill behaviors,
and ask how greater behavioral repertoire size is accommodated in animals. Do
animals with more distinct behaviors (i.e., more expression types) have more
muscles with which the behaviors are implemented? Or do they have the same
number of muscles, and behaviorally more complex animals have longer, and
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Figure 1.10: Logarithm (base 10) of the number of bird syllable types versus the logarithm
of the number of song types. When a min and a max are given in Table 1.4, 10 to the power
of the average of the logged values is used. (The multiple measurements for Bewick’s wren are
averaged and plotted as one data point.) The slope is not significantly different from 1 (see
Changizi, 2001d), suggesting that bird vocalization may not be combinatorial, and thus not
language-like.
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more complex, behaviors? (I am assuming that each distinct muscle is its own
component type.) What we desire now are data showing how the number of
muscles varies as a function of the number of distinct behaviors.

By exhaustively reviewing the animal behavior and ethology literature over
the last century, I was able to compile estimates of the behavioral repertoire size
in 51 species across seven classes within three phyla. Such behavior counts are
recorded in what are called ethograms, and I only used ethograms where the
aim was to record all the animal’s behaviors, not just, say, mating behavior.
Behaviors recorded in ethograms tend to be relatively low level behaviors, and
probably serve as components themselves in higher level behaviors. I refer to
behaviors listed in ethograms as ethobehaviors. Table 1.5 shows these data, and
Figure 1.11 displays them. There are not enough data in each of these classes to
make any strong conclusions concerning the relative ethobehavioral repertoire
sizes, other than perhaps (i) that the range of ethobehavioral repertoire sizes for
mammals is great, and greater than that for the other classes, and (ii) the number
of ethobehavior types for vertebrates tends to be higher than the number for
invertebrates.

Recall that our main purpose is to examine how the number of muscles
scales with the number of ethobehavior types. There are two reasons to focus
on only one class of animals at a time. First, it seems reasonable to expect
that if there are universal laws governing the relationship between number of
muscles and number of ethobehavior types, the general form of the relationship
may be similar across the classes, but the particular constants in the mathemat-
ical relationships may depend on the class of animal. For example, perhaps
fish with E ethobehavior types tend to have half the number of muscles as a
mammal with E ethobehavior types, but within each class the scaling relation-
ships are identical. Second, the community standards for delineating behaviors
are more likely to be similar within a class than across classes. For example,
it may be that ethologists tend to make twice the number of behavioral delin-
eations for insects than for mammals. Here I examine behavioral complexity
within mammals only. One reason to choose this class is because there exists
more ethobehavior data here (from 23 species), and it covers a wider range,
than the data for the other classes (see Figure 1.11). The other reason is that
we also require estimates of the number of muscle types, and I have been able
to acquire muscle counts for only a few non-mammals.

Table 1.6 shows the behavioral repertoire sizes for just the mammals, along
with estimates of the number of muscles and of index of encephalization (which
is a measure of brain mass that corrects for how big it is due merely to the mass
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Table 1.5: Number of ethobehavior types (i.e., the number of behaviors listed in the
authors’ ethogram) for 51 species.

# etho-
Phylum Class Latin name Name behaviors citation

ArthropodaInsecta Apis mellifera Worker honey bee 30 Kolmes, 1985
Ropalidia marginata Social wasps 37 Gadagkar & Joshi, 1983
Camponotus colobopsis Mangrove ants 36 Cole, 1980
Automeris aurantinca Weym Butterfly 15 Bastock & Blest, 1958
Pelocoris femoratus Water bug 22 Brewer & Sites, 1994
Sceptobiini Ant-guest beetle 42 Danoff-Burg, 1996
Stenus Stenus beetle 73 Betz, 1999

Mollusca GastropodaAplysia californical Cooper Sea slug 45 Leonard & Lukowiak, 1986
Navanax inermis Sea slug 28 Leonard & Lukowiak, 1984
Strombidae Sea snail 7 Berg, 1974

CephalopodCallianassa subterranea Burrowing shrimp 12 Stamhui et al., 1996
Eledone moschata Cuttlefish 14 Mather, 1985

Chordata OsteichthyHaplochromis buroni Mouth-brooding african cichlid fish 19 Fernald & Hirata, 1977
Lepomis gibbosus, Linneaus Pumpkinseed sunfish 26 Miller, 1963
Parablennius sanguinolentus parvicornis Blennies 40 Santos & Barreiros, 1993
Pleuronectes platessa L. Juvenile plaice fish 8 Gibson, 1980
Colisa Colisa fish 23 Miller & Jearld, 1983
Gasterosteus aculeatus Three-spined stickleback 19 Wooton, 1972

Chordata Reptilia Gopherus agassizii Desert tortoise 80 Ruby & Niblick, 1994
Caiman sclerops Caimen 188 Lewis, 1985
Lampropholis guichenoti Scincid lizard 45 Torr & Shine, 1994

Chordata Aves Ara ararauna and A. macao Parrot 23 Uribe, 1982
Melopsittacus undulatus Budgerigar parakeet 60 Brockway, 1964a, 1964b
Hydrophasianus chirurgus Pheasant-tailed and bronzewinged jacana, duck 19 Ramachandran, 1998
Phalacrocorax atriceps bransfieldensis Blue-eyed shag (a cormorant) 21 Bernstein and Maxson, 1982
Coturnix chinensis Bluebreasted quail 60 Schleidt et al., 1984
Gallus bankvia White leghorn-type hen 13 Webster & Hurnik, 1990
Poephila guttata Zebra finch 52 Figueredo et al., 1992

Chordata Mammalia Alces alces andersoni North Am. Moose 22 Geist, 1963
Meriones unguiculatus Mongolian gerbil 24 Roper & Polioudakis,1977
Peromyscus maniculatus gambelii Deer mouse 29 Eisenberg, 1962
Dolichotis patagonum Mara 30 Ganglosser & Wehnelt, 1997
Rattus rattus Albino lab rat 43 Bolles and Woods, 1964
Marmota monax Woodchuck 43 Ferron & Ouellet, 1990
Castor canadensis Beaver 51 Patenaude, 1984
Sciuridae (four species) Squirrel 55 Ferron, 1981
Rattus norvegicus White rat 33 Draper, 1967
Spermophilus beecheyi California Ground squirrel 34 Owings et al., 1977
Leporidae (family) White rabbit 30 Gunn & Morton, 1995
Pteropus livingstonii Fruit bat 93 Courts, 1996
Blarina brevicaudo Short-tailed shrew 54 Martin, 1980
Mustela nigripes Black-footed ferret 74 Miller, 1988
Felis catus Cat 69 Fagen & Goldman, 1977
Tursiops truncatus Bottlenose dolphin 123 Muller et al., 1998
Calithrix jacchus jacchus Common marmoset 101 Stevenson & Poole, 1976
Nycticebus coucang Malaysian slow loris 80 Ehrlich & Musicant, 1977
Galago crassicaudatus Great Galagos 97 Ehrlich, 1977
Cercopithecus neglectus De Brazza monkey 44 Oswald & Lockard, 1980
Macaca nemestrina Macaque monkey 184 Kaufman & Rosenblum, 1966
Papio cynocephalus Baboon 129 Coehlo & Bramblett, 1981
Homo sapiens Human child 111 Hutt & Hutt, 1971
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of the animal’s body). Muscle counts were estimated from atlases of anatomy,
and I used the maximum estimate I could find, since lower estimates in an atlas
are due to a lack of detail. Here I have listed all the muscle estimates for each
mammalian order, only the maximum which was used in the analysis.

• Artiodactyla: 89 (Walker, 1988), 116 (Sisson and Grossman, 1953, ox), 138 (Sisson and
Grossman, 1953, pig), 186 (Singh and Roy, 1997), 191 (Ashdown and Done, 1984), 203
(Raghavan, 1964).

• Carnivora: 160 (Sisson and Grossman, 1953), 169 (Bradley and Grahame, 1959), 197
(Reighard and Jennings, 1929), 204 (Boyd et al., 1991, cat), 204 (Boyd et al., 1991, dog),
208 (McClure et al., 1973), 212 (Hudson and Hamilton, 1993), 229 (Adams, 1986), 322
(Evans, 1993).

• Didelphimorphia: 159 (Ellsworth, 1976).

• Lagomorpha: 67 (Busam, 1937), 85 (Chin, 1957), 112 (Wingerd, 1985), 126 (McLaugh-
lin and Chiasson, 1990), 128 (Craigie, 1966), 214 (Popesko et al., 1990).

• Perissodactyla: 146 (Sisson and Grossman, 1953), 172 (Way and Lee, 1965), 194 (Bu-
dras and Sack, 1994), 245 (Pasquini et al., 1983).

• Primates: 160 (Schlossberg and Zuidema, 1997), 190 (Stone and Stone, 1997), 228
(Rohen and Yokochi, 1993), 230 (Bast et al., 1933), 255 (Anson, 1966), 267 (Agur and
Lee, 1991), 278 Netter, 1997), 316 (Williams et al., 1989).

• Proboscidea: 184 (Mariappa, 1986).

• Rodentia: 104 (Popesko et al., 1990, mouse), 113 (Popesko et al., 1990, hamster), 134

(Popesko et al., 1990, rat), 143 (Popesko et al., 1990, guinea pig), 183 (Howell, 1926),

190 (Hebel and Stromberg, 1976), 206 (Cooper and Schiller, 1975), 218 (Greene, 1935).

Index of encephalization, P , was computed as body mass, M , divided by
brain mass, B, to the power of 3/4; i.e., P = M/B3/4. This is appropri-
ate since brain mass scales as body mass to the 3/4 power (Allman, 1999;
Changizi, 2001b). Body and brain masses were acquired from Hrdlicka (1907),
Bonin (1937), Crile and Quiring (1940), and Hofman (1982a, 1982b). [These
data were first presented in Changizi, 2002.]

Figure 1.12 is reminiscent of Figure 1.8 in that the number of component
types (respectively, muscles and words) increases disproportionately slowly
compared to the number of expression types (respectively, ethobehaviors and
sentences) as a function of some third parameter (respectively, encephalization
and time). From the relative rate at which the number of muscles and number
of ethobehavior types scale as a function of encephalization, we can compute
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Figure 1.11: Number of ethobehavior types for each species, and average over all species
(and standard deviation) within the seven classes shown.
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the combinatorial degree. In particular, Figure 1.12 shows that E ∼ P0.8 and
that C ∼ P 0.27. From this we may conclude that E ∼ C3, and thus the
combinatorial degree is roughly 3. However, the data are insufficient to sta-
tistically distinguish between whether the combinatorial degree is invariant (as
a function of E), or whether the combinatorial degree may be slowly increas-
ing. Greater behavioral complexity is achieved, at least in part, by increasing
the number of behavioral component types, or the number of muscles. Mus-
cles therefore do not serve as a universal behavioral language from which any
behavior may be built.

The combinatorial degree for mammalian behavior is roughly 3 (possibly
not invariant), and there are several interesting implications. (1) Since it is
greater than one, it means that behavior is, indeed, language-like. There are
many who already believe that behavior is language-like in this sense (Fen-
tress and Stilwell, 1973; Slater, 1973; Dawkins and Dawkins, 1976; Douglas
and Tweed, 1979; Rodger and Rosebrugh, 1979; Gallistel, 1980; Lefebvre,
1981; Fentress, 1983; Schleidt et al., 1984; Berkinblit et al., 1986; Greenfield,
1991; Allott, 1992; Bizzi and Mussa-Ivaldi, 1998), but the mere fact that mul-
tiple muscles are involved in each behavior is not an argument that behavior
is language-like, as we saw in bird vocalization. The results here provide a
rigorous test of the language-likeness of behavior. (2) A combinatorial de-
gree of around 3 is surprisingly low, given that behaviors have dozens or more
muscles involved. The actual number of degrees of freedom is well below the
actual number of muscles involved, and this is due to the stereotyped mutual
dependencies between muscles. (3) This value for the combinatorial degree is
not too much lower than the combinatorial degree of 5 for human natural lan-
guage. Since the combinatorial degree for mammalian behavior is effectively
an average over many mammals, it is possible that the behavioral combinato-
rial degree for humans is actually nearer to 5, and that perhaps there are similar
neurobiological constraints underlying these values. Preliminary data in my
own experiments (Changizi, 2002) show that the combinatorial degree is also
around three for the ontogeny of behavior in rats (Figure 1.13), where low-
level components were the total number of degrees of freedom exhibited by the
joints of the pups (i.e., the behavior of the pup parts), and the high-level be-
haviors were ethobehaviors. (I expect that my estimates scale in proportion to
the true counts, but I do not expect that my counts reflect the actual magnitudes
of the repertoire sizes, especially for the low-level components where I suspect
severe undercounting.)

Another interesting conclusion we may draw from Figure 1.12 is that ethobe-
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Table 1.6: Number of ethobehavior types, number of muscles, and index of encephal-
ization (i.e., brain size corrected for body size) for mammals.

 Order Species # behavior index of # muscle
 and species latin name common name types behavior citation enceph. types muscle citation

 Artiodactyla 27.0 0.0297 203 Raghavan
 Alces alces North Am. Moose 22 Geist 0.0342
 Cephalophus monticola Duikers 32 Dubost 0.0252

 Carnivora 71.5 0.0862 322 Evans
 Felis catus Cat 69 Fagen & Goldman 0.0888
 Mustela nigripes Black-footed ferret 74 Miller 0.0837

 Cetacea 123.0 0.1721
 Tursiops truncatus Bottlenose dolphin 123 Muller et al. 0.1721

 Chiroptera 93.0 0.0679
 Pteropus livingstonii Fruit bat 93 Courts 0.0679

 Didelphimorphia 0.0185 159 Ellsworth

 Insectivora 54.0 0.0490
 Blarina brevicaudo Short-tailed shrew 54 Martin 0.0490

 Lagomorpha 30.0 0.0345 214 Popesko et al.
 Leporidae (family) White rabbit 30 Gunn & Morton 0.0345

 Perissodactyla 0.0388 245 Pasquini et al.

 Primates 106.6 0.1789 316 Williams et al.
 Cercopithecus neglectus De Brazza monkey 44 Oswald & Lockard 0.1454
 Nycticebus coucang Malaysian slow loris 80 Ehrlich & Musicant 0.1231
 Galago crassicaudatus Great Galagos 97 Ehrlich 0.0977
 Calithrix jacchus Common marmoset 101 Stevenson & Poole 0.1445
 Homo sapiens Human child 111 Hutt & Hutt 0.3502
 Papio cynocephalus Baboon 129 Coehlo & Bramblett 0.1793
 Macaca nemestrina Macaque monkey 184 Kaufman & Rosenblum 0.2116

 Proboscidea 0.0731 184 Mariappa

 Rodentia 38.0 0.0555 218 Greene
 Meriones unguiculatus Mongolian gerbil 24 Roper & Polioudakis 0.0569

  Peromyscus maniculatus Deer mouse 29 Eisenberg 0.0569
 Dolichotis patagonum Mara 30 Ganglosser & Wehnelt 0.0394
 Rattus norvegicus White rat 33 Draper 0.0337
 Spermophilus beecheyi Ground squirrel 34 Owings et al. 0.0803
 Rattus rattus Albino lab rat 43 Bolles and Woods 0.0337
 Marmota monax Woodchuck 43 Ferron & Ouellet 0.0803
 Castor canadensis Beaver 51 Patenaude 0.0383
 Sciuridae (four species) Squirrel 55 Ferron 0.0803
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Figure 1.12: A log-log plot of the number of ethobehavior types and number of muscles in
mammals, each as a function of index of encephalization.
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havioral repertoire size is strongly correlated with index of encephalization. In
fact, they are roughly proportional to one another. This provides a kind of
justification for the use of encephalization as a measure of brain complexity.

Summing up scaling in languages

Table 1.7 summarizes the results for the behavioral systems we have covered
above. One of the first generalizations we may make is that in no case do
we find the universal language approach employed. For behavioral complexity
across adults—i.e., not the cases of the ontogeny of behavior—the combinato-
rial degree is, in every case, consistent with its being invariant, implicating the
length-invariant approach to complexity increase. We cannot, however, reject
the possibility that the combinatorial degree is increasing in mammalian behav-
ior. For the ontogeny of human language, the combinatorial degree clearly, and
expectedly, increases as expressive complexity increases, and the relationship
thus conforms to a logarithmic law; the increasing-C-and-d length approach is
followed. For the ontogeny of rat behavior we are unable to say whether the
relationship is a power law or logarithmic, but can conclude that the combi-
natorial degree is of the same order of magnitude as that for the phylogeny of
mammalian behavior.

1.2.2 Scaling of differentiation in the brain

We have looked at the manner in which behavioral complexity increases, and
now we consider how the brain itself increases in complexity. When a brain is
built to do more things, does it do these “more things” via using the same basic
building blocks—the same set of neuron types—but by stringing them together
into longer functional expressions, or does it achieve greater complexity via
the invention of new kinds of basic building blocks—i.e., new neuron types?
Consider digital circuits as an example kind of network. Digital circuits consist
of logic gates like AND and OR and NOT. For example, AND gates have two
inputs and one output, and output a ‘1’ if and only if both inputs are ‘1’. OR
gates output a ‘1’ if and only if at least one of the inputs is a ‘1’. And a
NOT gate has just one input, and outputs the opposite number as the input.
The set of all possible digital circuits is an infinite set of circuits, carrying out
infinitely many different digital circuit functions. It turns out that, no matter
how complex a digital circuit function is, it can be implemented using just these
three logic gate types. (In fact, there exists a single logic gate that suffices to
build any digital circuit.) No increase in the number of gate types—i.e., no
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Figure 1.13: Top: Logarithm (base 10) of the number of muscle-level behavior types versus
the logarithm of brain mass (g) for the first 20 days of rat development. Bottom: Logarithm
(base 10) of the number of ethobehavior types versus the logarithm of brain mass (g) for the first
20 days of rat development. Brain masses taken from Markus and Petit (1987). Ethobehavior
types recorded from rat pups during the first 20 days are here recorded, followed by the day of
first appearance in at least one pup: back up, 8; bite cage, 14; bite sib, 15; break self from falling forward, 14; burrow into

pile of pups, 1; clean face, 3; clean head, 12; climb wall, 8; dig chips with hands, 13; dig with hind feet, 18; eat chow or poop, 9; fight, 13;

free self from pile or mother, 1; grasp bar, 18; grasp feet, 12; head search for nipple, 1; head shake, 4; jump, 15; lick body, 12; lick feet, 8; lick

hands, 6; lick sib, 6; lie on back (to lick self), 12; manipulate object, 12; mouth floor, 3; push off pup, 8; righting, 1; run, 12; scratch body with

hind leg, 4; scratch ears with front leg, 6; scratch ears with hind legs, 8; seeking nipple, 19; shoveling chips with head, 12; sit on haunches,

12; sleep, 1; sniff air, 10; stand, 14; suckle, 1; turn, 1; walk, 3; walk away from pile, 7; yawn, 1. Muscle-level behavior types
recorded from rat pups during the first 20 days are here recorded, followed by the day of first
appearance in at least one pup: arm lateral push, 2; arm push at elbow, 1; arm push at shoulder, 1; arm push body back, 8;

arm stretch, 1; body bend left-right, 1; body bend sit-up, 1; body stretch, 1; body twist, 1; chew, 12; eye open-close, 12; hand grasp, 9; hand

to face, 3; head left-right, 1; head twist, 1; head up-down, 1; head rotate, 3; leg burst, 15; leg lateral push, 8; leg push at ankle, 1; leg push at

knee, 1; leg stretch, 2; leg to body, 9; leg to face, 8; lick, 6; mouth open-close, 1; suck, 1; tail left-right, 1; tail up-down, 1.
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increase in differentiation—needs to occur. For digital circuits there exists a
universal language. Perhaps nervous systems are like digital circuits, then: a
handful of neuron types are sufficient to carry out any function, and thus brain
differentiation remains invariant in more complex brains. The alternative is that
there is no universal language employed, and more complex brains have new
neuron types.

We address this question first by examining networks generally, rather than
just nervous networks. That is, I will present a theory that applies to any kind
of network under economic or selective pressure, and then show that many
networks, including nervous systems, appear to conform to the theory.

Hypothesis

Nodes in networks combine together to carry out functional expressions, and
let L be the average number of nodes involved in an expression. For example,
employees in businesses group together to carry out tasks for the business, and
neurons in a brain work together to implement brain functions. Let C be, as
earlier, the number of component, or node, types; C is a measure of the degree
of differentiation of the network. If the network can accommodate E distinct
expression types, then there must be nodes in the network doing the work.
Supposing that, on average, each node can participate in s expressions (where
s is a constant depending on the kind of network), the number of nodes in the
network, N , must satisfy the inequality

N ≥ EL/s.

For example, if there are E = 3 expression types in the network, each of length
L = 4, and each node can participate in s = 2 expressions, then there must be
at least N = 3 · 4/2 = 6 nodes in the network to realize these expressions.

I am interested here only in networks that are under selective or economic
pressure of some kind, and for such networks the following optimality hypoth-
esis plausibly applies (Changizi, 2001d, 2001e; Changizi et al, 2002a): Net-
work size scales up no more quickly than “needed” to obtain the E expression
types. The motivation for this is that nodes in a network are costly to build
and maintain, and network size should accordingly be optimized subject to the
functional requirements of the network. Note that networks not under selective
pressure would not be expected to conform to this hypothesis. For example, a
salt crystal is a network with nodes of different types, and the nodes interact
with other nodes to carry out functional connective, lattice-related expressions.
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Table 1.7: Summary of the kinds of behavior studied. When it was not
possible to distinguish between a power law (C ∼ Ea) and a logarithmic
law (C ∼ log E), “∼” is written before the rough value of the combinato-
rial degree to indicate that it might be increasing.

Kind of behavior Combinatorial degree

Across adults

Human language over history Invariant and 5.02

Bird vocalization across phylogeny Invariant and 1.23

Mammalian behavior across phylogeny ~3.00

Ontogeny

Ontogeny of language
      - phoneme-morpheme Increasing from 2 to 4
      - word-sentence Increasing from 1 to 2.5

Ontogeny of behavior ~3

However, salt crystals are not under selective pressure, and the optimality hy-
pothesis does not apply, for a salt crystal that is twice as large will tend to have
no more expression types (i.e., no new kinds of interactions among the nodes).

We derived just above that N ≥ EL/s, and from the optimality hypothesis
we may thus conclude that N ∼ EL. Furthermore, if L were to increase as
a function of E, then network size would scale up more quickly than needed,
and thus L must be invariant. It follows that

N ∼ E.

For networks under selective pressure, then, we expect network complexity, E,
to be directly proportional to network size, N .

How does the network’s differentiation, C , relate to network size? Recall
from earlier in this chapter that E ∼ Cd, where d is the combinatorial degree.
We may immediately conclude that

N ∼ Cd.

Since we just saw that L must be invariant, d will also be invariant. Therefore,
for networks under selective or economic pressure, we predict that network



SCALING IN NERVOUS NETWORKS 53

differentiation and size are related by a power law. Do networks under selective
pressure—selected networks—conform to this prediction? And, in particular,
do nervous networks conform to it? We will see that a wide variety of selected
network conform to the predicted relationship, and by measuring the inverse of
the log-log slope of C versus N we can, as in the earlier cases of behaviors,
compute the combinatorial degree, d.

Example networks, and nervous networks

Changizi et al. (2002a) presented data on the scaling of differentiation in a
wide variety of networks, and some of the key plots are shown in Figure 1.14;
a summary of the studied networks are shown in Table 1.8. The plots on the
left in Figure 1.14 are for human-invented networks, and those on the right are
for biological networks. Pairs on the same row are analogous to one another. In
particular, (i) Legos are akin to organisms in that in each case geographically
nearby nodes interact to carry out functions, (ii) universities are akin to ant
colonies in that in each case there are individual animals interacting with one
another, and (iii) electronic circuits are akin to nervous systems in that each are
electrical, with interconnecting “wires.”

The data sources are discussed in Changizi et al. (2002a), and I will only
mention the neocortex plot here in detail. The data are obtained from Hof
and colleagues, who have used immunoreactive staining and morphological
criteria to compare the neuron types in mammals from 9 orders (Hof et al.,
1999), and in great ape (Nimchinsky et al., 1999). For each mammalian order,
indices of encephalization P (i.e., the brain mass after normalizing for body
size) were computed from brain and body weights (grams) for all species in
that order found in the following references: Hrdlicka (1907), Bonin (1937),
Crile and Quiring (1940), Hofman (1982a, 1982b). Since brain mass scales as
body mass to the 3/4 power (Allman, 1999; Changizi, 2001a), P is defined as
brain mass divided by body mass to the 3/4 power. Averages were then taken
within families, and the family averages, in turn, averaged to obtain the average
for an order. Index of neuron encephalization Q (i.e., the number of neurons
after normalizing for body size) was computed as Q = P2/3, since the number
of neurons in neocortex scales as brain volume to the 2/3 power (see previous
section). Number of neuron types and index of neuron encephalizations are
as follows: Monotremata (7, 0.0699), Artiodactyla (8, 0.0860), Dasyuromor-
phia (7, 0.1291), Insectivora (8, 0.1339), Rodentia (8, 0.1522), Chiroptera (6,
0.1664), Carnivora (9, 0.1830), Cetacea (9, 0.3094), Primate (not great apes)
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(10, 0.2826), Great Ape (11, 0.4968).

Each of the networks shown in Figure 1.14 and mentioned in Table 1.8
have differentiation increasing as a function of network size. They therefore
do not take the universal language approach. Also, the data are consistent
with a power law in every case studied thus far, and the logarithmic relation-
ship can be ruled out in the majority of the kinds of network (Changizi et al.,
2002a). For neocortex in particular, a logarithmic relationship cannot be ex-
cluded (Changizi et al., 2002a) due to the insufficient range. Because of the
tendency for selected networks to follow power laws, it seems reasonable to
expect that the neocortex does as well, and that with more data a logarithmic
relationship could be excluded. In fact, recalling our discussion in the previous
section concerning invariant-length minicolumns in neocortex, we have rea-
son to believe that expressions are length-invariant in neocortex, and thus we
expect differentiation to scale as a power law of neocortical network size. In
sum, then, it appears that, as predicted earlier for network optimality reasons,
networks increase in complexity by scaling differentiation as a power law with
network size. It also means that in all these networks there are invariant-length
expressions; neocortex is hardly, then, unique in this regard.

The combinatorial degree for neocortex is approximately 5—i.e., N ∼
C5—and what might this signify? It means that whatever expressions are,
there are around five degrees of freedom in their construction. Presumably,
most functional expressions in neocortex are carried out by many more neurons
than five. That is, it seems plausible that whatever expressions might be, their
length L is significantly larger than five. The number of degrees of freedom
in an expression may nevertheless be lower than the expression length, as we
have seen for human language over history, bird vocalization, and mammalian
behavior. What, then, might expressions be given that they have on the order of
five degrees of freedom? Consider electronic circuits as an example, where the
combinatorial degree is around 2.5. The basic functional expressions here are
simple circuits, such as voltage dividers, Zener regulators, and diode limiters
(Changizi et al., 2002a), where there are around 2 to 3 electronic components,
and this gives the roughly 2 to 3 degrees of freedom, which, in turn, determines
the rate at which differentiation scales as a function of network size. For neu-
rons, we must ask what are the functional groupings of neurons in the neocor-
tex? There is no known answer for neocortex here, but one plausible conjecture
is the minicolumn, which is a functional grouping of neurons extending along a
line through the thickness of the neocortex (Mountcastle, 1957; Tommerdahl et
al., 1993; Peters, 1994; Mountcastle, 1997). Minicolumns are invariant in size
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Table 1.8: The seven general categories of network for
which I have compiled data for scaling of differentiation.
The second column says what the nodes in the network are,
and the third column gives the estimated combinatorial de-
gree (the inverse of the log-log best-fit slope for differentia-
tion C versus network size N ).

Network Node Comb.
degree

Electronic circuits component 2.29

Legos™ piece 1.41

Businesses
  - military vessels employee 1.60
  - military offices employee 1.13
  - universities employee 1.37
  - insurance co. employee 3.04

Universities
  - across schools faculty 1.81
  - history of Duke faculty 2.07

Ant colonies
  - caste = type ant 8.16
  - size range = type ant 8.00

Organisms cell 17.73

Neocortex neuron 4.56
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(see previous section), which is what we expect since the combinatorial de-
gree is invariant. Minicolumns also typically have roughly five layers to them,
corresponding to the five cell-rich layers of the neocortex. Perhaps each layer
contributes a degree of freedom?

1.3 The shape of limbed animals

Why are limbed animals shaped like they are? Why do animals have as many
limbs (digits, parapodia, etc.) as they do? Questions like this are sometimes
never asked, it being considered silly, or unscientific, or impossible to answer,
or so likely to depend on the intricate ecological details of each individual
species that there will be a different answer for each species. Or, if the ques-
tion is asked using those words, the question will really concern the mecha-
nisms underlying why animals have as many limbs as they do (e.g., certain
gene complexes shared by all limbed animals). But the question I asked con-
cerns whether there may be universal principles governing limb number, prin-
ciples that cut across all the diverse niches and that apply independently of the
kinds of developmental mechanisms animals employ.

I began this research (Changizi, 2001a) with the hypothesis that the large-
scale shapes of limbed animals would be economically organized. Three rea-
sons motivating this hypothesis were, as mentioned more generally earlier, (1)
that animal tissue is expensive and so, all things equal, it is better to use less,
(2) that any tissue savings can be used to buy other functional structures, and
(3) that economical animal shape can tend to lower information delays between
parts of the animal. It is this last motivation that makes this limb problem also
a nervous system problem: even if tissue is inexpensive for some species, as
long as (i) the animal has a nervous system, and (ii) the animal is under selec-
tive pressure to respond to the world relatively quickly, there will be pressure
to have a large-scale morphology with low transmission delays.

To make any sense of a hypothesis about optimality, one needs to be precise
about what is being optimized. Also, when one says that some shape is optimal,
it is implicitly meant that that shape is more economical than all the other
shapes in some large class of shapes; so, we must also be clear about what this
class of shapes is.
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1.3.1 Body-limb networks

To characterize the class of possible (but not necessarily actual) limbed animal
shapes, I have developed the notion of a body-limb network. The basic idea of
a body-limb network is to treat the body and limb tips of an animal as nodes
in a network, and the limbs as edges connecting the body to the limb tips. The
limbs are required to emanate from the body at points that lie along a single
plane—this is the limb plane, and the cross-section of the body lying in this
plane is what we will represent with our node for the body. More precisely,
a body-limb network is any planar network with a central body node, and any
number of limb tip nodes uniformly distributed at some distance X from the
body node. Edges are all the same cost per unit length, and may connect any
pair of nodes. When an edge connects the body node to a limb tip node, the
edge is called a limb edge, or a limb. Figure 1.15 shows some example body-
limb networks. In every network I have ever studied, nodes are points. For
the purpose of characterizing animal bodies, this will not do: animal bodies
are often not point sized compared to limb length. To accommodate this, body
nodes are allowed to have a size and shape. For example, they are circles in
Figure 1.15, and a stretched circle is shown in Figure 1.16. [Stretched circles
are circles that have been cut in two equal halves and pulled apart a stretched-
circle length L.] Body-limb networks are general enough to cover both many
animal-like networks—e.g., a starfish—and many non-animal-like networks.
Body-limb networks with body nodes having stretched-circle shapes have the
following important parameters (see Figure 1.16):

• The body radius, R. I.e., the distance from the body’s center to the body’s edge. This pa-
rameter accommodates all those animals for which the body is not negligible compared
to limb length.

• The stretched-circle length, L. I.e., the “length” of the body, but where L = 0 im-
plies that the body node is a circle. This parameter accommodates long animals, like
millipedes.

• The distance from the body node’s edge to a limb tip, X. When there are edges from
the body to a limb tip, these edges are limb edges, and X is then the limb length. More
generally, though, X is the separation between the body-node and the limb-tip nodes.
Since a connected body-limb network will always have at least one limb, this distance is
always the length of this one limb, at least; accordingly, I will typically refer to it as the
limb length.

• The number of limbs, N . I.e., the number of edges actually connecting the body node to

a limb tip. To emphasize, N is not the number of limb tip nodes, but the number of limb

edges; thus, the number of limb tip nodes must be ≥ N .
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A
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Figure 1.15: Some example body-limb networks with the same body radius and limb length
[as well as the same stretched-circle length (namely 0), see Figure 1.16], and limb length. Body
nodes are not required to be points; here they are circles. (A) Three body-limb networks where
all the edges are limbs, but where some networks have more limb tip nodes than others. (B)
Three body-limb networks where there are just as many nodes as one another, but where some
have more limb edges than others. The networks with asterisks on the body-limb node have
different numbers of limb tip nodes, but have the same number of limbs.

To the extent that real limbed animals can be treated as body-limb net-
works, the treatment is extremely crude. The limb tips in a body-limb net-
work are all equidistant from the body node, whereas real limbed animals often
have limb length variation. They are also required to be uniformly distributed
around the body, but real animals often violate this. The edges in body-limb
networks must have equal costs per unit length, but real animals sometimes
have limbs with different cross-sectional areas (and thus different costs per
unit length). The positions of the nodes in a body-limb network are all fixed
in place, whereas limbed animals move their limbs. Furthermore, although the
limbs of an animal might emanate from the animal along a single plane—the
limb plane—and although limbs of many animals can, if the animal so wishes,
lie roughly flat in that plane, animals rarely keep their limbs within this limb
plane. For example, the limbs of an octopus emanate from along the same pla-
nar cross-section of the animal, and the limbs can lie flat in the plane; but they
rarely if ever do. With regard to reaching out into the world, there is something
special about the plane, special enough that it justifies modeling the shape of
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Figure 1.16: An example body-limb network with a stretched circle body node. The limb
ratio is k = X/(R + X); the stretched-circle ratio is s = L/X .

animals like an octopus as if the limbs are always lying in the plane. Imagine
that all the limbs have the same angle relative to the plane; e.g., they are all
pointing down and out of the plane, with an angle of 30◦ with the plane, as is
depicted in Figure 1.17. For each such “way of pointing the limbs,” let us cal-
culate the total perimeter made by drawing lines connecting the limb tip nodes.
Now ask ourselves, At which angle relative to the plane is this perimeter the
greatest? Well, it is least when all the limbs are pointing either straight down
or straight up; it is greatest when the limbs are lying in the limb plane. Ani-
mals have limbs in order to reach out, and since there is more reaching out to
do when the limbs are in the limb plane, we might expect that it is the geom-
etry when in the limb plane that is the principal driving force in determining
the nature of the network. If an animal’s limbs cannot lie in the limb plane—
as is, for example, the case for most mammals, who have ventrally projected
limbs—then they cannot be treated via body-limb networks as I have defined
them. Despite all these idealizations, body-limb networks allow us to capture
the central features of the highest level descriptions of limbed animals, and
these networks are simple enough that we can easily think about them, as well
as answer questions about optimality.
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Body node, viewed from side

θ

Figure 1.17: Real limbed animals often project their limbs out of the limb plane. [The limb
plane is the plane defined by the points where the limbs intersect the body. It is also the plane
in which the body node lies.] This figure shows an example “animal” viewed from the side,
where all the limbs are pointing below the body at an angle θ relative to the limb plane. The
perimeter made by the limb tips is greatest when θ is zero, i.e., when the limbs lie in the plane.
There is accordingly the greatest need for limbs in the limb plane, and this is my justification
for treating limbed animals as if their limbs lie in the limb plane.

1.3.2 The optimization hypothesis

We now know what body-limb networks are, and how they may be used, to a
first approximation at least, to characterize the large-scale morphology of many
kinds of limbed animals. They are also sufficiently general that there are many
body-limb networks that do not describe real limbed animals. The question
now is, If limbed animals are economically arranged, then what body-limb
networks would we expect to describe them? Or, said another way, which
body-limb networks are optimal? To make this question more precise, suppose
that an animal has body radius R, stretched-circle length L, and limb length
X. Now we consider the class of all body-limb networks having these three
values—the class of “R-L-X body-limb networks”—and ask, Which ones are
optimal? For example, all the example networks in Figure 1.15 have the same
body radius, same stretched-circle length (namely zero), and same limb length;
they are therefore all in the same class of body-limb networks from which we
would like to find the optimal one. However, rather than asking which such
body-limb network is optimal, I will ask a weaker question: How many limbs
does an optimal R-L-X body-limb network have? The reason I want to ask
this question is that, ultimately, it is the number of limbs that I am interested
in. From our point of view, two body-limb networks that differ in their number
of limb tip nodes but have the same number of limb edges are the same. For
example, the networks with asterisks in Figure 1.15 have the same number of
limbs, and so we do not wish to distinguish them.

The answer to the question “How many limbs does an optimal R-L-X
body-limb network have?” is roughly that these networks cannot have too



62 CHAPTER 1

Z

Body node

X

If  Z > X, then... If  X > Z, then...
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Figure 1.18: The basic idea behind the argument for why there cannot be too many limbs in
an optimal body-limb network. (A) Part of the body node is shown at the bottom, two limb tip
nodes on top. One limb edge is presumed to already exist. To connect the network, the other
limb tip node must either have an edge straight to the body node, which is of length X, or have
an edge to the tip of the existing limb, which is of length Z. (B) When Z > X it is less costly
to have a limb go to the limb tip node straight from the body node. (C) But when X > Z it is
cheaper to have an edge go to the tip of the existing limb.

many limbs, where “too many” depends on the parameter values of R, L and
X. Figure 1.18 illustrates the argument. The basic idea is that if two limb tip
nodes are close enough to one another, then it is cheaper to send an edge di-
rectly from one to the other, and to have only one of the limb tips connect to the
body node. This occurs when the distance, Z , between the limb tips is smaller
than the limb length; i.e., when Z < X. However, when limb length is smaller
than the distance between the limb tips—i.e., when X < Z—it is cheaper to
connect the limb tip nodes directly to the body node. That is, it is then cheaper
to have a limb for each limb tip node. With this observation in hand, we can
say that an optimal R-L-X body-limb network must have its limbs sufficiently
far apart that no limb tip nodes at the end of a limb are closer than X.

Because our body node shapes are confined to stretched circles, it is not
difficult to calculate what this means in regards to the maximum number of
limbs allowed for an optimal, or wire-minimal, R-L-X body-limb network.
Let us consider the stretched circle’s two qualitatively distinct parts separately.
First consider the straight sides of the body node. These sides are of length L,
and the limbs are all parallel to one another here. It is only possible to fit L/X
many limbs along one of these edges. Actually, L/X can be a fraction, and
so we must round it down; however, for simplicity I will ignore the truncation
from now on, and compute just the “fractional number of limbs.” So, along the
two sides of a stretched circle there are a maximum of 2L/X limbs; letting s =
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allowed distance)
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Figure 1.19: The simple trigonometry involved in computing the minimum allowed angle
between two limbs for a circular node. The two nodes cannot be closer than X. We can compute
θ/2 as the arcsin[(X/2)/(R+X)]. Since the limb ratio—i.e., a measure of how long the limbs
are compared to the body—is k = X/(R+X), we can rewrite this as θ = 2arcsin(k/2). (An
alternative derivation leads to the equivalent θ = arccos(1 − k2/2).)

L/X be the stretched-circle ratio, the maximum number of limbs is 2s. The
remaining parts of the body node are two semicircles, which we will imagine
pushing together. Limbs on a circular body node poke out radially. Consider
the angle between the lines reaching from the body node to two limb tips. What
must this angle be in order to make the distance between the two limb tip nodes
greater than the limb length X? Figure 1.19 illustrates the simple trigonometry
involved. The conclusion is that, for circular body nodes, the angle, θ, between
adjacent limbs must satisfy the inequality

θ ≥ 2 arcsin(k/2),

(or equivalently θ ≥ arccos(1 − k2/2)), where k = X/(R + X) is the limb
ratio. The maximum number of limbs that can be placed around a circular body
node is therefore

2π
2 arcsin(k/2)

=
π

arcsin(k/2)
.

In total, then, for an R-L-X body-limb network to be optimally wired the
number of limbs N must satisfy the inequality,

N ≤ Nmax = 2s +
π

arcsin(k/2)
,
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where s = L/X and k = X/(R + X). Note that this inequality no longer
refers to the body radius R, the stretched-circle length L or the limb length
X. Instead, it refers only to the stretched-circle ratio s and the limb ratio k.
The absolute size of the network therefore does not matter; all that matters
are the relative proportions of an animal’s body and limbs. It should be noted
that this treatment of stretched circle nodes engages in a simplification since
I have made the argument for the sides separately from that for the circular
ends; a more precise mathematical treatment would determine the maximum
number of limbs for the stretched-circle node shape as it is. For our purposes
this approximation suffices. The notion of optimality we have employed here is
something called a minimal spanning tree, or MST. Spanning trees are networks
that connect up all the nodes, but where there are no loops. Minimal spanning
trees are spanning trees that use the least amount of wire. What we have found
thus far is that if an R-L-X body-limb network is a minimal spanning tree,
then it must have fewer than Nmax limbs.

That encompasses the volume-optimality part of the hypothesis. All it con-
cludes, though, is that there must not be more than Nmax many limbs; it does
not predict how many limbs an animal will actually have. This is where I made
a second hypothesis, which is that animals are typically selected to maximize
their number of limbs subject to the volume-optimality constraint. The sim-
ple intuition is that limbed animals have limbs in order to reach out (for many
different reasons), and need to “cover” their entire perimeter.

These two hypotheses lead to the prediction that, for those limbed animals
describable as R-L-X body-limb networks, the number of limbs N satisfies
the equation,

N = 2s +
π

arcsin(k/2)
.

(I.e., that N = Nmax.) Because the first hypothesis concerns minimal spanning
trees and the second concerns maximizing the number of limbs, I have labeled
this composite hypothesis the max-MST hypothesis. Notice that the max-MST
hypothesis says nothing about life as we know it; it is a general hypothesis, so
general that one might expect it to apply to any limbed animals anywhere, so
long as they are describable by body-limb networks.

Let us ask what this equation means for the relationship between predicted
limb number and the body and limb parameters s (the stretched-circle ratio
s = L/X) and k (the limb ratio k = X/(R+X)). First consider what happens
as s is manipulated. When s = 0 it means that the stretched-circle length is
very small compared to the limb length. The consequence is that the stretched-
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circle term in the equation for the number of limbs drops out, which means that
the network can be treated as having a circular body node. As s increases, and
keeping R and X constant, the equation is of the form N = 2s+Nc(k), where
Nc(k) is a constant referring to the number of limbs for a circle node with limb
ratio k. Thus, N increases proportionally with s. For this reason, the stretched-
circle length parameter is rather uninteresting; that is, it just leads to the obvious
prediction that, for sufficiently large values of s, animals with bodies twice as
long have twice the number of limbs. Now consider what happens as the limb
ratio is manipulated. When k = 1 it means the limbs are very long compared
to the body radius, and the number of limbs becomes N = 2s + 6. When the
body node is circular s = 0 and N = 6; that is, when the limbs are so long
that the body node may be treated as a point, the predicted number of limbs
falls to its minimum of 6. As k approaches zero the limbs become very short
compared to the body radius. Using the approximation x ≈ sin x for x near
0 radians, it follows that sin(k/2) ≈ k/2, and so arcsin(k/2) ≈ k/2, and the
predicted number of limbs becomes

N ≈ 2s + π/(k/2) = 2s + 2π/k.

In fact, even when k is at its maximum of 1, arcsin(k/2) ≈ k/2; e.g., arcsin
(0.5) = 0.52 ≈ 0.5. The error at this maximum is only about 4%, and the error
gets lower and lower as k drops toward zero. Therefore, the approximation
above is always a reasonable one. When the body node is either a circle or
the limb length is very large compared to the stretched-circle length (but still
much smaller than the body radius), the equation becomes N ≈ 2π/k. That is,
the number of limbs becomes inversely proportional to the limb ratio. In short,
when s = 0, the number of limbs falls to six for very long limbs compared to
the body, but increases toward infinity in a particular quantitative fashion as the
limbs become shorter relative to the body. The reader may examine the kinds
of body-limb networks that conform to the hypothesis by playing with a little
program built by Eric Bolz at www.changizi.com/limb.html.

Before moving to data, it is important to recognize that the hypothesis does
not apply to animals without limbs. The hypothesis states that there is a rela-
tionship between an animal’s number of limbs and its body-to-limb proportion
(i.e., limb ratio). Without limbs, the model can say nothing. Alternatively, if
having no limbs is treated as having zero limb ratio, then the model predicts
infinitely many non-existent limbs. Snakes and other limbless organisms are
therefore not counterexamples to the max-MST hypothesis.
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1.3.3 Comparing prediction to reality

At this point I have introduced the prediction made by the max-MST hypothe-
sis. With this prediction in hand, I sought to discover the extent to which real
limbed animals conform to the prediction. To obtain data for actual body-limb
networks, I acquired estimates of the stretched-circle ratio s and the limb ra-
tio k from published sources for 190 limbed animal species over 15 classes
in 7 phyla (Agur, 1991; Barnes, 1963; Bishop, 1943; Brusca and Brusca,
1990; Buchsbaum, 1956; Buchsbaum et. al., 1987; Burnie, 1998; Downey,
1973; Hegner, 1933; Netter, 1997; Parker, 1982; Pearse et. al., 1987; Pick-
well, 1947; Stebbins, 1954). The studied phyla (classes) were annelids (Poly-
chaeta), arthropods (Myriapoda, Insecta, Pycnogonida, Chelicerata, Malacos-
traca), cnidarians (Hydrozoa, Scyphozoa), echinoderms (Holothuroidea, Aster-
oidea), molluscs (Cephalopoda), tardigrades and vertebrates (Mammalia (digits
only), Reptilia (digits only), Amphibia). An appendix subsection at the end of
this section shows these values. Measurements were made on the photographs
and illustrations via a ruler with half millimeter precision. The classes were
included in this study if six or more data points from within it had been ob-
tained. Species within each class were selected on the basis of whether usable
data could be acquired from the sources above (i.e., whether the limb ratio and
stretched-circle ratio were measurable); the number of limbs in the measured
animals ranged from 4 to 426. What counts as a limb? I am using ‘limb’ in a
general sense, applying to any “appendage that reaches out.” This covers, e.g.,
legs, digits, tentacles, oral arms, antennae and parapodia. Although for any
given organism it is usually obvious what appendages should count as limbs,
a general rule for deciding which appendages to count as limbs is not straight-
forward. Some ad hoc decisions were required. For vertebrate legs only the
those of Amphibia were studied, as their legs are the least ventrally projected
of the vertebrates. For amphibians, the head and tail were included in the limb
count because there is an informal sense in which the head and tail also “reach
out”. (Thus, amphibians have six “limbs” in this study.) For insects (and other
invertebrates with antennae studied), antennae appear to be similar in “limb-
likeness” to the legs, and so were counted as limbs unless they were very small
(around < 1/3) compared to the legs. The head and abdomen of insects were
not counted as limbs because, in most cases studied, they are well inside the
perimeter of the legs and antennae, and thus do not much contribute to “reach-
ing out” (the head was treated as part of the body). Since I obtained the data
for the purposes of learning how body-limb networks scale up when there are
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more limbs, and since scaling laws are robust to small perturbations in mea-
surement (being plotted on log-log plots), these where-to-draw-the-line issues
are not likely to much disturb the overall scaling behavior. Digits are treated
in the same manner as other types of limbs, the only difference being that only
a fraction of the body (i.e., hand) perimeter has limbs (i.e., digits). Cases of
digits were studied only in cases where the “hand” is a stretched circle with
digits on roughly one half of the stretched circle. For these cases hands may be
treated as if the digits emanate from only one “side” of the node. Digits like
those on a human foot are, for example, not a case studied because the foot
is not a stretched circle for which the toes are distributed along one half of it.
In 65 of the cases presented here the stretched-circle ratio s �= 0, and to ob-
serve in a single plot how well the data conform to the max-MST hypothesis,
the dependence on the stretched-circle length can be eliminated by “unstretch-
ing” the actual number of limbs as follows: (i) given the limb ratio k and the
stretched-circle ratio s, the percent error E between the predicted and actual
number of limbs is computed, (ii) the predicted number of limbs for a circular
body is computed by setting s = 0 (and keeping k the same), and (iii) the “un-
stretched actual number of limbs” is computed as having percent error E from
the predicted number of limbs for a circular body. This rids of the dependence
on s while retaining the percent error.

After unstretching, each measured limbed animal had two remaining key
values of interest: limb ratio k and number of limbs N . The question is now,
How do N and k relate in actual organisms, and how does this compare to the
predicted relationship? Recall that, for s = 0 as in these unstretched animals,
the predicted relationship between N and k for limbed animals is

N ≈ 2π/k.

If we take the logarithm of both sides, we get

log10 N ≈ log10(2π/k),

log10 N ≈ − log10 k + log10(2π) = − log10 k + 0.798.

Therefore, if we plot log10 N versus − log10 k, the predicted equation will have
the form of a straight line, namely with equation y = x+ 0.798. This is shown
in the dotted lines in Figure 1.20.

Figure 1.20 shows a plot of the logarithm (base 10) of the number of limbs
versus the negative of the logarithm (base 10) of the limb ratio for the data
I acquired. If the max-MST hypothesis is true, then the data should closely
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Figure 1.20: (A) The logarithm (base 10) of the unstretched number of limbs versus the
negative of the logarithm of the limb ratio, for all 190 limbed animals. The best fit equation
via linear regression is y = 1.171x + 0.795 (solid line) (R2 = 0.647, n = 190, p < 0.001),
and predicted line y = x + 0.798 (dotted line). The 95% confidence interval for this slope is
[1.047, 1.294]. The three rightmost data points exert a disproportionate influence on the best-
fit line, and removing them leads to the best fit equation y = 1.089x + 0.8055 (R2 = 0.487,
n = 187, p < 0.001), with a 95% confidence interval for the slope of [0.900, 1.279]. (B)
The average of log10 N values versus − log10 k, where the − log10 k values are binned with
width 0.01. Error bars indicate standard deviation (for points obtained from bins with 2 or
more cases). The best fit equation is now y = 1.206x + 0.787 (solid line) (R2 = 0.777,
n = 52, p < 0.001), again very close to the predicted line (dotted line). points still exert
a disproportionate influence on the best-fit line, and removing them results in the equation
y = 1.112x + 0.807 (R2 = 0.631, n = 49, p < 0.001).
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follow the equation y = x + 0.798 in the plot, shown as dotted lines. Exami-
nation of the plots show that the data closely follow the predicted lines. When
− log(k) = 0, k = 1, meaning that the body radius R is extremely small com-
pared to the limb length X; and when this is true, the number of limbs falls to
a minimum of around six (see legend of Figure 1.20). As − log(k) increases,
the limb ratio decreases toward 0, meaning that the limbs are getting smaller
relative to the body radius; and when this is true, the number of limbs increases
higher and higher. Not only does limb number clearly increase as limb ratio
decreases (and the x axis increases), it appears to be well described by the
linear regression equation log(N) = 1.171[− log(k)] + 0.795 (and, without
the three points on the far right, log(N) = 1.089[− log(k)] + 0.8055). Ma-
nipulation of this equation leads to N = 6.24k−1.171 (and without the three
stray points, N = 6.39k−1.089): the number of limbs appears to be roughly
inversely proportional to the limb-ratio, with a proportionality constant around
6. This is extraordinarily similar to the predicted relationship which, recall, is
N = 6.28k−1.

In summary, many limbed animals across at least seven phyla conform well
to the max-MST hypothesis, which suggests that their large-scale morpholo-
gies are arranged to minimize the amount of tissue needed to reach out in the
world; they also appear to have the maximum number of limbs subject to the
constraint that they are still optimal trees. And this is despite the complete
lack of any details in the hypothesis concerning the ecological niches of the
animals, and despite the extreme level of crudeness in the notion of body-limb
networks. It is worth emphasizing that, even without the max-MST hypothesis
to explain the data, these empirical results are interesting because they reveal
that limbed animals follow universal laws relating their body-to-limb ratio to
their number of limbs. It happens that this universal law is just what one might
a priori suspect of limbed animals—as I a priori suspected—if they are driven
by volume-optimization considerations. It is also worth mentioning that this
limb problem is a kind of network scaling problem: the issue is, what changes
do body-limb networks undergo as they acquire more limbs? That is, how
do animals change as their number of limbs is scaled up? The answer is that
limbed animals scale up in such a way as to keep the value N ·k invariant; and,
in particular, limbed animals satisfy the constraint that N · k ≈ 2π.
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Appendix for section: Raw limb data

In this appendix I have included my raw limb data. It appears on the following
three consecutive pages, with the phylum, class (with type of “limb” in paren-
theses), name of animal (species name, or whatever information was available
from the source), limb ratio (X/(R + X)), stretch ratio (L/X), and the num-
ber of limbs. I mention in passing that it may be interesting to look at confor-
mance to this model in two new ways. One, to look at spherical nodes, where
the limbs point radially outward in all directions; mathematical research from
Coxeter (1962) can be used to determine roughly how many limbs are optimal.
[The predicted relationship is N ≈ 4π/k2, where k is again the limb ratio.]
Second, one may look at non-animals, and perhaps even viruses: e.g., the T4
bacteriophage conforms well to the model, having six “lunar-lander-like” limbs
attached to a very small “body” (the shaft).
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Phylum Class (limb type) Name limb ratio stretch ratio # limbs
X/(R+X) (L/X)

Annelida Polychaeta (parapodia) Glycera americana 0.3658 158.0550 426
Tomopteris 0.1929 11.3734 52

(parapodia, long) Halosydna 0.3214 5.2222 37
(parapodia, short) Halosydna 0.2400 7.8333 41

Syllis cornuta 0.9102 2.6316 30
Nereis virens 0.4545 23.6000 72

0.3333 69.7500 218
Nereis diversicolor 0.6087 10.4286 50

Chelicerata (legs) spider larva 0.8123 0.1320 8
spider nymph 0.8364 0.0372 8
spider 0.8467 0.0849 8
Argiope 0.9015 0.0000 8
Scytodes 0.8551 0.0000 8
Pardosa amentata 0.8952 0.1064 8
a generalized spider 0.8571 0.1667 8
a spider (in amber) 0.8815 0.0640 8
a crab spider 0.8545 0.0000 8
Tegenaria gigantea 0.8956 0.0245 8
Brachypelma emilia 0.7947 0.0397 8
Buthus martensi 0.8556 0.2412 10
Ricinoides crassipalpe 0.8464 0.0000 8
unnamed 0.9256 0.2009 8
daddy long legs 0.9735 0.0181 8
Mastigoproctus 0.8773 0.2721 10
Heterophrynus longicornis 0.9167 0.0121 8
Stegophrynus dammermani 0.8802 0.0000 8
Koenenia 0.8477 0.5689 10
Galeodes arabs 0.8991 0.2801 10
Chelifer cancroides 0.8985 0.3349 10
Eurypterus 0.5145 0.0000 10
Pterygotus buffaloensis 0.7316 0.0000 12
Limulus 0.9231 0.3750 10

Malacostraca (legs) Pachygrapsus crassipes 0.6785 0.0000 10
Chionoecetes tanneri 0.7745 0.0000 10
Gecarcoidea natalis 0.6537 0.0000 10
Carcinus maenas 0.8261 0.0702 10
Maja squinado 0.7078 0.0183 10
Callianassa 0.7625 0.4177 10
Pleuroncodes planipes 0.7874 0.3681 8
Petrolisthes 0.6676 0.1770 10
Cryptolithodes 0.8229 0.3472 10
a crab 0.8012 0.0025 10
Loxorhynchus 0.7035 0.1533 10
Pugettia 0.7111 0.1060 10
Stenorhynchus 0.9554 0.0800 8

Arthropoda Myriapoda (legs) Lithobius 0.7865 3.4611 32
Scolopendra gigantea 0.7037 7.7895 36
a California centipede 0.4795 11.5429 38
Scutigera coleoptrata 0.8474 2.5210 34
Scolopendra cingulata 0.5233 8.5506 42
Scutigerella 0.6061 9.5333 28
a millipede 0.6842 8.6923 56

Insecta (legs and antennae) Thraulodes salinus 0.7929 0.5732 8
Pediculus humanus 0.7108 0.0407 6
Phthirus pubis 0.5725 0.0000 6
a cockroach 0.9696 0.8784 8
Microcoema camposi 0.9555 0.5276 6
Lonchodes brevipes 0.9764 1.1774 6
Velinus malayus 0.8919 0.1212 6
an ant 0.8810 0.1622 6

Pycnogonida (legs) Nymphopsis spinosossima 0.9189 0.1961 8
Achelia echinata 0.8882 0.2517 10
Dodecolopoda mawsoni 0.9556 0.1395 12
Decolopoda australis 0.9808 0.2157 10
Tanystylum anthomasti 0.9218 0.3392 8
Nymphon rubrum 0.9853 0.1660 8

unnamed
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Phylum Class (limb type) Name limb ratio stretch ratio # limbs
X/(R+X) (L/X)

Cnidaria Hydrozoa (tentacles) Hydra A 0.9815 0.0000 6
Hydra B 0.8041 0.0000 8
Hydra C 0.9620 0.0000 6
Polyorchis 0.4719 0.0000 33
Tubularia hydroid adult polyp A 0.6111 0.0000 20
Tubularia hydroid adult polyp B 0.7536 0.0000 10
Tubularia hydroid actinula larva 0.8264 0.0000 8
Tubularia hydroid new polyp 0.9048 0.0000 9
Tubularia indivisa hydroid 0.8387 0.0000 16
Niobia medusa 0.5426 0.0000 6
Sarsia medusa 0.8784 0.0000 4
Rathkea medusa 0.3137 0.0000 31
"typical" medusa 0.7957 0.0000 9
Proboscidactyla 0.2071 0.0000 34
Obelia medusa 0.3404 0.0000 52
"typical" medusa 0.4950 0.0000 68
a hydranth A 0.6747 0.0000 6
a hydranth B 0.7188 0.0000 11
a hydranth C 0.6897 0.0000 17
Linmocnida medusa 0.4750 0.0000 20
Aglaura medusa 0.2308 0.0000 45

Scyphozoa (tentacles) Stomolophus meleagris scyphistoma 0.8511 0.0000 13
Stomolophus meleagris stobila 0.7391 0.0000 8
Stomolophus meleagris late strobila 0.8458 0.0000 7
Stomolophus meleagris ephyra 0.2712 0.0000 16
Cassiopea andromeda 0.5946 0.0000 8
Mastigias medusa 0.8485 0.0000 8
Haliclystis 0.8333 0.0000 8
Pelagia adult scyphomedusa 0.7748 0.0000 8

(oral arms) Pelagia adult scyphomedusa 0.9412 0.0000 4
Aurelia adult medusa 0.0444 0.0000 154
Aurelia ephyra 0.2632 0.0000 16
Aurelia scyphistoma A 0.5652 0.0000 22
Aurelia scyphistoma B 0.6735 0.0000 17
Aurelia scyphistoma C 0.8317 0.0000 8
"typical" medusa A 0.1136 0.0000 96

(oral arms) "typical" medusa A 0.8861 0.0000 4
"typical" medusa B 0.0816 0.0000 368

(oral arms) "typical" medusa B 0.9231 0.0000 4

Echinodermata Holothuroidea (arms) Cucumaria crocea 0.8864 0.0000 10
Cucumaria planci 0.8571 0.0000 10
Enypniastes 0.4643 0.0000 18
Pelagothuria 0.8958 0.0000 11
Holothuria grisea 0.5313 0.0000 18
Stichopus 0.5926 0.0000 10
Euapta 0.7059 0.0000 8

Asteroidea (arms) Luidia phragma 0.7547 0.0000 5
Luidia ciliaris 0.8590 0.0000 8
Luidia sengalensis 0.8235 0.0000 9
Luidia clathrata 0.8281 0.0000 5
Ctenodiscus 0.7451 0.0000 5
Astropecten irregularis 0.7800 0.0000 5
Heliaster microbranchius A 0.2040 0.0000 34
Heliaster microbranchius B 0.4051 0.0000 25
Solaster 0.7733 0.0000 10
Acanthaster planci 0.4500 0.0000 19
Pteraster tesselatus 0.4455 0.0000 5
Solaster notophrynus 0.6741 0.0000 7
Linckia guildingii 0.8752 0.0000 5
Linckia bouvieri 0.9148 0.0000 5
Ampheraster alaminos 0.9091 0.0000 6
Odinia 0.8553 0.0000 19
a starfish A 0.5476 0.0000 10
a starfish B 0.8395 0.0000 8
Freyella 0.8717 0.0000 13
Crossaster papposus 0.5050 0.0000 13
Coscinasterias tenuispina 0.8333 0.0000 7
Coronaster briorcus 0.8182 0.0000 11
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Phylum Class (limb type) Name limb ratio stretch ratio # limbs
X/(R+X) (L/X)

Mollusca Cephalopoda (arms) Sepia A 0.7463 0.0000 8
Sepia B 0.7755 0.0000 8
Architeuthis 0.8889 0.0000 8
Octopus 0.8826 0.0000 8
Octopus dofleini 0.9111 0.0000 8
Octopus vulgaris 0.9068 0.0000 8
Loligo 0.8163 0.0000 8
Loligo pealeii 0.7987 0.0000 8
Histioteuthis 0.8224 0.0000 8
a juvenile 0.7000 0.0000 8

Vertebrata Amphibia (limbs, 
tail and head)

a salamander A 0.8458 1.0666 6
a salamander B 0.8128 1.1219 6
a salamander C 0.8653 1.6132 6
a salamander D 0.8636 1.2982 6
a salamander E 0.8854 1.4243 6
a salamander F 0.8452 1.5385 6
a salamander G 0.8582 1.3125 6
a salamander H 0.8582 1.0593 6
a salamander I 0.8438 1.7284 6
a salamander J 0.7971 1.0727 6

Tardigrada digits(digits) Echiniscus 0.6667 0.0000 8
Halobiotus crispae 0.6667 0.0000 8
Echiniscoides sigismundi 0.5714 0.0000 16
Wingstrandarctus corallinus 0.8384 0.0000 8
Styraconyx qivitoq 0.7857 0.0000 8
Halechiniscus 0.8530 0.0000 8
Orzeliscus 0.8000 0.0000 8
Batillipes 0.8225 0.0000 6

Vertebrata digitsMammalia (digits) homo sapien A 0.5879 0.0000 10
homo sapien B 0.6135 0.0000 10
homo sapien C 0.5889 0.0000 10
homo sapien D 0.5782 0.0000 10
chimpanzee 0.6358 0.0000 10
Tarsius bancanus 0.7059 0.0000 10

Reptilia (digits) Triturus cristatus (rear limb of a newt) 0.6691 0.0000 10
Triturus cristatus (front limb of a newt) 0.8023 0.0000 8
Sceloporus occidentalis biseriatus 0.6861 0.0000 10
Lacerta lepid (a lizard) 0.6067 0.0000 10
Cnemidophorus tessalatus tessellatus 0.6833 0.0000 10
Eumeces skiltonianus (a skink) 0.7738 0.0000 10
Dasia (a skink) 0.8108 0.0000 10

Amphibia (digits) a salamander front limb 1 0.7699 0.0000 8
a salamander rear limb 2 0.4202 0.0000 10
a salamander front limb 3 0.6329 0.0000 8
a salamander rear limb 4 0.5868 0.0000 10
a salamander front limb 5 0.6237 0.0000 8
a salamander rear limb 6 0.6209 0.0000 10
Plethodon vandyke (front limb) 0.6053 0.0000 8
Plethodon vandyke (rear limb) 0.5704 0.0000 10
Anneides lugubris (front limb) 0.6464 0.0000 8
Anneides lugubris (rear limb) 0.6578 0.0000 10
Laeurognathus marmorata (a front limb) 0.6732 0.0000 8
Laeurognathus marmorata (a rear limb) 0.6552 0.0000 10
Pseudotriton ruber ruber (a front limb) 0.5769 0.0000 8
Pseudotriton ruber ruber (a rear limb) 0.5303 0.0000 10
Plethodon vehiculum (a rear limb) 0.6358 0.0000 10
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