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Preface

Since brains are not “impossibility engines,” they cannot do the logically im-
possible. Since brains are not infinite in size or speed, they cannot do the
computationally impossible. Since brains are found in the universe, rather than
in some fantasy world, they cannot do the physically impossible. Brains have
constraints. And not simply the garden variety Earthly constraints like having
to work well at the human body temperature, or having some upper limit in
working memory. Brains have “high level” constraints, by which | mean con-
straints to which nearly any other possible kind of brain will also be subject.
Such constraints are typically more at a physics or mathematics level, rather
than depending on the particular contingencies of the ecology encountered by
any specific kind of brain.

To understand the brain one must, | believe, understand the limits and prin-
ciples governing all possible brain-like things—objects that somehow instan-
tiate minds. For example, if I tell you | want to know how this computer on
which | am typing works, and you tell me about the details of just this kind
of computer, you really would have missed the point. That is, unless | already
knew all about how computers worked generally, and just wanted to know the
specifics about this kind of computer. But if | did not understand how any kind
of computer works, then to really explain to me how this computer works will
require telling me how computers work in general. That is what is interesting
about computers and computation: the fundamental questions in computer sci-
ence are about how computer-like things work generally, not about how this
or that computer actually happens to work. Similarly, what is most fascinating
about the brain is not that it is our brain (although that helps), but that it hap-
pens to be one of presumably an infinite class of brain-like things, and | want
to know how brain-like things work.

To do this, one must back sufficiently far away from the brains we find
here on Earth so as to lose sight of these brains’ distracting peculiarities, and
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consequently to gain a focus on what is important about these Earthly brains.
That is, we must view the brain from 25,000 feet up—or, from very high up.
At this height, the details of the brain are lost, whether they be ion channels,
intricate neural connectivity patterns, or pharmacological effects. The back-
ground required of a researcher who wishes to study the brain from this high
level is therefore not traditional neurobiology, neuroanatomy, psychology or
even computational neuroscience (the latter which almost always focuses on
modeling specific, relatively lower-level mechanisms thought to occur in the
brain). What is needed is a training in mathematics, computer science and
physics, and even an appreciation of conceptual limits from philosophy.

This book serves two purposes. One aim is to illustrate a number of high-
level approaches to brain science. These range from an explanation for why
natural language is vague, to a solution to the riddle of induction and applica-
tions to issues of innateness, to the use of probability and decision theory in
modeling perception, to the inevitability of visual illusions for any animal with
a non-instantaneous brain, and finally to the morphology, complexity and scal-
ing behavior of many aspects of nervous systems. The second aim is to both
encourage others to approach brain science from a high level and to provide,
along the way, an introduction to some of the mathematical, computational and
conceptual principles needed to be able to think about brains at a higher level.

For the remainder of this preface, | wish (i) to provide a preview of the
topics covered throughout the book, and (ii) to communicate the overarching
philosophy | take toward the brain sciences, a philosophy that is the theme
connecting the diverse topics through which we traverse in this book: that phi-
losophy is that understanding the brain will require ignoring most of the brain’s
peculiar details and giving greater attention to higher level principles governing
the brain and brain-like machines. In an attempt to convince the reader that this
philosophy is right, I put forth in this preface an extended allegory concerning
futuristic cavemen attempting to reverse engineer the artifacts of a now-dead
civilization. It will be rather obvious to us what the cavemen need to know
in order to understand these artifacts, and | hope to convince you that in our
own attempt to understand the brain, we should expect to need to know similar
kinds of things. Namely, we must discover the high level principles governing
the brain. The chapters of the book provide examples from my own research
of such high level approaches.

Let us start by imagining an intelligent, scientifically primitive society of
a post-apocalyptic future. They have no computers, no electricity, no modern
architecture, and no principles of physics, mathematics and engineering. They
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live in caves, eating berries and raw squirrel. One day they stumble onto a
magnificent thing like nothing they have seen before: a house. It seems the
house had been abandoned at the beginning of the 21st century, many centuries
before. Equipped with solar cells, the house and the things inside are still in
working order (despite the apocalypse!). They quickly find many other houses
in the area, and eventually an entire city of houses and buildings, all miracu-
lously in working order (and also running on solar cells). Unfortunately, they
find no libraries.

Always striving for a better life, the cavemen promptly leave their caves to
live in the houses, where they find warmth, running water, refrigerators, ovens
and video games. They thereby achieve the good life, and their children and
children’s children are happy. They no longer even look like cavemen, having
found ample supplies of 21st century clothing and soap.

But although you can take the caveman out of the cave, it is not so easy
to take the cave out of the caveman. They begin this new life in a remarkably
ignorant state, very unlike the people who had created the city, namely us. The
cavemen quickly guess what toilets and light switches are for, but they have no
idea about how such things work. We as a 21st century society, however, do
know all there is to know about electrical wiring and plumbing in our houses.
...and architecture in our houses and buildings, and computer engineering in
our computers, and mechanical engineering in our can openers, and so on. We
have entire disciplines of engineering devoted to these kinds of technologies,
each one laying the groundwork for how such systems work, and how to make
it work best given the circumstances. Furthermore, we grasp the more basic
principles of mathematics and physics themselves: e.g., Newtonian mechanics,
electricity and magnetism, fluid dynamics, computer science, geometry and
calculus. We built from scratch those houses the cavemen live in; and built
from scratch the things inside the houses that the cavemen are using. We did
not originally build them via mimicry, but, rather, through our knowledge of
all the relevant principles involved. This is what | mean when | say that we
understand houses and the things inside them, but the cavemen do not.

The cavemen have high aspirations, both materially and intellectually, and
are not content to merely live in the nice homes without understanding them.
They begin asking how to fix them when they break down. Repairmen of their
day pop up, whose aim is to fix failures in the houses. And scientists of their
day arise, asking what kind of magic the builders knew, and how can they dis-
cover it. These cavemen are not content to remain cavemen on the inside, and
to become more, they have a task ahead of them more daunting than they can
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possibly imagine: to discover all the principles the 21st century builders had
discovered over the course of a couple millenia! Of course, the cavemen have
a tremendous advantage in that they have countless relics of modern technol-
ogy in which these principles are “embedded.” But their task is nevertheless
tremendous, and it should not be surprising to learn that it takes well over a
century for them to catch up to where the builders (us) were when they mostly
killed themselves off somehow.
What is interesting about this story of futuristic cavemen is that . ..

1. From the point of view of the cavemen, they have a scientific task of un-
derstanding the technological artifacts they encounter, and this is analo-
gous to our own 21st century scientific task of understanding the brain
and biological systems.

2. And, importantly, we 21st century “builders” are in the special position
of actually completely understanding the principles behind the techno-
logical artifacts; that is, we have a God’s eye view of what the cavemen
need to figure out.

As we watch the cavemen begin to study the artifacts, we have the privileged
position of seeing how close they are to really “getting it.” And by fantasizing
about what kinds of stages of discovery the cavemen will go through before
achieving full understanding, we can more readily get a handle on what kinds
of stages we will need to go through before fully understanding brains and bi-
ological systems. That is, this story, or thought experiment, is useful because
we grasp the kinds of theories the cavemen must (re)discover in order to under-
stand the artifacts, and we may use their intellectual development as a model
for the kind of intellectual development we must go through before we will
fully comprehend the brain and biological systems. We will further explore
this analogy, running futuristic-caveman history forward, looking at the kinds
of knowledge they have at each stage, asking what more they need to know,
and discussing the connections to our own epistemic position in regards to the
brain.

Mapping, a lower level approach

Toward understanding these new-found houses, one of the more obvious
tasks the cavemen scientists and engineers think to do is to try to figure out
what houses are made of, which parts are attached to which others, how they
are attached, what each part in isolation seems to do, and so on. That is, they
attempt to “map out” the house, in all its details, from the structural beams and
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girders, to the windows, doors, hinges and dry wall, to the plumbing and the
electrical wiring. They even try to figure out what each part on its own seems
to do.

This takes an incredible amount of work—thousands of dissertations are
written and tens of thousands of papers are published in the early caveman
journals. Eventually they succeed in mapping the entire builder’s house, and
the details are made publicly available to all the cavemen. Caveman television
shows and newspapers declare that all the house repair problems are now on
the verge of being solved, and that they have entered an exciting new era in
caveman understanding of the technology from the past. “Houses completely
understood” emanates from the cavemen, layman and many scientists alike.

And through time, maps are provided for all the different kinds of house
and building, from split-level and ranch, to varieties of chapels and movie
houses, and so on. With these maps in hand, cavemen scientists can begin to
see similarities and differences in the maps of different building types, and can
even formulate good guesses as to which kind of building is “more evolved”—
i.e., rests on principles developed later in the builders’ (our) time.

From the caveman point of view, they have made staggering advances in
cracking the magic of the 21st century. And although it is certainly true to
say that they have made a great step forward, it is not the case that they are
anywhere near really understanding the technology.

We know this because we happen to entirely comprehend, as a culture, this
technology—we built it first. And the knowledge needed for us to invent and
build this technology encompassed much more than just a map of the parts,
connectivity, geometry, and an understanding of what each part seems to do
locally. To grasp how all these parts, when correctly assembled, work together,
mechanical, electrical and civil engineering are required, each of which is re-
ally composed of many disciplines. And for the computer systems found in the
homes, computer engineering is required. Principles of architecture, masonry
and carpentry must also be known. These disciplines of engineering rest, in
turn, upon many areas of physics and mathematics, which required hundreds
of years to develop the first time.

These cavemen have just barely begun their scientific adventure—they have
only made it to square one.

This is akin to the recent sequencing of entire genomes of various organ-
isms. The analogy is by no means perfect, though, since we have been studying
organisms at many different levels for years—e.g., physical chemistry, organic
chemistry, genetics, protein biophysics, pharmacology, cell biology, physiol-
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ogy, anatomy, developmental biology and biomechanics. It is not the case that
our first step in studying organisms was to sequence the genome! But the anal-
ogy can help to put in perspective the importance of the sequencing of the
genome. It is analogous to the cavemen for years studying houses at many dif-
ferent levels—e.q., electricity and magnetism, ceramics, electrical engineering,
microelectronics, carpentry, and so on—and one group of researchers finally
mapping the house. Just as house mapping does not imply any quantum leap
in understanding houses, mapping the genome does not entail a quantum leap
in understanding organisms.

The same discussion applies to the brain as well. Technologies such as
functional magnetic resonance imaging are allowing large-scale mapping of
the brain, and decades of single-electrode recording studies (i.e., poking wires
here and there in the brain and seeing what makes them light up) have led to
mapping of the areas of brains. Anatomical techniques, both morphological
and connectivity-based, have also added to our knowledge of the mapping. We
know roughly which areas are connected to which others in cat and macaque
monkey, and we know the typical connectivity pattern—at a statistical level—
in the cortex. We also comprehend aspects of ion channels, synapse modifica-
tion, and much much more.

All these techniques are helping us to map out the brain, and let us suppose
that we do come to know all there is to know about the brain’s map—uwhat there
is, where they are, what they connect to, and what each neuron or microcolumn
or area does. While some might think we would have reached a climax, it
seems to me clear that we would have advanced, but we would nevertheless be
unenlightened.

The problem for us in understanding the brain is much more severe than
the cavemen and buildings. The brain is “more than the sum of its parts” in a
much stronger sense than is a house. A computer, also found by the cavemen
in the houses, makes a more apt example. The cavemen at some point map out
the entire structure and connectivity of the computer, at the level of individual
resistors, capacitors and inductors, and at the higher level of transistors and
diodes, and at the higher level of logic gates, and at the still higher level of
microprocessors, hard drives and random access memory. They are even able
to watch what happens among these parts as any software is run.

Will they understand what software is running, much less the principles of
computation making the software possible, from their knowledge of the com-
puter map? They will be utterly confused, having no idea how to characterize,
parse and interpret the sequential states of the computer. What these cavemen
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need—what we know and they do not—is an understanding of the principles
of computation, from general issues of hardware design, to issues of machine
language, assembly code, programming languages, software engineering, algo-
rithms, theory of computation, recursion theory and mathematics of functions
(asin f(x) = 2?).

Accordingly, we need an understanding of analogous levels of theory for
brains in order to understand them. Building a brain map will not be a solution—
it will be just one of countless important steps along the way, and not a partic-
ularly illuminating step at that.

Neural networks, alower level approach

Let us imagine now that the cavemen, in an attempt to grapple with com-
puters, manage to simulate them with, say, complex arrangements of ropes and
pulleys. The ropes and pulleys are arranged to mimic certain key aspects of
computer components, and are further set up to connect to one another in a
manner like real computers. By eliminating some thought-to-be-irrelevant de-
tails, their ropes-and-pulleys simulations aim to capture the key mechanisms
underlying computers. And, since the cavemen can easily see which ropes go
up and which go down, they are able to predict what would happen with novel
computer hardware arrangements, and gain insights into computers by studying
a system that they find easier to manipulate and think about.

Have the cavemen thereby figured out computers? While they may have
a useful tool for predicting new and useful computer architectures, and for
predicting what a given computer will do with a certain input, or for helping
them to think about the causal sequences in computers, do they really grasp
the point? They have, to first order, just replaced one complex system they do
not understand with another one that, although they can think about it a little
more clearly, they still do not understand. The cavemen’s ropes-and-pulleys
constructs are doing computations, and the cavemen have no idea about this.
While they understand ropes and pulleys, and fathom the workings of several
working together, they are at a loss—as would we be—to grasp what fifty or a
thousand or a million of them are implementing when working together.

Ropes-and-pulleys machines may be a useful tool for the science of com-
putation, and may even lead to applications in their own right—e.g., maybe the
cavemen find a way to predict the weather with them—but these machines do
not lead to much understanding of computers. Ve know this because we know
that what they need to learn is true computer science, from recursion theory
and logic, to algorithms, to software engineering, programming languages and
more.
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A similar story applies for the brain and neural networks or any other lower
level simulation-oriented technique. Neural networks—both artificial and bi-
ologically minded ones—have proven useful ways of “playing with brains,”
and have provided applications like predicting the stock market. They do not,
however, lead to much understanding of the principles governing the brain and
brain-like things.

Associations, a lower level approach

Many of the houses the cavemen live in need repairs. Fixing houses be-
comes big business. Given that the cavemen do not yet know much about these
houses, it may seem that they have little hope of being able to fix them. It turns
out, however, that it is not so difficult to become quite good at fixing lots of
house breakdowns despite one’s ignorance about how houses really work. Let
us see what the cavemen do.

Sometimes lights stop working. By experimenting with the houses they
learn how to diagnose the source of the failure, and how to fix it. On some
occasions the light bulb is the problem. They figure this out by trying the bulb
in a socket where a bulb is working, and noting that the questionable bulb still
does not work. On other occasions, though, the cavemen find that the bulb is
undamaged—uworking fine in other sockets in the house. Something else is thus
the problem. They find that in some of these cases, a wire has been cut, and
they find that reattaching the wire fixes the problem. Other times they find that
a fuse has been blown and must be replaced.

In this experimental fashion, symptoms become associated with diagnoses,
and many problems become fixable. Repairmen train hard to make proper
diagnoses, and houses are able to be maintained and fixed by them. .. .and all
this despite their marked ignorance concerning the principles involved.

The fact that people have figured out how to fix many problems in a system
is not, itself, a sure-fire test of whether they understand the system. Now,
greater understanding of houses will, of course, tend to increase the percentage
of cases that are repairable, and increase the quality of repairs.

Let us now look at ourselves, and our study of biological systems, rather
than cavemen and their study of 21st century technology. First consider car-
diovascular problems in humans. In this field, we have made considerable
progress in understanding the physiological principles governing the system.
Many problems can be fixed, some simply because we have noticed that swal-
lowing x causes a pressure change in y, or what have you, but many problems
are fixable because we really have discovered many of the relevant principles
and are thereby able to predict from theory how to fix the problem.
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In many cases, though, scientists are only able to say that medical problem
x is due to property y, and that fixing y tends to fix z. For example, gene y
causes or is associated with phenotype z. Or, brain damage of y causes loss of
x. Aim: Fix y. Now, even these associations can require the greatest ingenuity
to discover, and the most cutting edge technology. Ten million dollars later and
one may perhaps have discovered an association capable of saving or bettering
thousands of lives. But progress in this fashion—as measured by how many
lives or houses benefitting—is not a good measure of the degree to which we
understand the system. Just as the cavemen need not understand architecture,
engineering or any science to do a great deal of useful house repair, we need
not—and do not—understand the genotype-phenotype relation, or the brain-
mind relation in order to usefully diagnose and treat lots of medical problems.

These associations eventually contribute to caveman understanding of 21st
century technology, and to our understanding the brain, but they do not com-
prise understanding. We and the cavemen will need more than just associations
to comprehend our topic.

Causal chains and mechanisms, a lower level approach

The cavemen come to realize that houses and the artifacts inside are mighty
complex. When a light is turned on, there is a long sequence of events, each
causing the next: light switch gets flicked, which connects the wire-to-light
to the wire-to-solar-generator, causing electricity to flow across the wire in
the wall to the light socket, and sends current pulsing through the bulb’s fila-
ment, which excites the gas in the bulb, which in turn emits light. By careful
study, the cavemen isolate each point of this chain, thereby coming to know
the mechanisms of light bulbs and their switches. Similarly, they determine the
mechanisms for toilet-flushing, for hot water baths, for carriage-returns on the
computer, and for grandfather clocks.

Do the cavemen thereby understand these technological artifacts? Certainly
what they have achieved is an important step, but it is not sufficient for under-
standing since it gives them only a Rube-Goldberg-level grasp: a hits b, which
makes ¢ fall and bump d, which flies over and lands on e, which.... The
cavemen can know all about the causal chain for the light bulb even without
knowing about the laws of electricity and magnetism, and atomic physics. Or,
for a computer, the important thing to know about some computer action is
not the particular instantiation of the program, but the more general point that
certain functions are being computed. The specific causal chains found in any
given computer can even work to obfuscate, rather than to illuminate. Multi-
electrode recording from computer chips while a word processor is running
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will never help us understand word processing principles.

The same is true for the brain. One common goal is to determine the se-
guence of neural activity patterns that ensue when a person engages in a certain
behavior. What areas light up when one maintains something in working mem-
ory, and in what order do they light up? Or, what are the effects on neural
connectivity when an infant is raised with or without some pharmacological
agent? Or, how does behavior change when this or that region of the brain is
disabled? And, in each case, what causal chains are involved? Just as was the
case for cavemen and 21st century artifacts, these causal chains do not repre-
sent final scientific victory over the brain. At best, knowing the causal chains
can (a) help understand associations that are useful in repairing systems, and
(b) serve as opaque clues toward the general principles underlying the system.

The moral | have been trying to convey in the preceding discussion on
“lower levels” is that many or most of the kinds of research on brain and com-
plex biological systems we, as a scientific community, engage in are of the low
level sort that leads to little genuine understanding of the essential principles
underlying the system. The caveman allegory is useful because the scientific
endeavor ahead of them already is completely understood by us, and so we have
a good feel for what the cavemen must accomplish before we will be willing to
attribute them with success.

We must then only apply this same standard back on ourselves and our
own intellectual quest to conquer biological systems. By doing so, we see
that much, much more is ahead of us, and much of what is ahead that is key
for genuine understanding is not the low level stuff we have discussed, but
high level stuff to which we turn next. The discussion that follows serves to
both introduce a number of distinct kinds of high level approach, and to briefly
outline the topics of the chapters of this book, the book’s topic being high level
approaches to the brain, carried out via consideration of research on which |
have worked over the last decade.

Purpose and function, higher level approaches

The 21st century artifacts were built the way they were for a reason. Some
aspects of them were for looks, like wall paper pattern, but many key features
were designed so that the device could satisfy some purpose. We have thus far
been imagining these cavemen to be human, and if so, they may more quickly
gather what toilets are for, that windows are for the view, and that word pro-
cessing programs allow one to compose messages (supposing they have written
language). If the cavemen are, instead, entirely unlike us—intelligent evolu-
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tionary offspring of snails—then we can imagine their task of determining the
purpose of the 21st century human artifacts to be extremely more vexing. That
a chair’s purpose is to sit on might be some snail-caveman’s dissertation! Dis-
covery of the principles governing a device will require understanding what it
was for.

Consider word processors. The snail-cavemen observe the program’s be-
havior: when carriage return is hit, the little flashing thing moves down and to
the very left; when ‘d’ button is pressed, a ‘d’ appears on the screen and the
flashing thing moves to the right; and so on. They find the program code itself,
all one millions lines of it. And they persist in examining all the causal chains
involved at all the lower levels of hardware. We know that the cavemen will
never understand the word processing system unless they figure out its purpose,
which is to compose messages. Similarly, to understand fins we need to rec-
ognize that they are for swimming, and for eyes that they are for seeing. The
brain presumably has many purposes, and to understand it we need to figure
them out. Only then can we begin to grasp how that purpose is fulfilled.

Sometimes the explanation for something requires seeing how the purpose
is thwarted. If a caveman sets a drinking glass down and it makes a sound
that sets off the “clapper”-rigged light, the clapper’s purpose has been thwarted
since the clapper is meant to turn on or off the light only when someone claps
twice, not when a glass is set down.

A related idea the cavemen must learn in order to understand a comput-
ing machine is the function—the mathematical function—it computes. For
example, let us suppose they find object recognition software. They eventually
figure out that the purpose of the software is, roughly, to allow robots to navi-
gate through the world. Now they wish to know what function is actually being
computed by the machine. Through time, they find that the function computed
is this: it takes images as input, and outputs a good guess as to the nature of
the world around the machine. This function serves the purpose of navigation,
but other mathematical functions could, in principle, also. Understanding the
computed function is a necessity if one is interested in understanding the sys-
tem. Now we may reasonably ask questions concerning what algorithm the
machine is employing to compute this function, questions which would hardly
have been sensible without knowing what the algorithm was computing. And
we may ask what hardware is being used to implement the algorithm.

Since the brain is a computing machine, to understand it it is essential to
determine what function it is computing. It is only in light of the computed
function that we can hope to comprehend the algorithm used by the brain, and
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it is only through understanding the algorithm that we can hope to fathom what
all the lower level mechanisms are up to, and so on.

Purpose and function will arise at many times throughout this book, but
as a specific example, in Chapter 2 we will discuss visual perception, and the
classical illusions in particular. Little progress has been made for one hundred
years on why illusions occur, and one reason is that too little attention has been
paid to determining the function the visual system is trying to compute. | will
propose a simple function—namely, accurate percepts at time ¢ of the world
at time t—and show that the algorithm it uses to compute this function—a
probabilistic inference algorithm—Ieads to predictable screw-ups, which lead
to illusions.

Scaling, a higher level approach

With only one airplane for cavemen to examine, it will be next to impossi-
ble to figure out what properties are characteristic of airplanes. What makes an
airplane an airplane? What things must it satisfy in order to work? To answer
this, it is necessary to figure out the properties true of every airplane; one wants
to find the airplane invariants. A good idea is for the cavemen to examine many
airplanes and try to determine what is the same among them. For example, door
size and steering wheel diameter do not change as a function of the size of the
plane—jumbo jets and small propeller planes have roughly the same size door
and steering wheel. But wing surface area doestend to increase with plane size,
suggesting that there is some invariant relationship between the two that must
be held in order for planes to function properly. Unbeknownst to the cavemen,
the reason the doors and steering wheels are invariant in size is because it is
the same sized people who used to fly and ride them. And wings have more
surface area in larger planes because the lift must be proportional to the plane’s
mass; the ratio of lift to plane mass is an invariant across planes.

How plane properties scale with plane size—or more generally, how plane
properties scale as other properties change—provides a view into the underly-
ing principles governing a system, principles it may be difficult to impossible
to see by looking at any one system.

Scaling studies are, accordingly, useful for us in our quest to understand
brain and other biological systems. Chapter 1 discusses studies of mine—each
concerning scaling—one concerning the large-scale morphology of limbed an-
imals, another concerning the underlying neuroanatomical wiring principles
characterizing the cortex, and a final one dealing with brain and behavioral
complexity.
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Optimal shape, a higher level approach

The houses the cavemen find are, to first order, all cubes. No house they
find is, for example, one hundred feet long and five feet wide. They also note
the tendency for bathrooms in houses to be clustered in space—e.g., the mas-
ter bedroom bathroom is more-often-than-chance adjacent to the upstairs kids
bathroom. The cavemen notice certain common patterns on road design, and
patterns on the design of microelectronic chips.

If they wish to understand why these things are shaped or arranged like
they are, they are going to have to develop and understand principles of opti-
mization, much of it emanating from graph theory, a field of computer science.
These 21st century artifacts were built by companies with limited resources,
trying to maximize profit. It paid to use the least amount of material in the
construction of something.

Houses are typically boxy, rather than extremely long and thin, because
houses are built to maximize floor surface area while minimizing the amount
of wall material needed. Bathrooms clustered near each other lowers the to-
tal amount of plumbing required in the house, making it cheaper to build and
easier to maintain. Roads are designed to be tree-like, say within a neighbor-
hood, rather than n different long driveways leading from the neighborhood
entrance directly to the n different houses, or rather than a single unbranched
meandering road successively passing each house in turn. Branching tree-like
design for neighborhood roads tends to minimize the amount of ground taken
up by road, thereby decreasing the cost of the road and increasing the amount
of land on which houses can be built and sold. Similar observations hold for
the design of electronic circuits, where roads are now wires, and houses now
electrical components. The 21st century people developed very large scale in-
tegrated (VLSI) design techniques to minimize the amount of wire and space
needed to embed a circuit.

In order to see that an artifact is optimal in some sense, the cavemen are
going to have to understand the space of alternative ways the artifact could
have been. They need to grasp not just the actual, but the non-actual but still
possible. 1t is only in relation to these non-actual possibilities that “being-
optimal” makes sense. To say that a chip is optimally wired means that, over
some specified range of possible chip wirings, this chip requires the least wire.

Similar to the 21st century artifacts, biological structures, too, have been
under pressure, selective pressure, to be economically constructed. An animal
that could use less material for some body part would save on the cost of that
material, and could be packaged into a smaller, more economical, body; or,
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alternatively, the energy could instead be used for other advantageous body
parts. In Chapter 1 | discuss some examples from the literature, and focus on
a few cases | have researched, from the shapes of neurons, arteries and leafy
trees, to the number of limbs and digits, to its relevance in understanding the
large-scale organization and scaling properties of the mammalian cortex.

Probability and decision theory, a higher level approach

The cavemen become hooked on computer chess. They are stunned that
the computer can behave so intelligently, beating any caveman soundly, so
long as the computer chess setting is high enough. How, the cavemen ask,
does the computer play chess so well? I, myself, know precious little about
chess-playing algorithms, but | am quite sure that, at one level or another, the
algorithms implement decision theoretic principles. What does this mean? It
means that when the computer is deciding what move to make, it incorpo-
rates the probabilities of all the possible moves you will make, along with the
severity—the costs and benefits, or disutilities and utilities—of each possibility.
The computer weighs all these things and, looking many moves ahead, deter-
mines the move that maximizes its expected utility. Thus, if the cavemen are
to understand the chess playing algorithm, they must reinvent probability and
decision theory (along with other principles employed in chess algorithms).

The brain is in a similar position as the chess program. The brain must at-
tempt to maximize the animal’s expected utility—i.e., lead the animal to food,
or avoid danger, or obtain sex, etc.—and since the world is unpredictable, it
must work with probabilities. The visual system is another case where a deci-
sion theoretic approach seems appropriate: the visual system must infer from
the retinal “data” an expected utility-maximizing perceptual “hypothesis” con-
cerning what is in the world. In Chapter 2 | will take up the modern rise of
decision theoretic models of visual perception.

Conceptual limits on learning, a higher level approach

The cavemen find abandoned artificial intelligence laboratories, and thereby
encounter many learning algorithms for machines. What they notice is that the
21st century artificial intelligence community seemed to have a strong desire
to design powerful learning algorithms, whether the algorithms were to learn
to recognize handwriting, or to learn to perceive objects, or to learn to perceive
ripe versus unripe fruits, or to learn to solve novel problems, or to learn to
navigate a maze, and so on. Yet, they could not seem to settle on a learning
algorithm. To the cavemen it seems intuitively clear, at first glance, that there
must be a single learning algorithm which is perfect; a perfect way of learning,
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so perfect that it learns optimally in any domain. What was wrong with the
builders that they could not find a best-possible learning algorithm?

The reason the builders could not find a best-possible learning algorithm is
because there is no such thing. The cavemen do not know this yet, but we know
this, via our understanding of the intractability of the problem of induction. The
problem, or riddle, of induction is that there does not appear to be any particular
right way to carry out one’s learning. That is, when we have a set of hypotheses
and some evidence, we would like to be told exactly what our degrees of belief
should be in light of the evidence. The problem is that there appears to be no
answer; no answer appears to be even possible.

Eventually, the cavemen come to realize the problem of induction, and give
up their quest for a perfect learning algorithm. But they do begin to wonder
whether all these different learning algorithms may have certain underlying
things in common. Are each of these learning algorithms just arbitrary ways of
learning in the world? Or are many or most of them similar in that they follow
similar rules, but merely differ in some small regard relevant for their specific
learning purposes. That is, while there may be no perfect learning algorithm,
might there still be fixed principles of learning to which any learning algorithm
should still cling?

It turns out that there are similar principles governing different learning al-
gorithms. We understand this because we know that many different kinds of
learning algorithm have been built within a probabilistic framework. In these
cases learning involves having probabilities on each hypothesis in some set,
and updating the probabilities as evidence accumulates. \Very many learning
algorithms fall within this framework, even if they are not programmed with
explicit probabilities. What these learning algorithms share is a commitment
to the axioms of probability theory. Probability theory, and a theorem called
Bayes’ Theorem in particular, is what they share in common. The principles
that they share determine how the probabilities of hypotheses should be mod-
ified in the light of evidence; thus, although many of the learning algorithms
the cavemen find are different, they share the same principle concerning how
evidence is to be used. Where the algorithms differ is in a respect called “prior
probabilities,” which captures the degrees of confidence in the hypotheses be-
fore having seen evidence. To understand all this, the cavemen must appreciate
the riddle of induction, and probability theory.

Brains learn too. Are brains perfect learning machines, or do brains of dif-
ferent types have ways of learning that are brain-specific? The riddle of induc-
tion immediately informs us that brains cannot be perfect learners, since there
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is no such thing. Brains, then, must come innately equipped with their own
learning method; and brains of different types might come innately equipped
with different learning methods. We are interested in whether brains, and more
generally intelligent agents, may be modeled as following fixed principles of
learning, even if they differ in some innate regard. And we are interested to
know how much must be innate in a brain in order for a learning method to be
specified. Do we have to hypothesize that an agent comes into the world with a
full-fledged particular learning algorithm hardwired, and that agents with dif-
ferent learning algorithms have entirely different learning rules they follow? Or
are the innate differences between different kinds of learners much more sub-
tle? Perhaps learners differ in some very tiny way, and they follow all the same
learning principles. And, if there are any common learning principles, is there
some sense in which brains have evolutionarily converged onto the optimal
principles? We take up these issues, and a kind of best-we-can-possibly-hope-
for solution to the riddle of induction in Chapter 3.

Computational consequences of being finite, a higher level approach

The cavemen eventually figure out how to use computers, beginning with
video games and chat rooms, and moving to more productive uses. They begin
to notice that software always has bugs. The programs occasionally suddenly
crash, or hang, seemingly thinking and thinking without end. What was wrong
with the 21st century computer builders of these programs? Why couldn’t they
do it right?

Because we as a culture know theoretical computer science, we know that
it is not due to some problem of ours. Any builders of programs, so long as the
builder is finite in size and speed, will have this same Achilles’ heel. Programs
built by finite agents will have bugs, because it is logically impossible for it to
be otherwise. If you do not already know about the undecidability theorems to
which I am alluding, wait until Chapter 4 where we will talk about them more.

Now switch to the 21st century and our task of understanding the brain. The
brain concocts its own programs to run as it learns about the world. Since the
brain is finite, it cannot generally build programs without bugs. Our programs
in the head generally must have bugs, and we can even predict what they should
look like. Chapter 4 shows how these bugs are the source of the vagueness of
natural language. Also, Chapter 2 shows that perceptual illusions—the kind we
have all seen in Psychology 101—are likely to be common to any agent with a
non-instantaneous brain.

I hope to have both previewed what the chapters will touch upon, and more



PREFACE XXV

importantly to have given the reader reasons, via the post-apocalyptic cavemen
allegory, to value higher-level approaches toward the brain. The cavemen will
not understand what we built without backing up to 25,000 feet, and we will not
understand what evolution built without also backing up to 25,000 feet. Please
note, however, that while high level principles are what the cavemen need to
understand the artifacts they find, no single caveman is probably going to be
able to, alone, make much of a dent. Rather, it will require decades or centuries
of research, and hundreds of thousands or more cavemen involved. Similarly, |
do not claim that the chapters of this book will make much progress in regard
to understanding the brain. What we will need is hundreds of thousands of
researchers working at such higher levels, and working probably for multiple
generations, before we can expect to see light.

| am indebted to the Department of Computer Science at University Col-
lege Cork, Ireland, and to W. G. Hall of the Department of Psychological
and Brain Sciences at Duke University, for the freedom and time to write this
book. I thank my wife Barbara Kelly Sarantakis Changizi for her reflections
and support. | have benefitted from the comments of Timothy Barber, Amit
Basole, Nick Bentley, Jeremy Bowman, Derek Bridge, Jeffrey Bub, James
Cargile, Christopher Cherniak (from whom the term “impossibility engine”
emanates), Justin Crowley, James L. Fidelholtz, William Gasarch, Chip Ger-
fen, Nirupa Goel, William Gunnels 1V, WG “Ted” Hall, Brian Hayes, John Her-
bert, Terence Horgan, Jeffrey Horty, Paul Humphreys, Erich Jarvis, Michael
Laskowski, Gregory Lockhead, Michael McDannald, Tom Manuccia, Reiko
Mazuka, Robert McGehee, Daniel McShea, Craig Melchert, Michael Morreau,
Romi Nijhawan, Surajit Nundy, James Owings, Donald Perlis, John Prothero,
Dale Purves, David Rubin, Dan Ryder, Geoffrey Sampson, Carl Smith, Roy
Sorensen, Christopher Sturdy, Frederick Suppe, Christopher Tyler, Steven Vo-
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Chapter 1

Scaling in Nervous Networ ks

Why are biological structures shaped or organized like they are? For example,
why is the brain in the head, why is the cortex folded, why are there cortical
areas, why are neurons and arteries shaped like they are, and why do animals
have as many limbs as they do? Many aspects of morphology can be usefully
treated as networks, including all the examples just mentioned. In this chapter
I introduce concepts from network theory, or graph theory, and discuss how we
can use these ideas to frame questions and discover principles governing brain
and body networks.

The first topic concerns certain scaling properties of the large-scale con-
nectivity and neuroanatomy of the entire mammalian neocortical network. The
mammalian neocortex changes in many ways from mouse to whale, and these
changes appear to be due to certain principles of well-connectedness, along
with principles of efficiency (Changizi, 2001b). The neocortical network must
scale up in a specific fashion in order to jointly satisfy these principles, leading
to the kinds of morphological differences between small and large brains.

As the second topic | consider the manner in which complexity is accom-
modated in brain and behavior. Do brains use a “universal language” of basic
component types from which any function may be built? Or do more com-
plex brains have new kinds of component types from which to build their new
functions?

The final topic concerns the nervous system at an even larger scale, dealing
with the structure of the nervous system over the entirety of the animal’s body.
I show that the large-scale shape of animal bodies conforms to a quantitative
scaling law relating the animal’s number of limbs and the body-to-limb pro-
portion. | explain this law via a selective pressure to minimize the amount of
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limb material, including nervous tissue (Changizi, 2001a). That is, because we
expect nervous systems to be “optimally wired,” and because nervous systems
are part and parcel of animal bodies, reaching to the animal’s extremities, we
accordingly expect—and find—the animal’s body itself to be optimally shaped.

One feature connecting the kinds of network on which we concentrate in
this chapter is that each appears to economize the material used to build the
network: they appear to be volume optimal. It is not a new idea that organism
morphology might be arranged so as to require the least amount of tissue vol-
ume [see, for example, Murray (1927)], but in recent years this simple idea has
been applied in a number of novel ways. There are at least three reasons why
optimizing volume may be evolutionarily advantageous for an organism. The
first is that tissue is costly to build and maintain, and if an organism can do the
same functions with less of it, it will be better off. The second reason, related
to the first, is that minimizing tissue volume gives the organism room with
which to pack in more functions. The third reason is that minimizing tissue
volume will tend to reduce the transmission times between regions of the tis-
sue. These three reasons for volume optimization in organisms are three main
reasons for minimizing wire in very large-scale integrated (VLSI) circuit de-
sign (e.g., Sherwani, 1995); we might therefore expect organisms to conform to
principles of “optimal circuit design” as made rigorous in the computer science
fields of graph theory and combinatorial optimization theory (e.g., Cormen et
al., 1990). ...and we might have this expectation regardless of the low level
mechanisms involved in the system.

Y junctions

The first quantitative application of a volume optimization principle appears to
be in Murray (1926b, 1927), who applied it to predict the branching angles of
bifurcations in arteries and trees (e.g., aspen, oak, etc.). He derived the optimal
branch junction angle (i.e., the angle between the two children) to be

2 2 2

wy — w7y —w
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where wy, wy and wy are the cross-sectional areas of the junction’s parent and
two children. One of the main consequences of this equation is that, for sym-
metrical bifurcations (i.e., wy = w»), the junction angle is at its maximum
of 120° when the children have the same cross-sectional area as the parent
segment, and is 0° when the children’s cross-sectional area is very small. [Ac-
tually, in this latter case, the branch angle falls to whatever is the angle between
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the source node of the parent and the termination nodes for the two children.]
That is, when trunks are the same thickness as branches the branch angle that
minimizes the volume of the entire arbor is 120°. This is very unnatural, how-
ever, since real world natural arbors tend to have trunks thicker than branches.
And, if you recall your experience with real world natural arbors, you will
notice that they rarely have junction angles nearly as high as 120°; instead,
they are smaller, clustering around 60° (Cherniak, 1992; Changizi and Cher-
niak, 2000). Prima facie, then, it seems that natural arbors are consistent with
volume optimality. Murray also derived the equation for the volume-optimal
angle for each child segment relative to the parent, and one of the main conse-
guences of this is that the greater the assymmetry between the two children’s
cross-sectional areas, the more the thinner child will branch at 9¢° from the
parent. We find this in natural arbors as well; if there is a segment out of
which pokes a branch at nearly a right angle, that branch will be very thin com-
pared to the main arbor segment from which it came. Qualitatively, then, this
volume optimality prediction for branch junctions fits the behavior of natural
junctions. And it appears to quantitatively fit natural junctions very well too:
These ideas have been applied to arterial branchings in Zamir et al. (1983), Za-
mir et al. (1984), Zamir and Chee (1986), Roy and Woldenberg (1982), Wold-
enberg and Horsfield (1983, 1986), and Cherniak (1992). Cherniak (1992)
applied these concepts to neuron junctions, showing a variety of neuron types
to be near volume-optimal; he also provided evidence that neuroglia, Eucalyp-
tus branches and elm tree roots have volume optimal branch junctions. [Zamir
(1976, 1978) generalized Murray’s results to trifurcations, applying them to
arterial junctions.]

Although it is generally difficult to satisfy volume optimality in systems,
one of the neat things about this volume optimization for natural branch junc-
tions is that there is a simple physical mechanism that leads to volume opti-
mization. Namely, the equation above is the vector-mechanical equation gov-
erning three strings tied together and pulling with weights wy, wy and w- [see
Varignon (1725) for early such vector mechanical treatments]. If each of the
three junction segments pulls on the junction with a force, or tension, propor-
tional to its cross-sectional area, then the angle at vector-mechanical equilib-
rium is the volume-optimizing angle (Cherniak, 1992, Cherniak et al., 1999).
Natural arbors conforming to volume optimality need not, then, be implement-
ing any kind of genetic solution. Rather, volume optimality comes for free
from the physics; natural arbors like neurons and arteries self-organize into
shapes that are volume optimal (see, e.g., Thompson, 1992). In support of this,
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many non-living trees appear to optimize volume just as well as living trees,
from electric discharges (Cherniak, 1992) to rivers and deltas (Cherniak, 1992;
Cherniak et al., 1999).

In addition to this physics mechanism being advantageous for a network
to have minimal volume, natural selection may favor networks whose average
path between root and leaves in the network is small—shortest-path trees—and
one may wonder the degree to which this mechanism simultaneously leads to
shortest-path trees. Such shortest-path trees are not necessarily consistent with
volume optimization (Alpert et al., 1995; Khuller et al., 1995), but the near-
volume-optimal natural trees tend to come close to minimizing the average path
from the root. Considering just a y-junction, the shortest path tree is the one
which sends two branches straight from the root; i.e., the junction occurs at the
root. An upper bound on how poorly a volume-optimal junction performs with
respect to the shortest-path tree can be obtained by considering the case where
(i) the root and two branch terminations are at the three vertices of an equilat-
eral triangle with side of unit length, and (ii) the volume per unit length (i.e.,
cross-sectional area) is the same in all three segments. The volume-optimal
branch junction angle is 120° and occurs at the center of mass of the triangle.
The distance from the root to one of the branches along this volume-optimal
path can be determined by simple geometry to be 1.1547, or about 15% greater
than the distance in the shortest-path tree (which is along one of the unit-length
edges of the triangle). This percentage is lower if the relative locations of the
root and branch terminations are not at the three vertices of an equilateral tri-
angle, or if the volume per unit length of the trunk is greater than that of the
branches (in which case the junction point is closer to the root). In sum, nat-
ural selection has stumbled upon a simple vector-mechanical mechanism with
which it can simultaneously obtain near volume-optimal and near-shortest-path
trees.

Multi-junction trees

The applications of a “save volume” rule mentioned thus far were for single
branch junctions. Kamiya and Togawa (1972) were the first to extend such
applications to trees with multiple junctions, finding the locally optimal multi-
junction tree for a dog mesenteric artery to be qualitatively similar to the actual
tree. Schreiner and Buxbaum (1993), Schreiner et al. (1994) and Schreiner
et al. (1996) constructed computer models of large vascular networks with
realistic morphology by iteratively adding locally volume-optimal y-junctions.
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Traverso et al. (1992) were the first to consider modeling natural arbors, neural
arbors in particular, with multiple junctions using the concept of a Steiner tree
(Gilbert and Pollak, 1968) from computer science, which is the problem of
finding the length-minimal tree connecting n points in space, where internodal
junctions are allowed (i.e., wires may split at places besides nodes). Branch
junctions in Steiner trees have angles of 12(°, and Traverso et al. (1992) found
that some sensitive and sympathetic neurons in culture have approximately this
angle.

Most neurons and other natural arbors, however, have branch junction an-
gles nearer to 60° or 70° (Cherniak, 1992; Changizi and Cherniak, 2000);
the Steiner tree model is inadequate because it assumes that trunks have the
same volume cost per unit length (i.e., same cross-sectional area) as branches,
when it is, on the contrary, almost always the case that trunks are thicker than
branches. To determine if natural trees have volume-optimal geometries a gen-
eralized notion of Steiner tree is needed, one that allows trunks to be thicker
than branches. Professor Christopher Cherniak and myself invented such a
notion and showed that axon and dendrite trees (Cherniak et al., 1999), coro-
nary arterial trees (Changizi and Cherniak, 2000) and Beech trees (Cherniak
and Changizi, unpublished data) optimize volume within around 5%, whereas
they are around 15% from surface area optimality and around 30% from wire-
length optimality. [The average values for the unpublished tree data are from
eight 4-leaf Beech tree arbors, and are 4.63% (43.21%) from volume optimal-
ity, 10.94% (£6.56%) from surface area optimality, and 26.05% (£12.92%)
from wire length optimality (see Cherniak et al., 1999, for methods).]

The studies mentioned above concentrated on the morphology of individual
natural trees, e.g., individual neurons. We may move upward from individual
neurons and ask, How economically wired are whole nervous systems? This
has been asked and answered in a variety of ways.

Larger scales

At the largest scale in the nervous system, Cherniak (1994, 1995) showed that
animals with brains making more anterior connections than posterior connec-
tions should have, in order to minimize volume, the brain placed as far for-
ward as possible; this explains why the brain is in the head for vertebrates and
many invertebrates. Radially symmetric animals, on the other hand, are ex-
pected to have a more distributed neural network, as is the case (e.g., Brusca
and Brusca, 1990, p. 87). In what is to date the most stunning conformance
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to volume optimality, Cherniak (1994, 1995) showed that, of approximately
forty million possible positions of the ganglia in Caenorhabditis elegans, the
actual placement of the ganglia is the wire-optimal one. He also provides sta-
tistical evidence that the placement of cortical areas in cat (visual cortex) and
rat (olfactory cortex) are consistent with the hypothesis that the total length of
area-to-area connections is minimized.

Ruppin et al. (1993) show that each of the following facts about the brain
decrease the overall required volume of the brain: (i) that gray matter is sep-
arated from white matter, (ii) that gray matter is a shell on the surface of the
brain with white matter in the center (rather than vice versa), and (iii) that the
gray matter has convolutions. Van Essen (1997) also argues that the convo-
lutions of the cortex are a fingerprint of low wiring. Wire-minimization has
also been used in a number of ways to explain local connectivity patterns in
the visual cortex (e.g., stripes, blobs or patches) (Durbin and Mitchison, 1990;
Mitchison, 1991, 1992; Goodhill et al., 1997; Chklovskii, 2000; Chklovskii
and Koulakov, 2000; Koulakov and Chklovskii, 2001).

Well-connectedness

As we will see later, the neocortical network not only reveals principles of
volume optimization, it also reveals principles of well-connectedness, where
by that | refer, intuitively, to properties of the network which bear on how
“close,” in some sense, vertices are to one another. One way to measure neuron-
interconnectedness is via the average percent neuron-interconnectedness of
neurons, where a given percent neuron-interconnectedness of a neuron is the
percentage of all neurons to which it connects. It has been recognized, how-
ever, that it is prohibitive to maintain an invariant average percent neuron-
interconnectedness as the network size is scaled up (Deacon, 1990; Stevens,
1989; Ringo, 1991), because this requires that the average degree of a vertex
[the degree of a vertex is the number of edges at a vertex] scales up proportion-
ally with network size, and thus the total number of edges in the network scales
as the square of network size. Average percent neuron-interconnectedness is an
overly strong notion of neural interconnectedness, however. A weaker measure
might be the characteristic path length, which I will call the network diameter,
which is defined as, over all pairs of neurons, the average number of “edges”
(i.e., axons) along the shortest path connecting the pair. Intuitively, network
diameter measures how close—in terms of connectivity—neurons are to one
another, on average.
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For most random networks the diameter is “low.” [In a random network
each pair of nodes has the same probability of having an edge between them.]
In particular, the network diameter is approximately (log V) /(log ) (Bollobés,
1985, p. 233), where N is the network size and ¢ the average degree. [This
also requires assuming N >> § >> log N >> 1.] While keeping the average
percent neuron-interconnectedness invariant requires that degree (the number
of neurons to which a neuron connects) scale proportionally with network size,
the network diameter can remain invariant even if the degree grows dispro-
portionately slowly compared to the network size. Suppose, for example, that
N ~ 6, where b > 1; that is, the degree grows disproportionately slowly as a
function of network size, but as a power law. [A power law is an equation of
the form y = ax?, where @ and b are constants.] Then in a random network the
diameter is approximately

log(C'8%) b logC

logd logd’

where C'is a proportionality constant. In the limit of large brains, the network
diameter is invariant, approaching b, even though the degree is scaling dispro-
portionately slowly.

This observation is not particularly useful for biological systems, however,
because few biological networks are random. However, in what has now be-
come a seminal paper, Watts and Strogatz (1998) noticed that highly ordered
networks can have random-network-like diameter by merely adding a small
number of “shortcuts” connecting disparate regions of the network; they named
such networks small world networks. A firestorm of papers have since been
published showing that many natural networks appear to be small world, in-
cluding nervous systems and social networks. Nature has, indeed, hit upon
one useful kind of network, allowing highly ordered clustering, and yet low
network diameter. With these ideas in mind, we will be able to see that the
mammalian neocortex has low and invariant network diameter, and, in fact, it
is approximately 2.

1.1 Themammalian neocortex

Mice, men and whales have brains, and as they are all mammals, their cor-
tex mostly consists of something called the neocortex, which is found only in
mammals. When researchers talk of the cortex, they are almost always refer-
ring to the neocortex. This is the part of the mammalian brain that excites
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most researchers, as it appears to be the principal anatomical feature separating
mammalian brains from other vertebrate brains; it is where the key to mam-
malian intelligence will be found. The neocortex consists of gray matter which
lies on the surface of the brain, and white matter which is in the interior. The
gray matter consists of neurons of many types, synapses, and glial cells. The
white matter consists of axons which reach from neurons in one part of the gray
matter to make synapses with neurons in another part of the gray matter. The
neocortical gray matter is characterized by what appears to be layers as one
moves from the surface of the gray matter inward toward the center, and six
layers are usually distinguished. There are also distinct cortical areas at differ-
ent locations on the cortical sheet, inter-area connections being made primarily
via white matter connections, and intra-area connections being made primarily
by local connections not traveling into the white matter.

Although all mammals have a neocortex, many of the basic properties of
the neocortex change radically from small brains to large brains. The changes
are so dramatic that one might justifiably wonder whether the neocortex in
mouse and whale are really the same kind of organ. And if they are the same
kind of organ, then why the radical changes? Are there some underlying prop-
erties that are being kept constant—these properties being the key ones, the
ones that really define the neocortex—and the properties that change are chang-
ing for the purpose of keeping these key properties invariant? It is these ques-
tions we examine in this section. | will describe the ways in which the neo-
cortex changes as it increases in size, and describe a theory (Changizi, 2001b)
that aims to explain what the central features of the neocortex are, such that all
these other properties must change as they do.

To understand how the neocortical network scales up in larger brains, we
need to understand the notion of a power law. Power laws are of the form
y = axz®, where a and b are constants. « is a proportionality constant, and
it often depends on the specific nature of the studied systems. For example,
the volume of a cube is V' = D?, where D is the diameter; i.e., a = 1 and
b = 3. The volume of a sphere, however, is V = (4/3)x(D/2)3, which
isV = (n/6)D3; i.e.,, a = 7/6 ~ 0.5 and b = 3. The volume of both
cubes and spheres scale as the diameter cubed, but the proportionality constants
are different. So long as the geometrical shape is similar, the proportionality
constant will not change, and it is often appropriate to ignore it, writing y ~ 2
to mean that y is proportional to 2. Power laws are particularly appropriate for
neocortical scaling [and in biology more generally (see Calder, 1996; Schmidt-
Nielson, 1984)]. It turns out that many of the properties of the neocortex scale
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Table 1.1: Measured scaling exponents for neocortical
variables against gray matter volume V,,q,. The mea-
sured exponents arein most cases acquired fromscaling data
against brain volume. To obtain exponents against Vyray, |
have assumed that V., is proportional to brain volume.
This proportionality is empirically justified, as measured ex-
ponents for Vg.qy to brain volume are near one: 0.983
(Prothero, 1997a), 0.982 (Hofman, 1991), 1.054 (Hofman,
1989), 1.04 (Prothero and Sundsten, 1984), 1.06 (Frahm et
al., 1982) and 1.08 (Jerison, 1982).

Variable description Variable  Measured References
exponent
# areas to which an area connects D 0.30 Here
Neuron number N 0.62 Jerison, 1973
0.67 Passingham, 1973
Neuron density Pheuron -0.312 Prothero, 1997b
-0.28 Prothero, 1997b
-0.28 Tower, 1954
-0.32 Tower, 1954
Number of areas A 0.40 Changizi, 2001b
Thickness T 0.092 Prothero, 1997a
0.115 Prothero, 1997a
0.129 Hofman, 1991
0.197 Hofman, 1989
0.08 Prothero and Sundsten, 1984
0.17 Jerison, 1982
Total surface area S 0.905 Prothero, 1997a
0.893 Prothero, 1997a
0.922 Prothero, 1997a
0.901 Hofman, 1991
0.899 Hofman, 1989
0.89 Hofman, 1985
0.91 Prothero and Sundsten, 1984
0.91 Jerison, 1982
Module diameter m 0.135 Manger et al, 1998
Soma radius Ro 0.10 Changizi, 2001b
Axon radius R1 0.105 Shulz and Wang, 2001
Volume of white matter Vuhite 1.318 Allman, 1999
0.985 Prothero, 1997b
1.28 Hofman, 1991
1.37 Hofman, 1989

131 Frahm etal., 1982
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against gray matter volume as a power law. That is, if Y is the property of
interest and V., is the gray matter volume, then it has been empirically found
that Y = anbmy for some constants a and b. Ignoring the proportionality
constant, we say that Y ~ Vg’my. When we say how a neocortical quantity
scales up, we can, then, just report the scaling exponent for it against gray
matter volume. Table 1.1 shows the scaling exponents measured thus far for
neocortex, and which I will explain below. | only show plots here if they have
not yet appeared elsewhere in the literature (and this is only for the number of
areas to which an area connects, and for module diameter).

Before presenting a theory of neocortical scaling, | begin by making some
simplifying assumptions about the neocortical network. Because about 85% of
neocortical neurons are pyramidal cells (Schiiz, 1998) and only pyramidal cells
appear to significantly change in degree of arborization from mouse to whale
(Deacon, 1990), it is changes to pyramidal cells that must account for the de-
creasing neuron density. Accordingly, | will idealize the neocortical network to
consist only of pyramidal neurons. Also, because most (over 90%) of the neo-
cortical connections are from one part of neocortex to another (Braitenberg,
1978), the other neocortical connections are probably not the principal drivers
of neocortical scaling; | will therefore concentrate on the cortico-cortical con-
nections only, and | will assume that a single pyramidal neuron’s axon can
innervate only one area.

There are multiple principles shaping the neocortex, and we will see that
the exponents are not all due to the same underlying explanation. There are, in
fact, three central principles, and they are

e Economical well-connectedness.

e Invariant computational units.

o Efficient neural branching diameters.
The exponents each of these principles explains are shown in Table 1.2. I will
take up each principle in turn, and derive the exponents which follow from it.
1.1.1 Economical well-connectedness
Theprinciples

Consider that an area in the gray matter connects to other areas (i.e., it has
neurons connecting to neurons in other areas). The fraction of the total number
of areas to which it connects is called the percent area-interconnectedness. It
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Table 1.2: The exponent predicted by my theory, along with the approximate value
for the measured exponent. The exponents are partitioned into three groups, each which
is explained by the principle stated above it.

Variable description Variable Measured Predicted
name exponent exponent

Economical well-connectedness =

- Number of areas to which an area connects D 0.30 1/3=~0.33
- Neuron number N 0.65 2/3=0.66
- Neuron density Preuron -0.3 -1/3=-0.33
- Number of areas A 0.40 1/3=0.33
Invariant computational units =
- Thickness T 0.13 1/9=0.11
- Total surface area S 0.90 8/9~0.89
- Module diameter m 0.135 1/9=0.11
Efficient neural branching diameters =
- Soma radius Ro 0.10 1/9=0.11
- Axon radius R1 0.105 1/9=0.11
- Volume of white matter Vuhite 1.3 4/3=1.33

seems a plausible and natural hypothesis that, for an area’s efforts to be useful,
it must make its results known to an invariant percentage of the areas in the
neocortex. That is, suppose that for a mouse brain to work, each area must talk
to about one tenth of the areas. Then, so the idea goes, in a whale brain each
area must also connect to one tenth of the areas. Whether the percentage is
one tenth or one half | do not know; the claim is only that what is good for the
mouse in this regard is also good for the whale. This is recorded as the

Principle of Invariant Area-Interconnectedness, which states that the average
percent area-interconnectedness remains roughly constant no matter the total
number of areas. (See Figure 1.1.)

There is some direct evidence for this hypothesis. From it we expect that
the total number of area-to-area connections E should scale as the number of
areas A squared; or A ~ E'Y2. Data exist for only two species—cat and
macaque—but we may use disjoint proper subsets of each animal’s neocortex
as distinct data points. Figure 1.2 shows these data, where the relationship fits
A ~ E%% or closely fitting Hypothesis 1.

Moving to the second invariance principle associated with well-connected-
ness, areas are composed of many neurons, and thus a connection from one
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A B

Figure 1.1: Illustration of invariant percent area-interconnectedness. The average percent
area-interconnectedness in a small and large neocortex. The outer part of each ring depicts
the gray matter, the inner part the white matter. Each neocortex has multiple areas. (a) Each
of the four areas in this small neocortex connects to one cther area. The average percent area-
interconnectedness is thus 1/4. (b) Each of the eight areas in this large neocortex connects to
two other areas. The average percent area-interconnectedness isthus 2/8 = 1/4, the same as
for the small brain.
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area to another is always from a neuron in the first area to a certain percentage
of the neurons in the second area. We might call this percentage the percent
area-infiltration. It is, again, natural and plausible to hypothesize that when an
area tells another area about its efforts, it must tell a certain invariant percentage
of the neurons in the area in order for the area to understand and appropriately
respond to the information. That is, if white matter axons in mouse connect to
roughly, say, one tenth of the number of neurons in an area, then, so the idea
goes, in a whale brain each such neuron connects to one tenth of the neurons in
an area. We record this as the

Principle of Invariant Area-Infiltration, which states that, no matter the neocor-
tical gray matter volume, the average percent area-infiltration stays roughly the
same. (See Figure 1.3.)

I know of no data directly confirming this principle. It is here a hypothesis only,
and it will stand or fall to the extent that it is economically able to account for
the observed scaling exponents.

The two above invariance principles (invariant percent area-interconnected-
ness and invariant percent area-infiltration) concern the degree of well-connect-
edness of the neocortex, and we might summarize the pair of above principles
by a single principle labeled the Principle of Invariant Well-Connectedness.

We have not yet made use of the idea of economical wiring, but I men-
tioned much earlier that the neocortical network appears to be driven, in part,
by economical wiring. .. which leads us to the next principle. All things equal,
it is advantageous for a nervous system to use less neural wiring, and as we
saw at the start of the chapter many aspects of neuroanatomy and structural
organization have been found to be consistent with such wire-optimization hy-
potheses. With this in mind we might expect that the neocortex would satisfy
the Principle of Invariant Well-Connectedness, but that it would do so in a fash-
ion sensitive to the connection costs. In particular, we would expect that the
average number of neurons to which a neuron’s axon connects—the average
neuron degree, 6—will not be much greater than that needed to satisfy invari-
ant well-connectedness. The reason for this is as follows: Connecting to more
neurons requires a greater number of synapses per neuron, and this, in turn,
requires greater arborization—more wire. In terms of scaling, this save-wire
expectation can be weakened to the expectation that average neuron degree
scales no faster than needed to satisfy invariant well-connectedness. | record
this third principle as the
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Macaque visual
Cat somato-motor

Cat visual
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Cat auditory
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Macaque somato-motor

Log # cortical areas
Macaque auditory

y =0.4497x + 0.3236
R? =0.9541
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Figure 1.2: Logarithm (base 10) of the number of cortical areas versus logarithm of the
number of area-to-area connections, for digoint proper subnetworks within cat and macaque.
Data points are as follows. Cat visual (A = 26, E = 264), cat auditory (A = 20, F = 153),
and cat somato-motor (A = 27, E = 348) are from Scannell and Young (1993). Macaque
visual (A = 30, E = 300), macaque auditory (A = 16, £ = 95), and macague somato-motor
(A = 17, E = 100) are from Young (1993).
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Figure 1.3; lllustration of the invariance of percent area-infiltration. The average percent
area-infiltration for small and large areas. Each rectangle depicts an area, and each small
circle a pyramidal neuron. (@) Each of these two areas has four neurons, and the left area
connects via a pyramidal axon to two neurons in the right area. The percent area-infiltration
is2/4 = 1/2. The other neurons connections are not shown. (b) Each of the two areas
has eight neurons, and the left area connects to four neurons in the right area. The percent
area-infiltration is4/8 = 1/2, the same as for the small area.

Principle of Economical Wiring, which states that the average neuron degree
scales as slowly as possible consistent with an invariant well-connectedness.

Informally, the conjunction of these three above principles says that, no
matter the neocortex size, an area talks to a fixed fraction of all the areas,
and when an area talks to another area it informs a fixed fraction of the neu-
rons in the area; furthermore, this is done in a volume-optimal manner. |
will call the conjunction of these principles the Principle of Economical Well-
Connectedness.

Scaling exponents derived from economical well-connectedness

Now let us consider the consequences of this principle. There are a few sym-
bols we will need. First, recall that § is the average neuron degree, defined
as the average number of neurons to which a neuron’s axon connects. Let A
denote the total number of cortical areas, D the average number of areas to
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which an area connects, and T be the average number of neurons in an area.
The first invariance principle stated that the percent area-interconnectedness is
invariant, and this means that D /A is invariant, i.e., D ~ A. The second in-
variance principle stated that the percent area-infiltration is invariant, and this
means that § /W is invariant, i.e., 6 ~ W. Since an area connects to D areas
and each neuron in an area can connect to neurons in only one area, there must
be at least D neurons in an area; i.e., W > D. The Principle of Economical
Wiring stated that 6 must scale up as slowly as possible given the other con-
straints. Since we have already seen that 6 ~ W, economical wiring therefore
implies that W must scale up as slowly as possible given the other constraints.
Since we already saw that W > D, we can now also say that T scales no
faster than D, and thus that W ~ D. To sum up for a moment, we have now
concluded the following proportionalities:

A~D,D~W,W ~ .

By the transitivity of proportionality, it follows that all these are proportional
to one another; i.e.,
A~D~W ~ .

This will be useful in a moment. Now notice that the total number of neurons
N is proportional to the number of areas times the number of neurons per area.
That is, N ~ AW. But we already have seen that A ~ W, and thus N ~ 42,
and so A ~ N'/2_ In fact, it follows that all those four mutually proportional
quantities are proportional to N'/2. That is,

A~D~W~§~NV2
In particular, we will especially want to remember that
6~ N2,

| have just related ¢ to IV, and in this paragraph I will relate § to V},.,.
With both of these relationships we will then be able to say how N and 1/,
relate. A combination of empirical and theoretical argument suggests that, to a
good approximation, a pyramidal neuron connects to almost as many different
neurons as its number of axon synapses (Schiiz, 1998). We do not here need
to be committed to a claim as strong as this. Instead, all we need is that the
neural degree ¢ is proportional to the number of axon synapses per neuron s. [I
am here using the fact that the number of axon synapses scales identically with
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the total number of synapses per neuron. This must be true since every axon
synapse is someone else’s dendrite synapse.] Well, since

- psynapsev;ray
N )
it follows that
S~ psynapsev;ray.
N
We may use the fact that psynapse IS invariant [see Abeles, 1991, and also
Changizi, 2001b for an explanation of this that is not presented here] to then
say that
V
5~ I
N
Thus far, we have seen that § ~ N'/2, and we have seen that § ~ V.4, /N.
But then it follows that
NY2 e Vi /N.

Solving for N we can finally conclude that

N ~ V23

gray-

It also, of course, immediately follows, that

—-1/3
p~ L;raé .

And, since D ~ A ~ N1/2_ we also conclude that

D~ Vyla,

and
A~ VY3

gray:

These scaling relationships are very close to the measured ones in Table 1.1.
The number of cortical areas increases in bigger brains, then, not because of
some kind of pressure to have more specialized areas, but because by not in-
creasing the number of areas the network would become decreasingly well-
connected, or would no longer be economically wired. [There are other theories
hypothesizing that cortical areas may be due to issues of economical wiring, in-
cluding Durbin and Mitchison (1990), Mitchison (1991, 1992), Ringo (1991),
Jacobs and Jordan (1992) and Ringo et al. (1994).] Note that this theory also
predicts that the number of neurons in an area, W, scales with gray matter
volume with exponent 1/3.
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Invariant network diameter of 2

I will now show that the Principle of Invariant Well-Connectedness has the re-
markable consequence that the neocortical network has an invariant network
diameter of around 2. (See start of this chapter for the definition of network
diameter.) How may we compute its network diameter? The neocortex is cer-
tainly not a random network, so we cannot straightforwardly use the network
diameter approximation for random networks discussed in the introduction of
this chapter. But recall the notion of a small world network introduced there:
because pyramidal neurons usually make long range connections, or “short-
cuts,” via the white matter, the neocortical network is almost surely a small
world network, and thus would have a network diameter nearly as low as that
for a random network, namely approximately log(/N')/log(d). [This also re-
quires that N >> § >> log N >> 1. For the mammalian neocortex this is
true; N ~ 107 to 10'%, § ~ 10* to 10° (Schiiz, 1998).] The scaling results
described thus far have informed us that N ~ &. The network diameter is,
then,

I~ log(C6?) 5 log C
~ logd logd’

where C'is a proportionality constant. That is, for sufficiently large V;,,, the
neuron degree § becomes large and thus the network diameter T" approaches 2;
in the limit there are on average only two edges—one neuron—separating any
pair of neurons. A rough estimate of the constant C' can be obtained by com-
paring actual values of the neuron number N and the average neuron degree
5. For amouse, N ~ 2-107 and 6 ~ 8,000 (Schiiz, 1998), so the constant
C ~ N/&* = 0.3. Common estimates for human are around N =~ 10'° and
0 = 50,000 (Abeles, 1991), making the constant C' ~ 4. What is important
here is that these estimates of C (i) are on the order of 1, and (ii) are well be-
low the estimates of 4. Thus (log C')/(log ) ~ 0 and the network diameter is
approximately 2. As a point of comparison, note that the network diameter for
C. Elegans—the only nervous system for which the network diameter has been
explicitly measured—is 2.65 (Watts and Strogatz, 1998); its network diameter
computed via the random network approximation is 2.16. This suggests the
conjecture that a network diameter around 2 is a feature common to all central
nervous systems.



SCALING IN NERVOUS NETWORKS 19

1.1.2 Invariant computational units

To derive the scaling exponent for the thickness of the gray matter sheet and
the total surface area, it suffices to note another invariance principle to which
the neocortex appears to conform. It is the

Principle of Invariant Minicolumns, which states that the number of neurons in a
“minicolumn”—which is a neuroanatomical structure lying along a line through
the thickness of the gray matter, from pia to white matter—is invariant. (An
invariance principle of this form was first put forth by Prothero (1997a).)

The motivation is that, independent of brain size, these minicolumns are funda-
mental computational units, and that more “computational power” is achieved
by increasing the number of such units, not by changing the nature of the fun-
damental computational units themselves. Evidence exists for this invariance
from Rockel et al. (1980). [Rockel et al. (1980) mistakenly concluded that
the surface density was invariant, but the latter could only be concluded if the
number of neurons under, say, a square millimeter of surface was invariant.
This, however, is not the case (Haug, 1987). See Prothero (1997b) for a cogent
resolution to this issue.] The line density along a line from pia (the outside
boundary of the neocortex) to white matter (the inside boundary), A, scales as
A 13 (VB8 = V1o
Since the number of neurons along this line is invariant, the sheet must be
thickening, namely
T ~ V19

gray-
It follows immediately that
S ~ V1—1/9 — V8/9

gray gray-

These are very close to the measured exponents, as shown in Table 1.1. The
gray matter surface area scales more quickly than Vg}%‘g’y, then—and thus be-
comes convoluted—for two principal reasons. First, it is because the neuron
density is decreasing—and this, in turn, is because the number of synapses
per neuron is increasing in order to economically maintain satisfaction of the
Principle of Economical Well-Connectedness. Second, it is because the pia-
to-white-matter structure of the cortex remains the same (e.g., same number of
neurons in a minicolumn, same number of layers) across mammals. If, instead,

the number of neurons along a thin line through the cortical sheet increased in
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larger brains, the new neurons would not have to spread only along the surface,
but could spread into deeper regions of the gray matter; the surface would then
not have to scale up so quickly. This, however, would require modifying the
basic, uniform structure of the gray matter every time the brain was enlarged; it
would demand inventing new basic computational architectures in each brain,
whereas by keeping the structure the same, larger brains can work with the
same “primitive computational units” as in smaller brains.

A related issue concerns modules found in the neocortex, such as columns,
blobs, bands, barrels and clusters. They are intermediate features, smaller
than cortical areas, and larger than minicolumns. The simplest hypothesis is
that modules conform to the following invariance principle,

Principle of Invariant Modules, which states that the number of minicolumns in
a module is invariant.

The motivation is similar to that for the Principle of Invariant Minicolumns.
If this principle holds for neocortex, then from the neuron density decrease
it follows that the diameter of a module (when measured along the cortical
surface), m, should scale as V;/agy. Manger et al. (1998) measured module size
across mammals varying over four orders of magnitude in brain size, and one
may compute from their data that the exponent is 0.135 (see Figure 1.4), or
very close to the predicted 1/9. The number of neurons in a module therefore

appears to be independent of brain size.

1.1.3 Efficient neural branching diameters
Murray’'s Law

As far as | know, every kind of tree in nature has thicker trunks when the
trunk supports more leaves (Cherniak, 1992; Cherniak et al., 1999; Changizi
and Cherniak, 2000). The same is therefore expected of neurons—the soma
being the ultimate trunk of a neuron—and certainly appears to be the case (e.g.,
Cherniak, 1992; Cherniak et al., 1999). But in exactly what quantitative manner
do we expect trunk diameter to scale as a function of the number of leaves in
the tree? Many natural trees conform to a relationship called Murray’s Law
(1926a), which says that, for any two depths, 7 and j, in a tree, the sum of
the cubes of the diameters at depth i is identical to the sum of the cubes of
the diameters at depth j. So, for example, the cube of a trunk diameter must
equal the sum of the cubes of its daughter segment diameters. Murray’s Law
is expected to apply for any tree where (i) there is laminar fluid flow, and (ii)
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Figure 1.4: Logarithm (base 10) of the mean module diameter versus logarithm of brain
size. Data from Manger et al. (1998).

the power required to distribute the fluid is minimized. In fact, it is well known
that there is fluid flow in neural arbors (Lasek, 1988), and that the fluid flow
is laminar follows from the facts that fluid flow in pipes of diameter less than
one millimeter tends to be laminar (Streeter and Wylie, 1985) and that neural
arbors have diameters on the micron scale. Murray’s Law, in fact, appears to
apply to neural trees, as shown in Cherniak et al. (1999). | record this principle
as the

Principle of Efficient Neural Branching Diameters, which states that neural seg-
ment diameters are set so as to maximize power efficiency.

Soma and axon radius

From this principle—i.e., from Murray’s Law—we may derive the expected
scaling relationship between trunk diameter, ¢, and the number of leaves in the
tree. Murray’s Law states that the trunk diameter, ¢, cubed should be the same
value as the sum of the cubes of all the diameters of the leaf segments in the
tree. Let s be the number of leaves in the tree, and d be the diameter of each
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leaf segment. Then the relationship is,
3 = sd>.

Given that the leaf segments in neurons—i.e., synapses—do not vary in size as
a function of brain size, we may conclude that

3~ s.

[West et al., 1997, use elaborations on ideas like this to derive metabolic scal-
ing exponents. Their arguments require space-filling, fractal-like networks,
whereas the argument here does not require this. Murray himself back in 1927
might well have noted this scaling feature.] That is, trunk diameter—whether
we treat the soma or the source axon as the trunk—of a neuron scales as the
1/3 power of the number of synapses in the neuron. From earlier developments

we know that s ~ V;]l/a?;, and thus we may derive that

gray’

where | am now using R for trunk radius rather than trunk diameter (since
they are proportional). Measured scaling relationships conform well to this,
for both soma (or neuron body) radius and for the radius of a white matter axon
(see Table 1.1). [Note that Murray’s Law states that £ = b3 + b3, where b; and
bo are the two daughter branch diameters of a trunk with diameter ¢, and thus,
in general, trunk diameter ¢ ~ 2b, where b is the average daughter diameter,
and thus ¢ ~ b. This is why it is justified to treat soma and axon radius as
proportional.]

White matter volume

Finally, there is the issue of white matter volume, V, ;.:.. White matter vol-
ume is composed entirely of myelinated (and some unmyelinated) axons from
pyramidal neurons sending cortico-cortical connections. Thus, white matter
volume is equal to the total number of white matter axons, Nyhitcazon, times
the volume of a white matter axon, V,,piteqazon. That is,

thite = Nwhiteazoanhiteaxon-

All we need to do is to figure out how these two quantities scale with gray
matter volume.
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There must be one white matter axon for every neuron, and thus N, piteazon
~ N, and SO Nypniteazon ~ Vg%?’y. The volume of a white matter axon,
Vishiteazon, 18 proportional to the length, L, of the axon times the square of
its radius, Ry i.e.,

thitea:pon ~ LR%

White matter axons travel roughly a distance proportional to the diameter of

the white matter, and so L ~ V1%, Also, we saw just above that Ry ~ V.
Thus,
1/3
thiteamon ~ w}/nte(‘/qur/agy)z’
and so

V1/3 V2/9

thitea:pon ~ Vahite Y gray-

Recalling that Vi nite = Nuwhiteazon Viohiteazon, WE €an NOW combine our
conclusions and get the following.

thite = Nwhitea:ponvwhitea:pona

1/3
Viwhite ~ [Vg27“/<13y] ’ [Vwi/zite‘/;]QT/tzgg/]'

Now we just need to solve for V.., and we can then conclude that

4/3
thite ~ ‘/rgr/a,ya

very close to the measured exponents, as shown in Table 1.1.

White matter volume scales disproportionately quickly as a function of
gray matter volume because of the increasing axon radius, and this, in turn, is
due to the satisfaction of Murray’s law for efficient flow. The exponent would
fall from 4/3 to 1 if axon radius were invariant.

114 Wrap-up
Itis instructive to summarize the principles that appear to govern the neocortex.
1. Efficiency Principles

o Efficient Neural Diameters: neural diameters are set for maximum power effi-
ciency for the distribution of materials through the arbor.

e Economical Wiring: invariant well-connectedness is achieved in a volume-optimal
manner.

2. Invariance Principles
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o [nvariant Well-Connectedness
— Invariant Area-Interconnectedness: the fraction of the total number of areas
to which an area connects is invariant.

— Invariant Area-Infiltration: the fraction of the number of neurons in an area
to which a white matter axon connects is invariant.

— (And these lead to an invariant network diameter of 2.)
e Invariant Computational Units

— Invariant Minicolumns: the number of neurons in a minicolumn is invariant.
— Invariant Modules: the number of minicolumns in a module is invariant.

Why are these principles advantageous for the neocortex? The answer is
obvious for the two efficiency principles. Invariant well-connectedness is use-
ful, lest larger brains have networks that become more and more widely sepa-
rated, in terms of the average minimal path length between neurons. It is less
obvious why a network would maintain invariant computational units. In the
next section this will be taken up in more detail, where we will see that in a wide
variety of network—including neocortex—there appears to be scale-invariant
“functional units,” and | will show that this is to be expected if network size
is optimized. The basic idea underlying the argument can be seen here in Fig-
ure 1.5. Thus, that the neocortex has invariant computational units is derivable
from a network optimization principle. This allows us to simplify the above so
as to state the least number of principles from which it is possible to explain
neocortical scaling.

1. Efficiency Principles
o Efficient Neural Diameters: neural diameters are set for maximum power effi-
ciency for the distribution of materials through the arbor.

e Economical Wiring: invariant well-connectedness is achieve in a volume-optimal
manner.

e Optimal Network Sze: network size scales up no more quickly than “needed” (see
next section), from which invariant computational units are derivable.
2. Invariant Well-connectedness Principles
e Invariant Area-Interconnectedness: the fraction of the total number of areas to
which an area connects is invariant.

e Invariant Area-Infiltration: the fraction of the number of neurons in an area to
which a white matter axon connects is invariant.

e (And these lead to an invariant network diameter of 2.)
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Figure 1.5; There are broadly two ways to increase complexity in networks, as we will
discussin Section 1.2. Top. Inthe “ universal language approach” there are a fixed number of
node types with which all functional units are built. In thiscase, networks with greater numbers
of functional unit types must accommodate the new function types by having longer functional
units. In the figure, the small network under the universal language approach begins with 4
functional unit types, each of length 2, and a language of 2 node types; the total humber of
nodes required for thisis 8. In order to accommodate 8 functional unit types in the larger
network, the length of functional units must be increased since the expressive power for length-
2 functions has already been exhausted. The larger network, which has 8 functional units, has
functional units of length 3, and the total number of nodes required is 24. Bottom. Consider
now, in contrast, the “invariant length approach” to complexity increase. Since functional
units have an invariant length in this approach, in order to achieve greater numbers of types of
functional units, new node types must be invented. In the figure the small network is identical
to the small network under the universal language approach. The large network under this
approach has, asin the universal language case, 8 functional unit types. However, to achieve it
one new node type must be added. The total number of nodesin the larger network is 16, which
is smaller than the 24 nodes in the universal language case. The invariant length approach is
optimal in the sense that network size grows minimally. Note that it also entails that the number
of types must be increased, and we will seein Section 1.2 that thisisindeed true for neocortex,
and for networks generally.
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1.2 Complexity in brain and behavior

I took up brain scaling in the previous section, and we saw that many of the
ways in which larger brains are “more complex” are consequences of brains
maintaining an invariant degree of economical well-connectedness. That is,
bigger brains seem more complex since they are more highly convoluted, they
have more synapses per neuron, and they have a greater number of cortical
areas; but these greater “complexities” are not due to the brains themselves
being “smarter” in any fashion. Rather, these “complexities” are purely due to
the brains being bigger. These seemingly complex qualities of larger brains are
thus epiphenomenal, where by that | mean that their increase does not signify
any increasing functional complexity of the brain.

In this section | concentrate on brain complexity, both in the nervous net-
work itself, and in the behaviors exhibited by brains. | will be interested in
understanding how greater complexity is achieved. First, however, we will
need to become clear concerning what | mean by complexity.

The central intuitive notion of ‘complexity’ I rely upon here is that an entity,
or system, is more complex if it can do more kinds of things. For example, if
my radio has one more type of function than does yours—say, scanning—mine
is more complex. Note that under this idea of ‘complexity,” doing more of the
same kinds of thing does not make something more complex. For example, a
book is complex in some sense, but stapling together two copies of the same
book does not create a more complex book; in each of these two cases all
the same sentences are uttered. Similarly, if two birds have the same song
repertoires, they have the same complexity even if one sings twice as often.
Complexity, then, concerns the diversity of things done by an entity. Rather
than referring to these things that are done by an entity as “things,” | will call
them expressions, and a system or entity of some kind is more complex than
another of that kind if it has, or does, more expression types. The number of
expression types, F, is thus the complexity of the entity, and | will sometimes
refer to this number, E, as the expressive complexity of the entity.

The question we are interested in asking in this section is, How does a
system, or entity, of a given kind accommaodate greater expressive complexity?
For example, how is greater song repertoire size handled in birds? And, how
is greater brain complexity achieved? The first-pass answer to these questions
is that expressions are always built out of lower-level components that come in
different types. For example, bird songs are built out of bird syllables of distinct
types. And functional expressions of the brain are built out of combinations of
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neurons of distinct types. Let L be the average number of components in an
expression (for some given kind of entity); L is the expression length. For
example, for bird song L is the number of syllables per song. Also, let C' be
the total number of component types from which the E expression types of the
system are buildable. For bird song, C' is the total number of syllable types in
the repertoire of a bird (from which that bird’s E different songs are built).

If expressions are of length L, and each spot in the expression can be filled
by one of C' component types, then there are a maximum of £ = C* many
expression types buildable. For example, if there are C' = 2 component types—
labeled A and B—and expression length I = 4, then there are £ = 2! = 16
expression types, namely AAAA, AAAB, AABA,..., BBBB. However, this
is insufficiently general for two reasons. First, only some constant fraction « of
these expression types will generally be grammatical, or allowable, where this
proportionality constant will depend on the particular kind of complex system.
The relationship is, then, E ~ C*. Second, the exponent, L, assumes that all L
degrees of freedom in the construction of expressions are available, when only
some fixed fraction 3 of the L degrees of freedom may generally be available
due to inter-component constraints. Let d = 8- L (where, again, what 3 is will
depend on the particular kind of system). Call this variable d the combinatorial
degree. The relationship is, then

E ~ C*,

where C and d may each possibly be functions of E. Using the same example
as above, let us suppose now that As always occur in pairs, and that Bs also al-
ways occur in pairs. The “effective components” in the construction of expres-
sions are now just AA and BB, and the expression types are AAAA, AABB,
BBAA, and BBBB. The number of degrees of freedom for an expression is
just 2, not 4, and thus E = 22 = 4. d is a measure of how combinatorial the
system is. The lowest d can be is 1, and in this case there is effectively just
one component per expression, and thus the system is not combinatorial at all.
Higher values of d mean the system is more combinatorial.

Given this above relationship between expressive complexity E, the num-
ber of component types C, and combinatorial degree d, let us consider a few of
the ways that a system might increase its expressive complexity.

The first way is the universal language approach. The idea here is that
there exists a fixed number of component types from which any expression
type is constructable. For example, for computable functions there exists such
a language: from a small number of basic computable functions it is possible
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to build, with ever longer programs, any computable function at all. If this
universal language approach were taken, then the number of component types,
C, would not change as a function of the expressive complexity, £. Something
would change, however, and that is that the average length, L, of an expression
increases as a function of E. In particular, since C' is invariant in the equation
E ~ €4, it follows that d ~ log E. This approach may be advantageous for
systems where new component types are costly, or where there is little cost to
increasing the expression length; it is generally difficult to achieve however,
since the invention of a universal language is required.

The second way to increase expressive complexity is via the specialized
component types approach. In this case, for each new expression type, a new
specialized set of component types is invented just for that expression type.
Here the expression length L may or may not be > 1, but the combinatorial
degree d = 1. Thus, £ ~ C. Note that if this possibility holds for a com-
plex system, then a log-log plot of C versus F should have a slope of 1. The
advantage of this approach is that expressions are short, and no complex gram-
matical rules need to be invented. The disadvantage is that the number of new
component types must be scaled up very quickly (namely, proportionally with
expressive complexity).

The third way to raise F is via the invariant-length approach. This is
like the previous approach in that the combinatorial degree d (and expres-
sion length L) is invariant, except that now it is > 1. Thus, it is combinatorial
(d > 1), and its “degree of combinatorialness” remains invariant. The expected
relationship is the power law E ~ C?, with d invariant and > 1. On a log-log
plot of C' versus E, we expect a straight line with slope of 1/d. A log-log
straight line with fractional slope means that a small increase in the number
of component types gives a disproportionately large number of new expression
types; and this is characteristic of combinatorial systems. An advantage to this
approach is that the rate at which new component types must be invented is very
slow (C' ~ E'4 where d is constant and > 1). The disadvantage is that ex-
pressions tend to be longer, and that there must exist a relatively sophisticated
set of rules, or grammar, allowing the expressions to be built in a combinatorial
fashion.

The final way to increase expressive complexity is via the increasing-C'-
and-d approach. This is similar to the previous case, except that now expres-
sive complexity increase is accommodated by increasing C' and increasing d. If
d increases logarithmically with E, then this is the universal language approach
from above, where C does not increase. Thus, d must increase sublogarithmi-
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cally, such as d ~ [log E|]/[log log E]. In this case, it follows that C' ~ log E;
C is increasing here less quickly than a power law. As in the previous possibil-
ity, a small increase in C' gives a disproportionately large increase in F, except
that now the size of the combinatorial explosion itself increases as a function of
E (since d is increasing). This is a kind of middle ground between the universal
language approach and the invariant-length approach.

These are the four key manners in which expressive complexity may be
increased in complex systems, and our central question may be stated more
rigorously now: In which of these ways do complex systems related to brain
and behavior increase expressive complexity? And why? In the next two sub-
sections we discuss behavioral and brain complexity in light of the above ideas.
(See Changizi (2001e) for the connections between these above ideas and the
notion of ‘hierarchy’.)

1.2.1 Complexity of languages and behaviors

Behavior is a complex system, consisting of behavioral expressions, which are
built out of multiple behavioral components of some kind. The main question
concerning behavior here is, In what manner is behavioral repertoire size—i.e.,
expressive complexity—increased? That is, which of the earlier approaches
to increasing complexity holds for behaviors? Do animals have a “univer-
sal language” of component behaviors from which any complex behavior may
be built, or do animals with more behaviors have more behavioral component
types? We examine this question in three distinct kinds of behavior: human lin-
guistic behavior, bird vocalization behavior, and traditional non-vocal animal
behaviors.

Ontogeny of language

Human natural language is a complex system, where components of various
kinds are combined into expressions. For example, phonemes are combined
into words, and words into sentences. We begin by studying expressive com-
plexity increase during the development of language in children. That is, in
light of the earlier approaches to increasing complexity, how do children in-
crease their expressive complexity? We already know a few things about the
development of language in children. First, we know that children increase the
number of component types (e.g., their phoneme repertoire and word reper-
toire) as they age. That is, C' increases. Second, we know that their ability to
string together components increases with age (Pascual-Leone, 1970; Case et
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34 age (wks) |# words # sentences
61 8 5.49
" 62 9 5.49
g Dﬂﬁﬂﬂ 63 10 5.49
5 2 u] 64 11 9.42
5 = 65 12 13.34
s 2 66 13 21.19
€ 2 24
23 67 14 21.19
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23 o 69 16 29.04
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1 ‘ ‘ 74 21 52.59
1 2 3 75 22 52.59
76 23 56.51
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78 25 60.44
400 - 79 26 68.29
80 27 68.29
81 28 72.21
82 29 83.99
g 83 30 123.23
> 84 31 201.73
5 85 32 233.12
5 © 86 33 256.67
2 i 200 + 87 34 256.67
29 88 35 295.92
2 89 36 315.54
o 90 37 339.09
e 91 38 358.71
y =246.11x - 344.52 92 39 374.41
R? =0.984 93 40 421.51
0 w w 94 41 452.90
1 2 3 95 42 495.00

log number of produced sentences

Figure 1.6: Top. Logarithm (base 10) of the number of word types versus logarithm of the
number of sentences, as produced by one child named Damon from 12 to 22 months (Clark,
1993). Bottom. Semi-log plot of the same data. Plot is confined to multiword utterance ages,
which began at about 14 months. On the right are shown the data; sentence data is fractional
because | obtained it via measuring from Clark’s plots. [Note that Damon grew up and went
on to do some research on aspects of how the brain scales up.]
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al., 1982; Siegel and Ryan, 1989; Adams and Gathercole, 2000, Robinson and
Mervis, 1998; Corrigan, 1983). However, from this increasing combinatorial
ability we cannot straightforwardly conclude that the child’s combinatorial de-
gree, d, will keep pace. Recall that d is measured by the relative rates of growth
of the number of component types C and the number of expression types F.
A child’s combinatorial ability could increase, and yet the child could sim-
ply choose not to speak much, in which case the combinatorial ability growth
would not be reflected in the combinatorial degree measured from the C' versus
E plot (since E would not increase much). Nevertheless, learning new com-
ponent types is costly, and efficiency considerations would lead one to expect
that new component types are added no more quickly than needed for the given
level of expressive complexity. If this were true, we would expect the com-
binatorial degree to increase as a function of F, and thus the log-log slope of
C versus F to fall as E increases. That is, the increasing-C-and-d approach
would be used, and C' ~ log E. We examine this prediction for the develop-
ment of words and sentences, and also for the development of phonemes and
words.

The number of word types and number of distinct sentences uttered by a
single child named Damon for 41 weeks from 12 to 22 months of age (Clark,
1993) are shown in Figure 1.6. One can see that, as expected, the combinatorial
degree (i.e., the inverse of the slope in the log-log plot) falls as a function of E.
At the start, the combinatorial degree is 1, which means that the child is not yet
using words in a combinatorial fashion. Note that the data here are only for the
multi-word utterance stage of the child; thus, although the child may seem to
be using words in a combinatorial manner since his sentences have more than
one word, he is not. By the end of the recorded data, the combinatorial degree
has increased to about 2.5. This combinatorial degree range is similar to the
sentence length range for children of this period (Robinson and Mervis, 1998).
Since the combinatorial degree and number of component types are increasing,
the increasing-C-and-d length approach is being employed for increasing ex-
pressive complexity, and thus we expect C' ~ log E. Indeed, a plot of C versus
log E appears linear.

The growth in the number of phonemes and distinct morphemes was com-
piled from Velten (1943), as produced by a child named Jean from 11 to 30
months of age. [A morpheme is the smallest meaningful linguistic unit; or, a
word that is not decomposable into meaningful parts.] Figure 1.7 shows the
log-log plot of the number of phoneme types versus the number of morpheme
types, and one can see that the slope tends to decrease somewhat through
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Figure 1.7: Top: Logarithm (base 10) of the number of phoneme types versus logarithm of
the number of morphemes, as produced by one child named Jean from 11 to 30 months (\elten,
1943). Bottom: Semi-log plot of the dame data. Morphemes are the smallest meaningful
linguistic unit, and are mostly words in this case. On the right are shown the data.
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development, meaning the combinatorial degree is increasing. The plot of
(unlogged) number of phoneme types versus the logarithm of the number of
morphemes is comparatively linear, again implicating the increasing-C-and-
d approach, as predicted above. The combinatorial degree begins at around
2 (“ma”), and increases to around 4 (“baby”). The number of phonemes per
morpheme—i.e., expression length—increases over a similar range during this
period (Changizi, 2001d, 2001e).

In each of these language development cases, we see that the expressive
complexity is increased via the increasing-C'-and-d invariant approach, and that
the combinatorial degree appears to increase in proportion to the child’s ability
to combine components. This accords with the efficiency hypothesis mentioned
above, that children will learn component types no more quickly than needed
to express themselves.

English throughout history

Here | consider complexity in the English language. Not the complexity of the
language of one English speaker as above, but, instead, the complexity of the
entire English language. Our “individual” here is the entire English-speaking
community. This individual has, over history, said more and more new ex-
pression types. Namely, new distinct sentences are being uttered throughout
history. How has this increase in expressive complexity been accommodated?
Via an increase in the average length of a sentence, or via the addition of new
vocabulary words—word types—with which sentences may be built, or via a
combination of the two? That is, which of the earlier approaches to complexity
increase is employed in the evolution of the English language?

| estimated the growth in the number of English word types by using the
Oxford English Dictionary (OED), Second Edition. It is possible to search for
years within only the etymological information for all entries in the OED. In
this way it was possible to estimate the number of new word types per decade
over the last 800 years. To obtain an estimate of the growth rate for the number
of sentences the English-speaking entity expresses, | used the number of books
published in any given year as an estimate of the number of new sentences
in that year. This would be a problematic measure if different books tended
to highly overlap in their sentences, but since nearly every written sentence is
novel, never having been uttered before, there is essentially no overlap of sen-
tences between books. This would also be a problematic measure if the length
of books, in terms of the number of sentences, has been changing through time;
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Table 1.3: The data for the history of English from 1200 to the present.
Decades covering century or half-century years do not include those years
(since they tend to be overcounted). The new words were measured from the
Oxford English Dictionary, and the number of hew books from WorldCat.

# new # new

decade # new words |# new books decade words books
1210 36 3 1610 161 3705
1220 40 5 1620 606 4174
1230 43 4 1630 130 4736
1240 29 3 1640 140 6321
1250 24 0 1650 125 17891
1260 36 5 1660 169 13976
1270 42 1 1670 144 11274
1280 59 3 1680 181 16548
1290 41 8 1690 202 21868
1300 65 10 1700 117 16962
1310 72 12 1710 156 15513
1320 77 4 1720 111 17398
1330 78 5 1730 207 15685
1340 73 5 1740 273 17717
1350 33 5 1750 146 16113
1360 42 9 1760 296 21161
1370 61 3 1770 231 25254
1380 104 8 1780 214 33542
1390 83 7 1790 295 38186
1400 54 7 1800 315 54326
1410 54 7 1810 372 99069
1420 72 12 1820 440, 129734
1430 56 6 1830 481/ 114817
1440 63 5 1840 602 148800
1450 18 4 1850 454 158774
1460 51 10 1860 452 234706
1470 51 13 1870 554 257161
1480 83 38 1880 661 290921
1490 107 79 1890 809 391372
1500 65 103 1900 686 402769
1510 75 139 1910 685 541294
1520 126 134 1920 425/ 587809
1530 171 265 1930 484/ 680614
1540 167 468 1940 397 808427
1550 201 626 1950 206 730849
1560 223 814 1960 249 1354217
1570 178 1038 1970 216 2600020
1580 195 1363 1980 120 4594985
1590 163 1688 1990 35 5618350

1600 372 2055
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I have no data in this regard, but it seems plausible to assume that any such trend
is not particularly dramatic. The number of new books published per year was
obtained by searching for publication dates within the year for literature listed
in WorldCat, an online catalog of more than 40 million records found in thou-
sands of OCLC (Online Computer Library Center) member libraries around the
world. In this way | was able to estimate the number of new books per decade
over the last 800 years, the same time period for which | obtained word type
data. These data are shown in Table 1.3.

Figure 1.8 shows the logarithm of the number of new word types and books
per decade over the last 800 years, measured as described above. Note that the
plot shows estimates for the number of new word types per decade, and the
number of new sentences per decade; i.e., it measures dC'/dt and dE /dt versus
time. The plot does not, therefore, show the growth in the actual magnitude of
the number of word types or the number of sentences. But it is the scaling
relationship between the actual magnitudes of C' and E we care about, so what
can we do with a plot of growth rates over time? Note first that the growth rate
for each is exponential (this is because the plots fall along straight lines when
the y axis is logarithmic and the = axis not). If a growth rate for some quantity
u increases exponentially with time, then this means du/dt ~ €*. And if you
recall your calculus, it follows that the quantity itself scales exponentially with
time, and, in fact, it scales proportionally with the growth rate: i.e., u ~ du/dt.
Thus, Figure 1.8 has effectively measured the growth in the number of word
types and the number of books. By looking at the growth in the number of
word types compared to that for the number of books, we can determine how
the first scales against the second.

From the figure we can, then, determine that

dC/dt ~ C ~ 100001725 , ;0.003972¢

Y

and
dE/dt ~ E ~ 100-008653¢t _, ,0.01992¢

We may now solve for C' in terms of E, and we obtain

C ~ EO.003972t/0.01992t — E0'1994.

The number of word types scales as a power law against the number of sen-
tences, and, unsurprisingly, the slope is less than one and thus English is com-
binatorial. Thus, greater expressive complexity was achieved over the last 800
years not by increasing the combinatorial degree (or average sentence length),
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Figure 1.8: Growth rates in the decades from the years 1200 to 1990 for the number of new
English word types and the number of new English books. Regression equations and correlation
coefficients are shown for each (79 data points each). Unsure etymological datestend to cluster
at century and half century marks and therefore century and half-century marks tend to be
overcounted; accordingly, they were not included in the counts. The OED is conservative and
undercounts recently coined word types; consequently, the exponential decay region (the last
five square data points) was not included when computing linear regression. | do not have
any way to similarly measure the number of word type extinctions per year, and so | have not
incorporated this; my working assumption is that the extinction rate is small compared to the
growth rate, but it should be recognized that the estimated combinatorial degreeistherefore an
underestimate.
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Figure 1.9: Distribution of numbers of content words per sentence in English. Arrow in-
dicates the log-transformed mean. 984 sentences from 155 authors were measured from texts
in philosophy, fiction, science, politics and history. | chose the second sentence on each odd
numbered page. A word was deemed a function word if it was among a list of 437 such words
| generated. A string of words was deemed a sentence if it represented a complete thought
or proposition. So, for example, semicolons were treated as sentence delimiters, multiple sen-
tences combined into one long sentence by “, and” were treated as multiple sentences, and
extended asides within dashes or parentheses were not treated as part of the sentence.

but, instead, by increasing the number of word types with which to build sen-
tences. The scaling exponent of around 0.2 implies an estimated combinatorial
degree of about 5. There appears to be nothing about the English grammar
that implies a fixed combinatorial degree (or sentence length), much less any
particular value of it. What explains this value of 5? [Or, a little more than 5;
see legend of Figure 1.8 concerning word type extinctions.] It cannot simply
be due to the typical number of words in an English sentence, since there are
typically many more words than that, namely around 10 to 30 words (Scudder,
1923; Hunt, 1965).

To make sense of the combinatorial degree, we must distinguish between
two kinds of word in English: content and function. The set of content words,
which refer to entities, events, states, relations and properties in the world,
is large (hundreds of thousands) and experiences significant growth (Clark
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and Wasow, 1998). The set of function words, on the other hand, which in-
cludes prepositions, conjunctions, articles, auxiliary verbs and pronouns, is
small (around 500) and relatively stable through time (Clark and Wasow, 1998).
The scale-invariant combinatorial degree of English suggests that the average
number of words per sentence is invariant. Imagine, for simplicity, that there
on average n places for content words in a sentence, and m places for function
words, and that these values, too, are invariant. (And thus the average sentence
length is n + m.) The total number of possible sentences is then

E ~ N"M™,

where N is the total number of content words in English and M the total num-
ber of function words. n and m are invariant, as mentioned just above, and so
is the total number of function words M. Thus, the equation above simplifies
to the power law equation

E ~ N"™.

Also, note that the number of content words, N, is essentially all the words,
since it dwarfs the number of function words; i.e., C ~ N. Thus, E ~ C",
and so,

C ~ EY™,

That is, the combinatorial degree is expected to be equal to the typical num-
ber of content words per sentence—not the typical total number of words per
sentence—and, up to a constant factor, they may be combined in any order.
To test this reasoning, | measured the number of content words in nearly one
thousand sentences (see legend of Figure 1.9). The distribution is log-normal
(Figure 1.9), and the mean of the logs is 0.7325 (1+0.2987); the log-transformed
mean is thus 5.401, and one standard deviation around this corresponds to the
interval [2.715, 10.745]. This provides confirmation of the hypothesis that the
combinatorial degree is due to there being five content words per sentence.

But why are there typically five content words per sentence? One obvi-
ous hypothesis is that sentences can convey only so much information before
they overload the utterer’s or listener’s ability to understand or absorb it. In
this light, five content words per sentence is probably due to our neurobiolog-
ical limits on working memory, which is a bit above five (Miller, 1956). The
fingerprint of our working memory may, then, be found in the relative rate at
which new words are coined compared to the number of sentences uttered by
the English-speaking community.
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Table 1.4: Number of syllable types and song types for a variety of species of bird.

Species

Turdus nudigenis (Bare-eyed Thrush)

Turdus tephronotus (African Bare-eyed Thrush)
Turdus iliacus (Redwings)

Turdus torquatus (Ring Ouzels)

Turdus viscivorus (Song and Mistle Thrush)
Turdus pilaris (Fieldfare)

Turdus merula (Blackbird)

Turdus abyssinicus (Olive Thrush)

Turdus migratorius (American Robin)

Turdus philomelos (Song Thrush)

Catherpes mexicanus (Canyon Wren)
Cistothorus palustris (Long-billed Marsh Wren)
Cistothorus platensis (Short-billed Marsh Wren)
Salpinctes obsoletus (Rock Wren)
Thryomanes bewickii (Bewick's wren)
Thryomanes bewickii (Bewick's wren)
Thryomanes bewickii (Bewick's wren)
Thryomanes bewickii (Bewick's wren)
Thryomanes bewickii (Bewick's wren)
Thryomanes bewickii (Bewick's wren)
Thryothorus ludovicianus (Carolina Wren)
Troglodytes troglodytes (Winter wren)
Gymnorhina Tibicen (Australian Magpie)
Paridae bicolor (Tufted titmouse)

Parus wollweberi (Bridled titmouse)

Serinus canaria (Canary)

Empidonax alnorum (Alder Flycatcher)
Empidonax traillii (Willow Flycatcher)

Number of
syllable types song types Citation

1.20
3.83
2.93
5.49
43.08
80.65
216.09
43.08
30.10
309.22
9
44—118
112

Number of

1.19
1.26
1.31
3.79
15.74
32.05
38.97
49.99
71.33
158.77
3
40—114
110
69—119
922

Ince and Slater (1985)
Ince and Slater (1985)
Ince and Slater (1985)
Ince and Slater (1985)
Ince and Slater (1985)
Ince and Slater (1985)
Ince and Slater (1985)
Ince and Slater (1985)
Ince and Slater (1985)
Ince and Slater (1985)
Kroodsma (1977)
Kroodsma (1977)
Kroodsma (1977)
Kroodsma (1977)
Kroodsma (1977)
Kroodsma (1977)
Kroodsma (1977)
Kroodsma (1977)
Kroodsma (1977)
Kroodsma (1977)
Kroodsma (1977)
Kroodsma (1977)
Brown et al. (1988)
Hailman (1989)
Hailman (1989)
Mundinger (1999)
Kroodsma (1984)
Kroodsma (1984)

39
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Bird vocalization

Bird songs are built out of bird syllables, and the question we ask is, Do birds
with more songs in their repertoire have longer songs, or more syllables, or
both? In particular, which of the four earlier approaches to expressive com-
plexity increase is used in bird vocalization?

To answer this I surveyed the bird vocalization literature and compiled all
cases where the authors recorded the number of syllable types and the number
of song types in the repertoire of the bird. Although song repertoire size counts
are common, syllable type counts are much rarer, especially when one is look-
ing for papers recording both. Table 1.4 shows the data and the sources from
which | obtained them.

Plotting the number of syllable types, C, versus the number of song types,
E, on a log-log plot (Figure 1.10) reveals that (i) they are related by a power
law (i.e., the data are much more linear on a log-log plot than on a semi-log
plot), and (ii) the exponent is approximately 0.8. That is, C' ~ E8. Since the
relationship is a power law, the combinatorial degree is an invariant; i.e., there
appears to be no tendency for the combinatorial degree (or expression length)
to increase in birds with greater numbers of songs. Instead, greater expressive
complexity is achieved entirely through increasing the number of bird syllable
types. Since the exponent is about 0.8, the combinatorial degree is its inverse,
and is thus about 1.25, which is not much above 1. In fact, it is not significantly
different from 1 (Changizi, 2001d). Birds with twice as many songs therefore
tend to have roughly twice as many syllable types, and thus bird vocalization
may not be combinatorial at all, and, at most, it is not very combinatorial. Birds
therefore appear to conform to the specialized component types approach to
complexity increase. Using bird vocalization as a model for language is thus
inappropriate. Note that the combinatorial degree for bird vocalization is near
1 despite the fact that birds have, on average, around 3 or 4 syllables per song
(Read and Weary, 1992; Changizi, 2001d).

Traditional animal behavior

Thus far, the cases of behavior we have discussed have been vocalizations,
whether bird or human. Now we wish to consider run-of-the-mill behaviors,
and ask how greater behavioral repertoire size is accommodated in animals. Do
animals with more distinct behaviors (i.e., more expression types) have more
muscles with which the behaviors are implemented? Or do they have the same
number of muscles, and behaviorally more complex animals have longer, and
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Figure 1.10: Logarithm (base 10) of the number of bird syllable types versus the logarithm
of the number of song types. When a min and a max are given in Table 1.4, 10 to the power

of the average of the logged valuesiis used. (The multiple measurements for Bewick'swren are

Changiz, 2001d), suggesting that bird vocalization may not be combinatorial, and thus not

averaged and plotted as one data point.) The slope is not significantly different from 1 (see
language-like.
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more complex, behaviors? (I am assuming that each distinct muscle is its own
component type.) What we desire now are data showing how the number of
muscles varies as a function of the number of distinct behaviors.

By exhaustively reviewing the animal behavior and ethology literature over
the last century, | was able to compile estimates of the behavioral repertoire size
in 51 species across seven classes within three phyla. Such behavior counts are
recorded in what are called ethograms, and | only used ethograms where the
aim was to record all the animal’s behaviors, not just, say, mating behavior.
Behaviors recorded in ethograms tend to be relatively low level behaviors, and
probably serve as components themselves in higher level behaviors. | refer to
behaviors listed in ethograms as ethobehaviors. Table 1.5 shows these data, and
Figure 1.11 displays them. There are not enough data in each of these classes to
make any strong conclusions concerning the relative ethobehavioral repertoire
sizes, other than perhaps (i) that the range of ethobehavioral repertoire sizes for
mammals is great, and greater than that for the other classes, and (ii) the number
of ethobehavior types for vertebrates tends to be higher than the number for
invertebrates.

Recall that our main purpose is to examine how the number of muscles
scales with the number of ethobehavior types. There are two reasons to focus
on only one class of animals at a time. First, it seems reasonable to expect
that if there are universal laws governing the relationship between number of
muscles and number of ethobehavior types, the general form of the relationship
may be similar across the classes, but the particular constants in the mathemat-
ical relationships may depend on the class of animal. For example, perhaps
fish with E ethobehavior types tend to have half the number of muscles as a
mammal with E ethobehavior types, but within each class the scaling relation-
ships are identical. Second, the community standards for delineating behaviors
are more likely to be similar within a class than across classes. For example,
it may be that ethologists tend to make twice the number of behavioral delin-
eations for insects than for mammals. Here | examine behavioral complexity
within mammals only. One reason to choose this class is because there exists
more ethobehavior data here (from 23 species), and it covers a wider range,
than the data for the other classes (see Figure 1.11). The other reason is that
we also require estimates of the number of muscle types, and | have been able
to acquire muscle counts for only a few non-mammals.

Table 1.6 shows the behavioral repertoire sizes for just the mammals, along
with estimates of the number of muscles and of index of encephalization (which
is a measure of brain mass that corrects for how big it is due merely to the mass
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Table 1.5: Number of ethobehavior types (i.e., the number of behaviors listed in the
authors' ethogram) for 51 species.

# etho-

Phylum |Class Latin name Name behaviors | citation

Arthropodz Insecta | Apis mellifera

Worker honey bee

30 Kolmes, 1985

Ropalidia marginata Social wasps 37 Gadagkar & Joshi, 1983
Camponotus colobopsis Mangrove ants 36 Cole, 1980

Automeris aurantinca Weym Butterfly 15 Bastock & Blest, 1958
Pelocoris femoratus Water bug 22 Brewer & Sites, 1994

Sceptobiini Ant-guest beetle 42 Danoff-Burg, 1996
Stenus Stenus beetle 73 Betz, 1999
Mollusca |Gastropod Aplysia californical Cooper Sea slug 45| Leonard & Lukowiak, 1986
Navanax inermis Sea slug 28| Leonard & Lukowiak, 1984
Strombidae Sea snail 7 Berg, 1974
Cephalopo Callianassa subterranea Burrowing shrimp 12| Stamhui et al., 1996
Eledone moschata Cuttlefish 14 Mather, 1985

Chordata | Osteichthy Haplochromis buroni Mouth-brooding african cichlid fish 19 Fernald & Hirata, 1977
Lepomis gibbosus, Linneaus Pumpkinseed sunfish 26 Miller, 1963
Parablennius sanguinolentus parvicomis  Blennies 40 Santos & Barreiros, 1993
Pleuronectes platessa L. Juwenile plaice fish 8 Gibson, 1980

Colisa Colisa fish 23 Miller & Jearld, 1983
Gasterosteus aculeatus Three-spined stickleback 19 Wooton, 1972
Chordata ' Reptilia | Gopherus agassizii Desert tortoise 80 Ruby & Niblick, 1994
Caiman sclerops Caimen 188 Lewis, 1985
Lampropholis guichenoti Scincid lizard 45 Torr & Shine, 1994
Chordata |Aves Ara ararauna and A. macao Parrot 23| Uribe, 1982
Melopsittacus undulatus Budgerigar parakeet 60 Brockway, 1964a, 1964b

Chordata

Hydrophasianus chirurgus

Phalacrocorax atriceps bransfieldensis

Coturnix chinensis
Gallus bankvia
Poephila guttata
Mammalia Alces alces andersoni
Meriones unguiculatus

Pheasant-tailed and bronzewinged jacana, duck
Blue-eyed shag (a cormorant)

Bluebreasted quail
White leghom-type hen
Zebra finch

North Am. Moose
Mongolian gerbil

19 Ramachandran, 1998

21 Bermnstein and Maxson, 1982
60 Schleidt et al., 1984

13 Webster & Humik, 1990

52 Figueredo et al., 1992

22| Geist, 1963

24 Roper & Polioudakis, 1977

Peromyscus maniculatus gambelii Deer mouse 29 Eisenberg, 1962

Dolichotis patagonum Mara 30 Ganglosser & Wehnelt, 1997
Rattus rattus Albino lab rat 43 Bolles and Woods, 1964
Marmota monax Woodchuck 43 Ferron & Ouellet, 1990
Castor canadensis Beawer 51 Patenaude, 1984

Sciuridae (four species) Squirrel 55 Ferron, 1981

Rattus norvegicus White rat 33| Draper, 1967

Spermophilus beecheyi
Leporidae (family)
Pteropus livingstonii

California Ground squirrel
White rabbit
Fruit bat

34 Owings et al., 1977
30/Gunn & Morton, 1995
93 Courts, 1996

Blarina brevicaudo Short-tailed shrew 54 Martin, 1980
Mustela nigripes Black-footed ferret 74 Miller, 1988
Felis catus Cat 69 Fagen & Goldman, 1977

Tursiops truncatus
Calithrix jacchus jacchus
Nycticebus coucang

Bottlenose dolphin
Common marmoset
Malaysian slow loris

123 Muller et al., 1998
101 Stevenson & Poole, 1976
80 Ehrlich & Musicant, 1977

Galago crassicaudatus Great Galagos 97 Ehrlich, 1977

Cercopithecus neglectus De Brazza monkey 44 Oswald & Lockard, 1980
Macaca nemestrina Macaque monkey 184 Kaufman & Rosenblum, 1966
Papio cynocephalus Baboon 129 Coehlo & Bramblett, 1981
Homo sapiens Human child 111 Hutt & Hutt, 1971
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of the animal’s body). Muscle counts were estimated from atlases of anatomy,
and | used the maximum estimate | could find, since lower estimates in an atlas
are due to a lack of detail. Here I have listed all the muscle estimates for each
mammalian order, only the maximum which was used in the analysis.

e Artiodactyla: 89 (Walker, 1988), 116 (Sisson and Grossman, 1953, ox), 138 (Sisson and
Grossman, 1953, pig), 186 (Singh and Roy, 1997), 191 (Ashdown and Done, 1984), 203
(Raghavan, 1964).

e Carnivora: 160 (Sisson and Grossman, 1953), 169 (Bradley and Grahame, 1959), 197
(Reighard and Jennings, 1929), 204 (Boyd et al., 1991, cat), 204 (Boyd et al., 1991, dog),
208 (McClure et al., 1973), 212 (Hudson and Hamilton, 1993), 229 (Adams, 1986), 322
(Evans, 1993).

o Didelphimorphia: 159 (Ellsworth, 1976).

e Lagomorpha: 67 (Busam, 1937), 85 (Chin, 1957), 112 (Wingerd, 1985), 126 (McLaugh-
lin and Chiasson, 1990), 128 (Craigie, 1966), 214 (Popesko et al., 1990).

e Perissodactyla: 146 (Sisson and Grossman, 1953), 172 (Way and Lee, 1965), 194 (Bu-
dras and Sack, 1994), 245 (Pasquini et al., 1983).

e Primates: 160 (Schlossberg and Zuidema, 1997), 190 (Stone and Stone, 1997), 228
(Rohen and Yokochi, 1993), 230 (Bast et al., 1933), 255 (Anson, 1966), 267 (Agur and
Lee, 1991), 278 Netter, 1997), 316 (Williams et al., 1989).

e Proboscidea: 184 (Mariappa, 1986).

e Rodentia: 104 (Popesko et al., 1990, mouse), 113 (Popesko et al., 1990, hamster), 134
(Popesko et al., 1990, rat), 143 (Popesko et al., 1990, guinea pig), 183 (Howell, 1926),
190 (Hebel and Stromberg, 1976), 206 (Cooper and Schiller, 1975), 218 (Greene, 1935).

Index of encephalization, P, was computed as body mass, M, divided by
brain mass, B, to the power of 3/4; i.e., P = M/B3*. This is appropri-
ate since brain mass scales as body mass to the 3/4 power (Allman, 1999;
Changizi, 2001b). Body and brain masses were acquired from Hrdlicka (1907),
Bonin (1937), Crile and Quiring (1940), and Hofman (1982a, 1982b). [These
data were first presented in Changizi, 2002.]

Figure 1.12 is reminiscent of Figure 1.8 in that the number of component
types (respectively, muscles and words) increases disproportionately slowly
compared to the number of expression types (respectively, ethobehaviors and
sentences) as a function of some third parameter (respectively, encephalization
and time). From the relative rate at which the number of muscles and number
of ethobehavior types scale as a function of encephalization, we can compute
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the combinatorial degree. In particular, Figure 1.12 shows that £ ~ P-® and
that C ~ P%27. From this we may conclude that £ ~ C2, and thus the
combinatorial degree is roughly 3. However, the data are insufficient to sta-
tistically distinguish between whether the combinatorial degree is invariant (as
a function of E), or whether the combinatorial degree may be slowly increas-
ing. Greater behavioral complexity is achieved, at least in part, by increasing
the number of behavioral component types, or the number of muscles. Mus-
cles therefore do not serve as a universal behavioral language from which any
behavior may be built.

The combinatorial degree for mammalian behavior is roughly 3 (possibly
not invariant), and there are several interesting implications. (1) Since it is
greater than one, it means that behavior is, indeed, language-like. There are
many who already believe that behavior is language-like in this sense (Fen-
tress and Stilwell, 1973; Slater, 1973; Dawkins and Dawkins, 1976; Douglas
and Tweed, 1979; Rodger and Rosebrugh, 1979; Gallistel, 1980; Lefebvre,
1981; Fentress, 1983; Schleidt et al., 1984; Berkinblit et al., 1986; Greenfield,
1991; Allott, 1992; Bizzi and Mussa-Ivaldi, 1998), but the mere fact that mul-
tiple muscles are involved in each behavior is not an argument that behavior
is language-like, as we saw in bird vocalization. The results here provide a
rigorous test of the language-likeness of behavior. (2) A combinatorial de-
gree of around 3 is surprisingly low, given that behaviors have dozens or more
muscles involved. The actual number of degrees of freedom is well below the
actual number of muscles involved, and this is due to the stereotyped mutual
dependencies between muscles. (3) This value for the combinatorial degree is
not too much lower than the combinatorial degree of 5 for human natural lan-
guage. Since the combinatorial degree for mammalian behavior is effectively
an average over many mammals, it is possible that the behavioral combinato-
rial degree for humans is actually nearer to 5, and that perhaps there are similar
neurobiological constraints underlying these values. Preliminary data in my
own experiments (Changizi, 2002) show that the combinatorial degree is also
around three for the ontogeny of behavior in rats (Figure 1.13), where low-
level components were the total number of degrees of freedom exhibited by the
joints of the pups (i.e., the behavior of the pup parts), and the high-level be-
haviors were ethobehaviors. (I expect that my estimates scale in proportion to
the true counts, but | do not expect that my counts reflect the actual magnitudes
of the repertoire sizes, especially for the low-level components where | suspect
severe undercounting.)

Another interesting conclusion we may draw from Figure 1.12 is that ethobe-
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Table 1.6: Number of ethobehavior types, number of muscles, and index of encephal-
ization (i.e., brain size corrected for body size) for mammals.

Order
and species latin name

Artiodactyla
Alces alces
Cephalophus monticola

Carnivora
Felis catus
Mustela nigripes

Cetacea
Tursiops truncatus

Chiroptera
Pteropus livingstonii

Didelphimorphia

Insectivora
Blarina brevicaudo

Lagomorpha
Leporidae (family)

Perissodactyla

Primates

Cercopithecus neglectus
Nycticebus coucang
Galago crassicaudatus
Calithrix jacchus

Homo sapiens

Papio cynocephalus
Macaca nemestrina

Proboscidea

Rodentia

Meriones unguiculatus
Peromyscus maniculatus
Dolichotis patagonum
Rattus norvegicus
Spermophilus beecheyi
Rattus rattus

Marmota monax

Castor canadensis
Sciuridae (four species)

Species
common name

North Am. Moose
Duikers

Cat
Black-footed ferret

Bottlenose dolphin

Fruit bat

Short-tailed shrew

White rabbit

De Brazza monkey
Malaysian slow loris
Great Galagos
Common marmoset
Human child
Baboon

Macaque monkey

Mongolian gerbil
Deer mouse
Mara

White rat
Ground squirrel
Albino lab rat
Woodchuck
Beaver

Squirrel

# behavior
types

27.0
22
32

715
69
74

123.0
123

93.0
93

54.0
54

30.0
30

106.6
a4
80
97

101
111
129
184

38.0
24
29
30
33
34
43
43
51
55

behavior citation

Geist
Dubost

Fagen & Goldman
Miller

Muller etal.

Courts

Martin

Gunn & Morton

Oswald & Lockard
Ehrlich & Musicant
Ehrlich

Stevenson & Poole
Hutt & Hutt

Coehlo & Bramblett
Kaufman & Rosenblum

Roper & Polioudakis
Eisenberg

Ganglosser & Wehnelt
Draper

Owings et al.

Bolles and Woods
Ferron & Ouellet
Patenaude

Ferron

index of # muscle
enceph.

0.0297
0.0342
0.0252

0.0862
0.0888
0.0837

0.1721
0.1721

0.0679
0.0679

0.0185

0.0490
0.0490

0.0345
0.0345

0.0388

0.1789
0.1454
0.1231
0.0977
0.1445
0.3502
0.1793
0.2116

0.0731

0.0555
0.0569
0.0569
0.0394
0.0337
0.0803
0.0337
0.0803
0.0383
0.0803

types
203

322

159

214

245

316

184

218

muscle citation

Raghavan

Evans

Ellsworth

Popesko et al.

Pasquini et al.

Williams et al.

Mariappa

Greene
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havioral repertoire size is strongly correlated with index of encephalization. In
fact, they are roughly proportional to one another. This provides a kind of
justification for the use of encephalization as a measure of brain complexity.

Summing up scaling in languages

Table 1.7 summarizes the results for the behavioral systems we have covered
above. One of the first generalizations we may make is that in no case do
we find the universal language approach employed. For behavioral complexity
across adults—i.e., not the cases of the ontogeny of behavior—the combinato-
rial degree is, in every case, consistent with its being invariant, implicating the
length-invariant approach to complexity increase. We cannot, however, reject
the possibility that the combinatorial degree is increasing in mammalian behav-
ior. For the ontogeny of human language, the combinatorial degree clearly, and
expectedly, increases as expressive complexity increases, and the relationship
thus conforms to a logarithmic law; the increasing-C-and-d length approach is
followed. For the ontogeny of rat behavior we are unable to say whether the
relationship is a power law or logarithmic, but can conclude that the combi-
natorial degree is of the same order of magnitude as that for the phylogeny of
mammalian behavior.

1.2.2 Scaling of differentiation in the brain

We have looked at the manner in which behavioral complexity increases, and
now we consider how the brain itself increases in complexity. When a brain is
built to do more things, does it do these “more things” via using the same basic
building blocks—the same set of neuron types—nbut by stringing them together
into longer functional expressions, or does it achieve greater complexity via
the invention of new kinds of basic building blocks—i.e., new neuron types?
Consider digital circuits as an example kind of network. Digital circuits consist
of logic gates like AND and OR and NOT. For example, AND gates have two
inputs and one output, and output a ‘1’ if and only if both inputs are ‘1’. OR
gates output a ‘1’ if and only if at least one of the inputs is a ‘1’. And a
NOT gate has just one input, and outputs the opposite number as the input.
The set of all possible digital circuits is an infinite set of circuits, carrying out
infinitely many different digital circuit functions. It turns out that, no matter
how complex a digital circuit function is, it can be implemented using just these
three logic gate types. (In fact, there exists a single logic gate that suffices to
build any digital circuit.) No increase in the number of gate types—i.e., no
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Figure 1.13: Top: Logarithm (base 10) of the number of muscle-level behavior types versus
the logarithm of brain mass (g) for the first 20 days of rat development. Bottom: Logarithm
(base 10) of the number of ethobehavior types versus the logarithm of brain mass (g) for thefirst
20 days of rat development. Brain masses taken from Markus and Petit (1987). Ethobehavior
types recorded from rat pups during the first 20 days are here recorded, followed by the day of
first appearance in at least one pup: backup, 8; bite cage, 14; hite sib, 15; break self from falling forward, 14; burrow into
pile of pups, 1; clean face, 3; clean head, 12; climb wall, 8; dig chips with hands, 13; dig with hind feet, 18; eat chow or poop, 9; fight, 13;

free self from pile or mother, 1; grasp bar, 18; grasp feet, 12; head search for nipple, 1; head shake, 4; jump, 15; lick body, 12; lick feet, 8; lick
hands, 6; lick sib, 6; lie on back (to lick self), 12; manipulate object, 12; mouth floor, 3; push off pup, 8; righting, 1; run, 12; scratch body with
hind leg, 4; scratch ears with front leg, 6; scratch ears with hind legs, 8; seeking nipple, 19; shoveling chips with head, 12; sit on haunches,
12; dleep, 1; sniff air, 10; stand, 14; suckle, 1; turn, 1; walk, 3; walk away from pile, 7; yawn, 1. Muscle-level behavior types
recorded from rat pups during the first 20 days are here recorded, followed by the day of first
appearance in at least one PUP: armateral push, 2; arm push at elbow, 1; arm push at shoulder, 1; arm push body back, 8;
arm stretch, 1; body bend left-right, 1; body bend sit-up, 1; body stretch, 1; body twist, 1; chew, 12; eye open-close, 12; hand grasp, 9; hand
to face, 3; head |eft-right, 1; head twist, 1; head up-down, 1; head rotate, 3; leg burst, 15; leg lateral push, 8; leg push at ankle, 1; leg push at
knee, 1; leg stretch, 2; leg to body, 9; leg to face, 8; lick, 6; mouth open-close, 1; suck, 1; tail left-right, 1; tail up-down, 1.
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increase in differentiation—needs to occur. For digital circuits there exists a
universal language. Perhaps nervous systems are like digital circuits, then: a
handful of neuron types are sufficient to carry out any function, and thus brain
differentiation remains invariant in more complex brains. The alternative is that
there is no universal language employed, and more complex brains have new
neuron types.

We address this question first by examining networks generally, rather than
just nervous networks. That is, | will present a theory that applies to any kind
of network under economic or selective pressure, and then show that many
networks, including nervous systems, appear to conform to the theory.

Hypothesis

Nodes in networks combine together to carry out functional expressions, and
let L be the average number of nodes involved in an expression. For example,
employees in businesses group together to carry out tasks for the business, and
neurons in a brain work together to implement brain functions. Let C be, as
earlier, the number of component, or node, types; C' is a measure of the degree
of differentiation of the network. If the network can accommodate F distinct
expression types, then there must be nodes in the network doing the work.
Supposing that, on average, each node can participate in s expressions (where
s is a constant depending on the kind of network), the number of nodes in the
network, IV, must satisfy the inequality

N > EL/s.

For example, if there are £ = 3 expression types in the network, each of length
L = 4, and each node can participate in s = 2 expressions, then there must be
at least N = 3 - 4/2 = 6 nodes in the network to realize these expressions.

I am interested here only in networks that are under selective or economic
pressure of some kind, and for such networks the following optimality hypoth-
esis plausibly applies (Changizi, 2001d, 2001e; Changizi et al, 2002a): Net-
work size scales up no more quickly than “ needed” to obtain the E expression
types. The motivation for this is that nodes in a network are costly to build
and maintain, and network size should accordingly be optimized subject to the
functional requirements of the network. Note that networks not under selective
pressure would not be expected to conform to this hypothesis. For example, a
salt crystal is a network with nodes of different types, and the nodes interact
with other nodes to carry out functional connective, lattice-related expressions.
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Table 1.7: Summary of the kinds of behavior studied. When it was not
possible to distinguish between a power law (C ~ E*) and a logarithmic
law (C ~ log E), “ ~" iswritten before the rough value of the combinato-
rial degreeto indicate that it might be increasing.

Kind of behavior Combinatorial degree

Across adults

Human language over history Invariant and 5.02
Bird vocalization across phylogeny Invariant and 1.23
Mammalian behavior across phylogeny ~3.00
Ontogeny
Ontogeny of language
- phoneme-morpheme Increasing from 2 to 4
- word-sentence Increasing from 1 to 2.5
Ontogeny of behavior ~3

However, salt crystals are not under selective pressure, and the optimality hy-
pothesis does not apply, for a salt crystal that is twice as large will tend to have
no more expression types (i.e., no new kinds of interactions among the nodes).

We derived just above that N > EL/s, and from the optimality hypothesis
we may thus conclude that N ~ EL. Furthermore, if L were to increase as
a function of E, then network size would scale up more quickly than needed,
and thus L must be invariant. It follows that

N~ E.

For networks under selective pressure, then, we expect network complexity, E,
to be directly proportional to network size, N.

How does the network’s differentiation, C, relate to network size? Recall
from earlier in this chapter that £ ~ C%, where d is the combinatorial degree.
We may immediately conclude that

N ~ O,

Since we just saw that L must be invariant, d will also be invariant. Therefore,
for networks under selective or economic pressure, we predict that network
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differentiation and size are related by a power law. Do networks under selective
pressure—selected networks—conform to this prediction? And, in particular,
do nervous networks conform to it? We will see that a wide variety of selected
network conform to the predicted relationship, and by measuring the inverse of
the log-log slope of C versus N we can, as in the earlier cases of behaviors,
compute the combinatorial degree, d.

Example networks, and nervous networks

Changizi et al. (2002a) presented data on the scaling of differentiation in a
wide variety of networks, and some of the key plots are shown in Figure 1.14;
a summary of the studied networks are shown in Table 1.8. The plots on the
left in Figure 1.14 are for human-invented networks, and those on the right are
for biological networks. Pairs on the same row are analogous to one another. In
particular, (i) Legos are akin to organisms in that in each case geographically
nearby nodes interact to carry out functions, (ii) universities are akin to ant
colonies in that in each case there are individual animals interacting with one
another, and (iii) electronic circuits are akin to nervous systems in that each are
electrical, with interconnecting “wires.”

The data sources are discussed in Changizi et al. (2002a), and | will only
mention the neocortex plot here in detail. The data are obtained from Hof
and colleagues, who have used immunoreactive staining and morphological
criteria to compare the neuron types in mammals from 9 orders (Hof et al.,
1999), and in great ape (Nimchinsky et al., 1999). For each mammalian order,
indices of encephalization P (i.e., the brain mass after normalizing for body
size) were computed from brain and body weights (grams) for all species in
that order found in the following references: Hrdlicka (1907), Bonin (1937),
Crile and Quiring (1940), Hofman (1982a, 1982b). Since brain mass scales as
body mass to the 3/4 power (Allman, 1999; Changizi, 2001a), P is defined as
brain mass divided by body mass to the 3/4 power. Averages were then taken
within families, and the family averages, in turn, averaged to obtain the average
for an order. Index of neuron encephalization @ (i.e., the number of neurons
after normalizing for body size) was computed as Q = P%/3, since the number
of neurons in neocortex scales as brain volume to the 2/3 power (see previous
section). Number of neuron types and index of neuron encephalizations are
as follows: Monotremata (7, 0.0699), Artiodactyla (8, 0.0860), Dasyuromor-
phia (7, 0.1291), Insectivora (8, 0.1339), Rodentia (8, 0.1522), Chiroptera (6,
0.1664), Carnivora (9, 0.1830), Cetacea (9, 0.3094), Primate (not great apes)
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Figure 1.14: Log-log plots of the number of node types versus network size for six kinds of
network.
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(10, 0.2826), Great Ape (11, 0.4968).

Each of the networks shown in Figure 1.14 and mentioned in Table 1.8
have differentiation increasing as a function of network size. They therefore
do not take the universal language approach. Also, the data are consistent
with a power law in every case studied thus far, and the logarithmic relation-
ship can be ruled out in the majority of the kinds of network (Changizi et al.,
2002a). For neocortex in particular, a logarithmic relationship cannot be ex-
cluded (Changizi et al., 2002a) due to the insufficient range. Because of the
tendency for selected networks to follow power laws, it seems reasonable to
expect that the neocortex does as well, and that with more data a logarithmic
relationship could be excluded. In fact, recalling our discussion in the previous
section concerning invariant-length minicolumns in neocortex, we have rea-
son to believe that expressions are length-invariant in neocortex, and thus we
expect differentiation to scale as a power law of neocortical network size. In
sum, then, it appears that, as predicted earlier for network optimality reasons,
networks increase in complexity by scaling differentiation as a power law with
network size. It also means that in all these networks there are invariant-length
expressions; neocortex is hardly, then, unique in this regard.

The combinatorial degree for neocortex is approximately 5—i.e., N ~
Co—and what might this signify? It means that whatever expressions are,
there are around five degrees of freedom in their construction. Presumably,
most functional expressions in neocortex are carried out by many more neurons
than five. That is, it seems plausible that whatever expressions might be, their
length L is significantly larger than five. The number of degrees of freedom
in an expression may nevertheless be lower than the expression length, as we
have seen for human language over history, bird vocalization, and mammalian
behavior. What, then, might expressions be given that they have on the order of
five degrees of freedom? Consider electronic circuits as an example, where the
combinatorial degree is around 2.5. The basic functional expressions here are
simple circuits, such as voltage dividers, Zener regulators, and diode limiters
(Changizi et al., 2002a), where there are around 2 to 3 electronic components,
and this gives the roughly 2 to 3 degrees of freedom, which, in turn, determines
the rate at which differentiation scales as a function of network size. For neu-
rons, we must ask what are the functional groupings of neurons in the neocor-
tex? There is no known answer for neocortex here, but one plausible conjecture
is the minicolumn, which is a functional grouping of neurons extending along a
line through the thickness of the neocortex (Mountcastle, 1957; Tommerdahl et
al., 1993; Peters, 1994; Mountcastle, 1997). Minicolumns are invariant in size
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Table 1.8: The seven general categories of network for
which | have compiled data for scaling of differentiation.
The second column says what the nodes in the network are,
and the third column gives the estimated combinatorial de-
gree (the inverse of the log-log best-fit slope for differentia-
tion C versus network size N).

Network Node Comb.
degree

Electronic circuits | component| 2.29

Legos™ piece 1.41

Businesses

- military vessels | employee | 1.60

- military offices employee | 1.13

- universities employee | 1.37

- insurance co. employee | 3.04
Universities

- across schools faculty 1.81

- history of Duke faculty 2.07

Ant colonies
- caste = type ant 8.16
- Size range = type ant 8.00
Organisms cell 17.73

Neocortex neuron 4.56
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(see previous section), which is what we expect since the combinatorial de-
gree is invariant. Minicolumns also typically have roughly five layers to them,
corresponding to the five cell-rich layers of the neocortex. Perhaps each layer
contributes a degree of freedom?

1.3 Theshape of limbed animals

Why are limbed animals shaped like they are? Why do animals have as many
limbs (digits, parapodia, etc.) as they do? Questions like this are sometimes
never asked, it being considered silly, or unscientific, or impossible to answer,
or so likely to depend on the intricate ecological details of each individual
species that there will be a different answer for each species. Or, if the ques-
tion is asked using those words, the question will really concern the mecha-
nisms underlying why animals have as many limbs as they do (e.g., certain
gene complexes shared by all limbed animals). But the question | asked con-
cerns whether there may be universal principles governing limb number, prin-
ciples that cut across all the diverse niches and that apply independently of the
kinds of developmental mechanisms animals employ.

| began this research (Changizi, 2001a) with the hypothesis that the large-
scale shapes of limbed animals would be economically organized. Three rea-
sons motivating this hypothesis were, as mentioned more generally earlier, (1)
that animal tissue is expensive and so, all things equal, it is better to use less,
(2) that any tissue savings can be used to buy other functional structures, and
(3) that economical animal shape can tend to lower information delays between
parts of the animal. It is this last motivation that makes this limb problem also
a nervous system problem: even if tissue is inexpensive for some species, as
long as (i) the animal has a nervous system, and (ii) the animal is under selec-
tive pressure to respond to the world relatively quickly, there will be pressure
to have a large-scale morphology with low transmission delays.

To make any sense of a hypothesis about optimality, one needs to be precise
about what is being optimized. Also, when one says that some shape is optimal,
it is implicitly meant that that shape is more economical than all the other
shapes in some large class of shapes; so, we must also be clear about what this
class of shapes is.
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1.3.1 Body-limb networks

To characterize the class of possible (but not necessarily actual) limbed animal
shapes, | have developed the notion of a body-limb network. The basic idea of
a body-limb network is to treat the body and limb tips of an animal as nodes
in a network, and the limbs as edges connecting the body to the limb tips. The
limbs are required to emanate from the body at points that lie along a single
plane—this is the limb plane, and the cross-section of the body lying in this
plane is what we will represent with our node for the body. More precisely,
a body-limb network is any planar network with a central body node, and any
number of limb tip nodes uniformly distributed at some distance X from the
body node. Edges are all the same cost per unit length, and may connect any
pair of nodes. When an edge connects the body node to a limb tip node, the
edge is called a limb edge, or a limb. Figure 1.15 shows some example body-
limb networks. In every network | have ever studied, nodes are points. For
the purpose of characterizing animal bodies, this will not do: animal bodies
are often not point sized compared to limb length. To accommodate this, body
nodes are allowed to have a size and shape. For example, they are circles in
Figure 1.15, and a stretched circle is shown in Figure 1.16. [Stretched circles
are circles that have been cut in two equal halves and pulled apart a stretched-
circle length L.] Body-limb networks are general enough to cover both many
animal-like networks—e.g., a starfish—and many non-animal-like networks.
Body-limb networks with body nodes having stretched-circle shapes have the
following important parameters (see Figure 1.16):

e The body radius, R. l.e., the distance from the body’s center to the body’s edge. This pa-

rameter accommodates all those animals for which the body is not negligible compared
to limb length.

e The stretched-circle length, L. l.e., the “length” of the body, but where L = 0 im-
plies that the body node is a circle. This parameter accommodates long animals, like
millipedes.

e The distance from the body node’s edge to a limb tip, X. When there are edges from
the body to a limb tip, these edges are limb edges, and X is then the limb length. More
generally, though, X is the separation between the body-node and the limb-tip nodes.
Since a connected body-limb network will always have at least one limb, this distance is
always the length of this one limb, at least; accordingly, | will typically refer to it as the
limb length.

e The number of limbs, N. l.e., the number of edges actually connecting the body node to
a limb tip. To emphasize, N is not the number of limb tip nodes, but the number of limb
edges; thus, the number of limb tip nodes must be > N.
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Figure 1.15:; Some example body-limb networks with the same body radius and limb length
[aswell asthe same stretched-circle length (namely 0), see Figure 1.16], and limb length. Body
nodes are not required to be points; here they are circles. (A) Three body-limb networks where
all the edges are limbs, but where some networks have more limb tip nodes than others. (B)
Three body-limb networks where there are just as many nodes as one another, but where some

have more limb edges than others. The networks with asterisks on the body-limb node have
different numbers of limb tip nodes, but have the same number of limbs.

To the extent that real limbed animals can be treated as body-limb net-
works, the treatment is extremely crude. The limb tips in a body-limb net-
work are all equidistant from the body node, whereas real limbed animals often
have limb length variation. They are also required to be uniformly distributed
around the body, but real animals often violate this. The edges in body-limb
networks must have equal costs per unit length, but real animals sometimes
have limbs with different cross-sectional areas (and thus different costs per
unit length). The positions of the nodes in a body-limb network are all fixed
in place, whereas limbed animals move their limbs. Furthermore, although the
limbs of an animal might emanate from the animal along a single plane—the
limb plane—and although limbs of many animals can, if the animal so wishes,
lie roughly flat in that plane, animals rarely keep their limbs within this limb
plane. For example, the limbs of an octopus emanate from along the same pla-
nar cross-section of the animal, and the limbs can lie flat in the plane; but they
rarely if ever do. With regard to reaching out into the world, there issomething
special about the plane, special enough that it justifies modeling the shape of
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O Limb-tip
node

Figure 1.16: An example body-limb network with a stretched circle body node. The limb
ratioisk = X/(R + X); thestretched-circle ratioiss = L/X.

animals like an octopus as if the limbs are always lying in the plane. Imagine
that all the limbs have the same angle relative to the plane; e.g., they are all
pointing down and out of the plane, with an angle of 30° with the plane, as is
depicted in Figure 1.17. For each such “way of pointing the limbs,” let us cal-
culate the total perimeter made by drawing lines connecting the limb tip nodes.
Now ask ourselves, At which angle relative to the plane is this perimeter the
greatest? Well, it is least when all the limbs are pointing either straight down
or straight up; it is greatest when the limbs are lying in the limb plane. Ani-
mals have limbs in order to reach out, and since there is more reaching out to
do when the limbs are in the limb plane, we might expect that it is the geom-
etry when in the limb plane that is the principal driving force in determining
the nature of the network. If an animal’s limbs cannot lie in the limb plane—
as is, for example, the case for most mammals, who have ventrally projected
limbs—then they cannot be treated via body-limb networks as | have defined
them. Despite all these idealizations, body-limb networks allow us to capture
the central features of the highest level descriptions of limbed animals, and
these networks are simple enough that we can easily think about them, as well
as answer questions about optimality.
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Body node, viewed from side

Figure 1.17: Real limbed animals often project their limbs out of the limb plane. [ The limb
plane is the plane defined by the points where the limbs intersect the body. It is also the plane
in which the body node lies.] This figure shows an example “ animal” viewed from the side,
where all the limbs are pointing below the body at an angle 6 relative to the limb plane. The
perimeter made by the limb tipsis greatest when 6 is zero, i.e., when the limbslie in the plane.
There is accordingly the greatest need for limbs in the limb plane, and this is my justification
for treating limbed animals as if their limbsliein the limb plane.

1.3.2 Theoptimization hypothesis

We now know what body-limb networks are, and how they may be used, to a
first approximation at least, to characterize the large-scale morphology of many
kinds of limbed animals. They are also sufficiently general that there are many
body-limb networks that do not describe real limbed animals. The question
now is, If limbed animals are economically arranged, then what body-limb
networks would we expect to describe them? Or, said another way, which
body-limb networks are optimal? To make this question more precise, suppose
that an animal has body radius R, stretched-circle length L, and limb length
X. Now we consider the class of all body-limb networks having these three
values—the class of “R-L-X body-limb networks”—and ask, Which ones are
optimal? For example, all the example networks in Figure 1.15 have the same
body radius, same stretched-circle length (namely zero), and same limb length;
they are therefore all in the same class of body-limb networks from which we
would like to find the optimal one. However, rather than asking which such
body-limb network is optimal, I will ask a weaker question: How many limbs
does an optimal R-L-X body-limb network have? The reason | want to ask
this question is that, ultimately, it is the number of limbs that | am interested
in. From our point of view, two body-limb networks that differ in their number
of limb tip nodes but have the same number of limb edges are the same. For
example, the networks with asterisks in Figure 1.15 have the same number of
limbs, and so we do not wish to distinguish them.

The answer to the question “How many limbs does an optimal R-L-X
body-limb network have?” is roughly that these networks cannot have too
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7 If Z> X, then... If X>2Z,then...

Body node
A B C

Figure 1.18: The basic idea behind the argument for why there cannot be too many limbsin
an optimal body-limb network. (A) Part of the body node is shown at the bottom, two limb tip
nodes on top. One limb edge is presumed to already exist. To connect the network, the other
limb tip node must either have an edge straight to the body node, which is of length X, or have
an edge to the tip of the existing limb, which is of length Z. (B) When Z > X itisless costly
to have a limb go to the limb tip node straight from the body node. (C) But when X > Z itis
cheaper to have an edge go to the tip of the existing limb.

many limbs, where “too many” depends on the parameter values of R, L and
X. Figure 1.18 illustrates the argument. The basic idea is that if two limb tip
nodes are close enough to one another, then it is cheaper to send an edge di-
rectly from one to the other, and to have only one of the limb tips connect to the
body node. This occurs when the distance, Z, between the limb tips is smaller
than the limb length; i.e., when Z < X. However, when limb length is smaller
than the distance between the limb tips—i.e., when X < Z—it is cheaper to
connect the limb tip nodes directly to the body node. That is, it is then cheaper
to have a limb for each limb tip node. With this observation in hand, we can
say that an optimal R-L-X body-limb network must have its limbs sufficiently
far apart that no limb tip nodes at the end of a limb are closer than X.

Because our body node shapes are confined to stretched circles, it is not
difficult to calculate what this means in regards to the maximum number of
limbs allowed for an optimal, or wire-minimal, R-L-X body-limb network.
Let us consider the stretched circle’s two qualitatively distinct parts separately.
First consider the straight sides of the body node. These sides are of length L,
and the limbs are all parallel to one another here. It is only possible to fit L/ X
many limbs along one of these edges. Actually, /X can be a fraction, and
so we must round it down; however, for simplicity | will ignore the truncation
from now on, and compute just the “fractional number of limbs.” So, along the
two sides of a stretched circle there are a maximum of 2L/ X limbs; letting s =
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Figure 1.19: The simple trigonometry involved in computing the minimum allowed angle
between two limbsfor a circular node. Thetwo nodes cannot be closer than X'. We can compute
6/2 asthearcsin[(X/2)/(R+ X)]. Sncethelimbratio—i.e., a measure of how long the limbs
are compared to the body—is k = X/(R+ X)), we can rewritethisas# = 2 arcsin(k/2). (An
alternative derivation leads to the equivalent § = arccos(1 — k*/2).)

L/X be the stretched-circle ratio, the maximum number of limbs is 2s. The
remaining parts of the body node are two semicircles, which we will imagine
pushing together. Limbs on a circular body node poke out radially. Consider
the angle between the lines reaching from the body node to two limb tips. What
must this angle be in order to make the distance between the two limb tip nodes
greater than the limb length X? Figure 1.19 illustrates the simple trigonometry
involved. The conclusion is that, for circular body nodes, the angle, 8, between
adjacent limbs must satisfy the inequality

0 > 2arcsin(k/2),

(or equivalently 6 > arccos(1 — k*/2)), where k = X/(R + X) is the limb
ratio. The maximum number of limbs that can be placed around a circular body

node is therefore
27 T

2arcsin(k/2)  arcsin(k/2)’

In total, then, for an R-L-X body-limb network to be optimally wired the
number of limbs N must satisfy the inequality,

s

N <N, =2 —_—
= Nmaz = 25+ arcsin(k/2)’
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where s = L/X and k£ = X/(R + X). Note that this inequality no longer
refers to the body radius R, the stretched-circle length L or the limb length
X. Instead, it refers only to the stretched-circle ratio s and the limb ratio k.
The absolute size of the network therefore does not matter; all that matters
are the relative proportions of an animal’s body and limbs. It should be noted
that this treatment of stretched circle nodes engages in a simplification since
I have made the argument for the sides separately from that for the circular
ends; a more precise mathematical treatment would determine the maximum
number of limbs for the stretched-circle node shape as it is. For our purposes
this approximation suffices. The notion of optimality we have employed here is
something called a minimal spanning tree, or MST. Spanning treesare networks
that connect up all the nodes, but where there are no loops. Minimal spanning
trees are spanning trees that use the least amount of wire. What we have found
thus far is that if an R-L-X body-limb network is a minimal spanning tree,
then it must have fewer than N, limbs.

That encompasses the volume-optimality part of the hypothesis. All it con-
cludes, though, is that there must not be more than N,,,. many limbs; it does
not predict how many limbs an animal will actually have. This is where | made
a second hypothesis, which is that animals are typically selected to maximize
their number of limbs subject to the volume-optimality constraint. The sim-
ple intuition is that limbed animals have limbs in order to reach out (for many
different reasons), and need to “cover” their entire perimeter.

These two hypotheses lead to the prediction that, for those limbed animals
describable as R-L-X body-limb networks, the number of limbs N satisfies

the equation,
T

N =2 —_—.
o arcsin(k/2)

(Le.,that N = N,,...) Because the first hypothesis concerns minimal spanning
trees and the second concerns maximizing the number of limbs, | have labeled
this composite hypothesis the max-MST hypothesis. Notice that the max-MST
hypothesis says nothing about life as we know it; it is a general hypothesis, so
general that one might expect it to apply to any limbed animals anywhere, so
long as they are describable by body-limb networks.

Let us ask what this equation means for the relationship between predicted
limb number and the body and limb parameters s (the stretched-circle ratio
s = L/X)and k (the limb ratio £ = X/(R+ X)). First consider what happens
as s is manipulated. When s = 0 it means that the stretched-circle length is
very small compared to the limb length. The consequence is that the stretched-



SCALING IN NERVOUS NETWORKS 65

circle term in the equation for the number of limbs drops out, which means that
the network can be treated as having a circular body node. As s increases, and
keeping R and X constant, the equation is of the form N = 2s+ N.(k), where
N, (k) is a constant referring to the number of limbs for a circle node with limb
ratio k. Thus, IV increases proportionally with s. For this reason, the stretched-
circle length parameter is rather uninteresting; that is, it just leads to the obvious
prediction that, for sufficiently large values of s, animals with bodies twice as
long have twice the number of limbs. Now consider what happens as the limb
ratio is manipulated. When k& = 1 it means the limbs are very long compared
to the body radius, and the number of limbs becomes N = 2s + 6. When the
body node is circular s = 0 and N = 6; that is, when the limbs are so long
that the body node may be treated as a point, the predicted number of limbs
falls to its minimum of 6. As k approaches zero the limbs become very short
compared to the body radius. Using the approximation = =~ sinx for x near
0 radians, it follows that sin(k/2) ~ k/2, and so arcsin(k/2) ~ k/2, and the
predicted number of limbs becomes

N ~2s+7/(k/2) = 2s + 2n /k.

In fact, even when £ is at its maximum of 1, arcsin(k/2) ~ k/2; e.g., arcsin
(0.5) = 0.52 ~ 0.5. The error at this maximum is only about 4%, and the error
gets lower and lower as k& drops toward zero. Therefore, the approximation
above is always a reasonable one. When the body node is either a circle or
the limb length is very large compared to the stretched-circle length (but still
much smaller than the body radius), the equation becomes N ~ 27 /k. That is,
the number of limbs becomes inversely proportional to the limb ratio. In short,
when s = 0, the number of limbs falls to six for very long limbs compared to
the body, but increases toward infinity in a particular quantitative fashion as the
limbs become shorter relative to the body. The reader may examine the kinds
of body-limb networks that conform to the hypothesis by playing with a little
program built by Eric Bolz at www.changizi.com/limb.html.

Before moving to data, it is important to recognize that the hypothesis does
not apply to animals without limbs. The hypothesis states that there is a rela-
tionship between an animal’s number of limbs and its body-to-limb proportion
(i.e., limb ratio). Without limbs, the model can say nothing. Alternatively, if
having no limbs is treated as having zero limb ratio, then the model predicts
infinitely many non-existent limbs. Snakes and other limbless organisms are
therefore not counterexamples to the max-MST hypothesis.
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1.3.3 Comparing prediction toreality

At this point | have introduced the prediction made by the max-MST hypothe-
sis. With this prediction in hand, | sought to discover the extent to which real
limbed animals conform to the prediction. To obtain data for actual body-limb
networks, | acquired estimates of the stretched-circle ratio s and the limb ra-
tio k& from published sources for 190 limbed animal species over 15 classes
in 7 phyla (Agur, 1991; Barnes, 1963; Bishop, 1943; Brusca and Brusca,
1990; Buchsbaum, 1956; Buchsbaum et. al., 1987; Burnie, 1998; Downey,
1973; Hegner, 1933; Netter, 1997; Parker, 1982; Pearse et. al., 1987; Pick-
well, 1947; Stebbins, 1954). The studied phyla (classes) were annelids (Poly-
chaeta), arthropods (Myriapoda, Insecta, Pycnogonida, Chelicerata, Malacos-
traca), cnidarians (Hydrozoa, Scyphozoa), echinoderms (Holothuroidea, Aster-
oidea), molluscs (Cephalopoda), tardigrades and vertebrates (Mammalia (digits
only), Reptilia (digits only), Amphibia). An appendix subsection at the end of
this section shows these values. Measurements were made on the photographs
and illustrations via a ruler with half millimeter precision. The classes were
included in this study if six or more data points from within it had been ob-
tained. Species within each class were selected on the basis of whether usable
data could be acquired from the sources above (i.e., whether the limb ratio and
stretched-circle ratio were measurable); the number of limbs in the measured
animals ranged from 4 to 426. What counts as a limb? | am using ‘limb’ in a
general sense, applying to any “appendage that reaches out.” This covers, e.g.,
legs, digits, tentacles, oral arms, antennae and parapodia. Although for any
given organism it is usually obvious what appendages should count as limbs,
a general rule for deciding which appendages to count as limbs is not straight-
forward. Some ad hoc decisions were required. For vertebrate legs only the
those of Amphibia were studied, as their legs are the least ventrally projected
of the vertebrates. For amphibians, the head and tail were included in the limb
count because there is an informal sense in which the head and tail also “reach
out”. (Thus, amphibians have six “limbs” in this study.) For insects (and other
invertebrates with antennae studied), antennae appear to be similar in “limb-
likeness” to the legs, and so were counted as limbs unless they were very small
(around < 1/3) compared to the legs. The head and abdomen of insects were
not counted as limbs because, in most cases studied, they are well inside the
perimeter of the legs and antennae, and thus do not much contribute to “reach-
ing out” (the head was treated as part of the body). Since | obtained the data
for the purposes of learning how body-limb networks scale up when there are
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more limbs, and since scaling laws are robust to small perturbations in mea-
surement (being plotted on log-log plots), these where-to-draw-the-line issues
are not likely to much disturb the overall scaling behavior. Digits are treated
in the same manner as other types of limbs, the only difference being that only
a fraction of the body (i.e., hand) perimeter has limbs (i.e., digits). Cases of
digits were studied only in cases where the “hand” is a stretched circle with
digits on roughly one half of the stretched circle. For these cases hands may be
treated as if the digits emanate from only one “side” of the node. Digits like
those on a human foot are, for example, not a case studied because the foot
is not a stretched circle for which the toes are distributed along one half of it.
In 65 of the cases presented here the stretched-circle ratio s # 0, and to ob-
serve in a single plot how well the data conform to the max-MST hypothesis,
the dependence on the stretched-circle length can be eliminated by “unstretch-
ing” the actual number of limbs as follows: (i) given the limb ratio k& and the
stretched-circle ratio s, the percent error E between the predicted and actual
number of limbs is computed, (ii) the predicted number of limbs for a circular
body is computed by setting s = 0 (and keeping k the same), and (iii) the “un-
stretched actual number of limbs” is computed as having percent error £ from
the predicted number of limbs for a circular body. This rids of the dependence
on s while retaining the percent error.

After unstretching, each measured limbed animal had two remaining key
values of interest: limb ratio & and number of limbs N. The question is now,
How do IV and & relate in actual organisms, and how does this compare to the
predicted relationship? Recall that, for s = 0 as in these unstretched animals,
the predicted relationship between N and & for limbed animals is

N ~ 27 /k.
If we take the logarithm of both sides, we get
logyg N =~ logyo(27/k),

Therefore, if we plot log;, IV versus — log; k, the predicted equation will have
the form of a straight line, namely with equation y = x + 0.798. This is shown
in the dotted lines in Figure 1.20.

Figure 1.20 shows a plot of the logarithm (base 10) of the number of limbs
versus the negative of the logarithm (base 10) of the limb ratio for the data
I acquired. If the max-MST hypothesis is true, then the data should closely
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Figure 1.20: (A) The logarithm (base 10) of the unstretched number of limbs versus the
negative of the logarithm of the limb ratio, for all 190 limbed animals. The best fit equation
via linear regressionisy = 1.171z + 0.795 (solid line) (R? = 0.647, n = 190, p < 0.001),
and predicted liney = x + 0.798 (dotted line). The 95% confidence interval for this slopeis
[1.047,1.294]. The three rightmost data points exert a disproportionate influence on the best-
fit line, and removing them leads to the best fit equation y = 1.089z + 0.8055 (R? = 0.487,
n = 187, p < 0.001), with a 95% confidence interval for the slope of [0.900, 1.279]. (B)
The average of log,, N values versus — log,, k, where the — log; , k values are binned with
width 0.01. Error bars indicate standard deviation (for points obtained from bins with 2 or
more cases). The best fit equation is now y = 1.206z + 0.787 (solid line) (R? = 0.777,
n = 52, p < 0.001), again very close to the predicted line (dotted line). points still exert
a disproportionate influence on the best-fit line, and removing them results in the equation
y = 1.112z 4+ 0.807 (R? = 0.631, n = 49, p < 0.001).
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follow the equation y = = + 0.798 in the plot, shown as dotted lines. Exami-
nation of the plots show that the data closely follow the predicted lines. When
—log(k) = 0, kK = 1, meaning that the body radius R is extremely small com-
pared to the limb length X; and when this is true, the number of limbs falls to
a minimum of around six (see legend of Figure 1.20). As —log(k) increases,
the limb ratio decreases toward 0, meaning that the limbs are getting smaller
relative to the body radius; and when this is true, the number of limbs increases
higher and higher. Not only does limb number clearly increase as limb ratio
decreases (and the x axis increases), it appears to be well described by the
linear regression equation log(N) = 1.171[— log(k)] + 0.795 (and, without
the three points on the far right, log(N) = 1.089]— log(k)] + 0.8055). Ma-
nipulation of this equation leads to N = 6.24k~ 17! (and without the three
stray points, N = 6.395~1:089): the number of limbs appears to be roughly
inversely proportional to the limb-ratio, with a proportionality constant around
6. This is extraordinarily similar to the predicted relationship which, recall, is
N = 6.28k"L.

In summary, many limbed animals across at least seven phyla conform well
to the max-MST hypothesis, which suggests that their large-scale morpholo-
gies are arranged to minimize the amount of tissue needed to reach out in the
world; they also appear to have the maximum number of limbs subject to the
constraint that they are still optimal trees. And this is despite the complete
lack of any details in the hypothesis concerning the ecological niches of the
animals, and despite the extreme level of crudeness in the notion of body-limb
networks. It is worth emphasizing that, even without the max-MST hypothesis
to explain the data, these empirical results are interesting because they reveal
that limbed animals follow universal laws relating their body-to-limb ratio to
their number of limbs. It happens that this universal law is just what one might
apriori suspect of limbed animals—as | a priori suspected—if they are driven
by volume-optimization considerations. It is also worth mentioning that this
limb problem is a kind of network scaling problem: the issue is, what changes
do body-limb networks undergo as they acquire more limbs? That is, how
do animals change as their number of limbs is scaled up? The answer is that
limbed animals scale up in such a way as to keep the value N - k invariant; and,
in particular, limbed animals satisfy the constraint that IV - k ~ 2.
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Appendix for section: Raw limb data

In this appendix | have included my raw limb data. It appears on the following
three consecutive pages, with the phylum, class (with type of “limb” in paren-
theses), name of animal (species name, or whatever information was available
from the source), limb ratio (X/(R + X)), stretch ratio (L/X), and the num-
ber of limbs. | mention in passing that it may be interesting to look at confor-
mance to this model in two new ways. One, to look at spherical nodes, where
the limbs point radially outward in all directions; mathematical research from
Coxeter (1962) can be used to determine roughly how many limbs are optimal.
[The predicted relationship is N ~ 47 /k?, where k is again the limb ratio.]
Second, one may look at non-animals, and perhaps even viruses: e.g., the T4
bacteriophage conforms well to the model, having six “lunar-lander-like” limbs
attached to a very small “body” (the shaft).
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Phylum Class (limb type) Name limb ratio __|stretch ratio # limbs
XI(R+X) (L/X)

Annelida Polychaeta (parapodia) Glycera americana 0.3658 158.0550 426
Tomopteris 0.1929 11.3734 52

(parapodia, long) Halosydna 0.3214 5.2222 37
(parapodia, short) Halosydna 0.2400 7.8333 41
Syllis cornuta 0.9102 2.6316 30

Nereis virens 0.4545 23.6000 72

unnamed 0.3333 69.7500 218

Nereis diversicolor 0.6087 10.4286 50

Arthropoda Myriapoda (legs) Lithobius 0.7865 3.4611 32
Scolopendra gigantea 0.7037 7.7895 36

a California centipede 0.4795 11.5429 38

Scutigera coleoptrata 0.8474 2.5210 34

Scolopendra cingulata 0.5233 8.5506 42

Scutigerella 0.6061 9.5333 28

amillipede 0.6842 8.6923 56

Insecta (legs and antennae) | Thraulodes salinus 0.7929 0.5732 8
Pediculus humanus 0.7108 | 0.0407 6

Phthirus pubis 0.5725| 0.0000 6

a cockroach 0.9696 0.8784 8

Microcoema camposi 0.9555 0.5276 6

Lonchodes brevipes 0.9764 1.1774 6

Velinus malayus 0.8919 0.1212 6

an ant 0.8810 0.1622 6

Pycnogonida (legs) Nymphopsis spinosossima 0.9189 0.1961 8
Achelia echinata 0.8882 0.2517 10

Dodecolopoda mawsoni 0.9556 0.1395 12

Decolopoda australis 0.9808 0.2157 10

Tanystylum anthomasti 0.9218 0.3392 8

Nymphon rubrum 0.9853 0.1660 8

Chelicerata (legs) spider larva 0.8123 0.1320 8
spider nymph 0.8364 0.0372 8]

spider 0.8467 0.0849 8

Argiope 0.9015 0.0000 8]

Scytodes 0.8551 0.0000 8

Pardosa amentata 0.8952 0.1064 8

a generalized spider 0.8571 0.1667 8

a spider (in amber) 0.8815 0.0640 8

a crab spider 0.8545 0.0000 8

Tegenaria gigantea 0.8956 0.0245 8

Brachypelma emilia 0.7947 0.0397 8

Buthus martensi 0.8556 0.2412 10

Ricinoides crassipalpe 0.8464 0.0000 8

unnamed 0.9256 0.2009 8

daddy long legs 0.9735 0.0181 8

Mastigoproctus 0.8773 0.2721| 10

Heterophrynus longicornis 0.9167 0.0121 8

Stegophrynus dammermani 0.8802 0.0000 8

Koenenia 0.8477 0.5689 10

Galeodes arabs 0.8991 0.2801 10

Chelifer cancroides 0.8985 0.3349 10

Eurypterus 0.5145 0.0000 10

Pterygotus buffaloensis 0.7316 0.0000 12

Limulus 0.9231 0.3750 10

Malacostraca (legs) Pachygrapsus crassipes 0.6785 0.0000 10
Chionoecetes tanneri 0.7745 0.0000 10

Gecarcoidea natalis 0.6537 0.0000 10

Carcinus maenas 0.8261 0.0702 10

Maja squinado 0.7078 0.0183 10

Callianassa 0.7625 0.4177 10

Pleuroncodes planipes 0.7874 0.3681 8

Petrolisthes 0.6676 0.1770 10

Cryptolithodes 0.8229 0.3472 10

a crab 0.8012 0.0025 10

Loxorhynchus 0.7035 0.1533 10

Pugettia 0.7111 0.1060 10

Stenorhynchus 0.9554 0.0800 8
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Phylum Class (limb type) Name limb ratio _|stretch ratio # limbs
XI(R+X) (L/X)

Cnidaria Hydrozoa (tentacles) Hydra A 0.9815 0.0000 6
Hydra B 0.8041 0.0000 8

Hydra C 0.9620 0.0000 6

Polyorchis 0.4719 0.0000 33

Tubularia hydroid adult polyp A 0.6111 0.0000 20

Tubularia hydroid adult polyp B 0.7536 0.0000 10

Tubularia hydroid actinula larva 0.8264 0.0000 8

Tubularia hydroid new polyp 0.9048 0.0000 9

Tubularia indivisa hydroid 0.8387 0.0000 16

Niobia medusa 0.5426 0.0000 6]

Sarsia medusa 0.8784 0.0000 4

Rathkea medusa 0.3137 0.0000 31

“typical" medusa 0.7957 0.0000 9

Proboscidactyla 0.2071 0.0000 34

Obelia medusa 0.3404 0.0000 52,

“typical" medusa 0.4950 0.0000 68

ahydranth A 0.6747 0.0000 6

a hydranth B 0.7188 0.0000 11

a hydranth C 0.6897 0.0000 17

Linmocnida medusa 0.4750 0.0000 20

Aglaura medusa 0.2308 0.0000 45

Scyphozoa (tentacles) Stomolophus meleagris scyphistoma 0.8511 0.0000 13
Stomolophus meleagris stobila 0.7391 0.0000 8

Stomolophus meleagris late strobila 0.8458 0.0000 7

Stomolophus meleagris ephyra 0.2712 0.0000 16

Cassiopea andromeda 0.5946 0.0000 8

Mastigias medusa 0.8485 0.0000 8

Haliclystis 0.8333 0.0000 8

Pelagia adult scyphomedusa 0.7748 0.0000 8

(oral arms) Pelagia adult scyphomedusa 0.9412 0.0000 4
Aurelia adult medusa 0.0444 0.0000 154

Aurelia ephyra 0.2632 0.0000 16

Aurelia scyphistoma A 0.5652 0.0000 22

Aurelia scyphistoma B 0.6735 0.0000 17

Aurelia scyphistoma C 0.8317 0.0000 8

“"typical" medusa A 0.1136 0.0000 96

(oral arms) “"typical" medusa A 0.8861 0.0000 4
"typical" medusa B 0.0816 0.0000 368

(oral arms) "typical" medusa B 0.9231 0.0000 4
Echinodermata __|Holothuroidea (arms) Cucumaria crocea 0.8864 0.0000 10
Cucumaria planci 0.8571 0.0000 10

Enypniastes 0.4643 0.0000 18

Pelagothuria 0.8958 0.0000 11

Holothuria grisea 0.5313 0.0000 18

Stichopus 0.5926 0.0000 10

Euapta 0.7059 0.0000 8

Asteroidea (arms) Luidia phragma 0.7547 0.0000 5
Luidia ciliaris 0.8590 0.0000 8

Luidia sengalensis 0.8235 0.0000 9

Luidia clathrata 0.8281 0.0000 5

Ctenodiscus 0.7451 0.0000 5

Astropecten irreqularis 0.7800 0.0000 5

Heliaster microbranchius A 0.2040 0.0000 34

Heliaster microbranchius B 0.4051 0.0000 25

Solaster 0.7733 0.0000 10

Acanthaster planci 0.4500 0.0000 19

Pteraster tesselatus 0.4455 0.0000 5

Solaster notophrynus 0.6741 0.0000 7

Linckia quildingii 0.8752 0.0000 5

Linckia bouvieri 0.9148 0.0000 5

Ampheraster alaminos 0.9091 0.0000 6

Odinia 0.8553 0.0000 19

astarfish A 0.5476 0.0000 10

a starfish B 0.8395 0.0000 8

Freyella 0.8717 0.0000 13

Crossaster papposus 0.5050 0.0000 13

Coscinasterias tenuispina 0.8333 0.0000 7

Coronaster briorcus 0.8182 0.0000 11
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Phylum Class (limb type) Name limb ratio |stretch ratio |# limb
XI/(R+X) |(L/X)
Mollusca Cephalopoda (arms) Sepia A 0.746: 0.000 8
Sepia B 0.7755 0.000! 8
Architeuthis 0.8889 0.000! 8
Octopus 0.8826 00000 8
Octopus dofleini 0.9111 0.000 8
Octopus vulgaris 0.9068 0.000 8
Loligo 0.8163 0.000! 8
Loligo pealeii 0.7987 0.000 8
Histioteuthis 0.8224 0.000! 8
ajuvenile 0.7000 0.000 8
Vertebrata Amphibia (limbs a salamander A 0.8458 1.066 [§
tail and head) a salamander B 0.8128 1.121 6
a salamander C 0.8653 1.6132 6!
a salamander D 0.863 1.2982 6
a salamander E 0.8854 1.424 6l
a salamander F 0.8452 1.5385 6!
a salamander G 0.8582 1.3125 6l
a salamander H 0.8582 1.059 6
a salamander | 0.8438 1.7284 6l
a salamander J 0.797 1.0727
Tardigrada digit§digits) Echiniscus 0.6667 0.0000 8
Halobiotus crispae 0.6667 0.0000 8
Echiniscoides sigismundi 0.5714 0.0000 16
Wingstrandarctus corallinus 0.8384 0.0000 8
Styraconyx givitoq 0.7857 0.0000 8
Halechiniscus 0.8530 0.0000 8
Orzeliscus 0.8000 0.0000 8
Batillipes 0.8225 0.0000 6
Vertebrata digitiMlammalia (digits) homo sapien A 0.5879 0.0000 10
homo sapien B 0.6135 0.0000 10
homo sapien C 0.5889 0.0000 10
homo sapien D 0.5782 0.0000 10
chimpanzee 0.6358 0.0000 10
Tarsius bancanus | 0.705¢ 0.0000 10
Reptilia (digits) Triturus cristatus (rear limb of a newt) 0.6691 0.0000 10
Triturus cristatus (front limb of a newt)  0.8023 0.0000 8
Sceloporus occidentalis biseriatus 0.6861 0.0000 10
Lacerta lepid (a lizard) 0.6067 0.0000 10
Cnemidophorus tessalatus tessellatus 0.6833 0.0000 10
Eumeces skiltonianus (a skink) 0.7733 0.0000 10
Dasia (a skink) 0.810 0.0000 10
Amphibia (digits) a salamander front limb 1 0.7699 0.0000 8
a salamander rear limb 2 0.4202 0.0000 10
a salamander front limb 3 0.6329 0.0000 8
a salamander rear limb 4 0.5868 0.0000 10
a salamander front limb 5 0.6237 0.0000 8
a salamander rear limb 6 0.6209 0.0000 10
Plethodon vandyke (front limb) 0.6053 0.0000 8
Plethodon vandyke (rear limb) 0.5704 0.0000  10Q
Anneides lugubris (front limb) 0.6464 0.0000 8
Anneides lugubris (rear limb) 0.6578 0.0000 10
Laeurognathus marmorata (a front limb)  0.6732 0.0000 8
Laeurognathus marmorata (a rear limb)  0.6552 0.0000 10
Pseudotriton ruber ruber (a front limb) 0.5769 0.0000 8
Pseudotriton ruber ruber (a rear limb) 0.5303 0.0000 10
Plethodon vehiculum (a rear limb) 0.6358 0.0000 10
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Chapter 2

| nevitability of [llusions

This chapter primarily concerns a very general constraint on brains: that they
take time to compute things. This simple fact has profound consequences for
the brain, and vision in particular. 1 will put forth evidence that it is the visual
system’s attempting to deal with this computing delay that explains why we
experience the classical geometrical illusions. Figure 2.1 shows a sample such
illusion; basically, the illusions are those found in any introductory Psychology
course. | will also, along the way, briefly discuss a general approach to mod-
eling brain computation: that approach is decision theory, wherein the brain,
or some portion of it, is modeled as an ideal rational agent acting to maximize
its expected utility on the basis of probabilities concerning the nature of the
uncertain world. This is referred to as the Bayesian framework for visual per-
ception, and with it researchers have made some important breakthroughs. We
will need to understand it, and its shortcomings, to understand how the visual
system copes with the time it takes to compute a percept. | also discuss the
difficulties of one of the older and more established inference-based theories of
the geometrical illusions. Before proceeding, it is important to understand why
there may be computing delays in perception.

Computation is sometimes slow, sometimes fast, but never instantaneous.
Computation takes time. Running software on your computer takes time. For
example, it takes about one second to start Microsoft Word on my lap top, over
two seconds to start Adobe Acrobat, and over half a minute to run LaTex with
this book as the input. Despite the orders of magnitude increase in computation
speed over the last twenty years since the advent of the personal computer,
there seems to always be significant delays for contemporary software. This
is presumably because software producers have figured out the time delays
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Figure 2.1: Nine perfect, identical squares on a radial display induce an illusion, whichisa

version of the Orbison illusion.
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consumers are willing to put up with and can use this time to carry out more
sophisticated computations for the consumer.

Brain computation takes time as well. In addition to the computation de-
lays due to simply traveling through individual dendrite and axon arbors, and to
the time it takes signals to traverse synapses, computation delays are also due
to the complex time course and pattern of neural firings that actually imple-
ment the computation. How much time can the brain afford to take in carrying
out its computations? To answer this, consider the brain (and evolution) as the
software producer, and the animal (and his genes) as the consumer. The brain
will presumably have figured out the time delays the animal is willing to put
up with—i.e., delays that the animal is able to deal with without compromising
survival too much—so as to be able to use this time to compute more powerful
functions of use to the animal. More exactly, the brain and evolution presum-
ably will have discovered how to optimally trade off computation time with
computational power. How much time is given to computations in this opti-
mal trade-off will depend on the details of the animal’s ecology, but it seems
a priori unlikely to be exceedingly long—e.g., 10 second delays—or micro-
scopically short—e.g., 0.001 seconds. Because the world changes too much
and too unpredictably during a long, say 10 second, interval, long delays will
lead to computational solutions that are moot by the time they are computed.
Nearly instantaneous computations would avoid this problem, but would leave
the brain with too little time to compute much of interest to the animal. Some-
where in between these extremes will be an optimal middle ground, allowing
sufficient time for powerful computations, but the time is short enough that the
computations are still applicable to the changing world. These considerations
are relevant for any brain—Earthly or not—having to deal with an uncertain
and dynamic world, so long as they are not literally infinite in computational
speed.

One effective possible strategy for a brain to use in its attempt to increase
its computation time is to attempt to correct for the computation delay (De
Valois and De Valois, 1991; Nijhawan, 1994, 1997, 2001; Berry et al., 1999;
Sheth et al., 2000; Schlag et al., 2000; Khurana et al., 2000; Changizi, 2001).
That is, suppose it would be advantageous to have a time interval At to carry
out some useful computation, but suppose that At is long enough that the world
typically has changed to some degree during this time, making the computation
moot. What if, to deal with this, the brain took a different tact? Rather than
trying to compute something that is useful for dealing with the world the way
it was when the computation started, the brain might try, instead, to compute
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a function that will be useful for dealing with the world as it probably will
be by the time the computation is finished. Such a strategy might be called
latency correction. To the extent that latency correction is possible, the brain
will extend its computation duration to derive more powerful functionality. At
some point the computation interval will be so long that latency correction
algorithms will no longer reliably work, but such a strategy will buy the brain
more time to provide neater software for the animal, thereby increasing the
animal’s prospects.

Vision is one kind of brain computation that is needed swiftly and is dif-
ficult to compute. The visual system computes from the retinal stimulus a
perception of the way the world out there is, and since the world is typically
in flux either because it is itself changing or because the observer is himself
moving, the percept must be computed in a timely manner lest the information
from the retinal stimulus be irrelevant. Visual perception is also difficult: itis a
classic example of an underdetermined problem, as there is no unique solution
to it, there being (infinitely) many possible ways the world could be that would
lead to the information on the retina (see also Chapter 3). Our own artificial
computer algorithms for vision, despite a few decades of progress, still fall far
short of success, where success is defined as the recognition of or navigation
within scenes under a wide variety of circumstances. Because vision is diffi-
cult, to do a good job at it the visual system would like to have as much time as
it reasonably can. In fact, the visual system in mammals does take a significant,
but not exceedingly long, period of time: there is a latency on the order of mag-
nitude of 100 msec (Lennie, 1981; De Valois and De Valois, 1991; Maunsell
and Gibson, 1992; Schmolesky et al., 1998). This is ecologically significant
because a lot can happen in 100 msec, or a tenth of a second. Even walking at
just one meter per second means that the positions of objects change by 10 cm
during that time. If the visual system generated a percept of the way the world
probably was when the information was picked up at the retina, the percept
would be about the way the world probably was 100 msec in the past. At one
m/sec, objects perceived by an observer to be within 10 cm of being passed
would, in fact, already have passed the observer...or the observer will have
bumped into them. Catching a ball and the other complex activities we engage
in obviously worsen this problem.

Latency correction is thus a beneficial strategy, if the visual system can
carry it off. That is, the strategy is this: rather than computing a percept of
the scene that probably caused the retinal stimulus—a percept that would need
to be generated nearly instantaneously to be of much use to the animal—the
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visual system can, instead, compute a percept of the scene that will probably
be out there by the time the computation is finished and the percept is elicited.
That is, the visual system attempts to perceive not the past, but, instead, to
“perceive the present.” In this way the visual system can generate percepts that
are typically coincident with reality, but it can also secure itself some elbow
room for solving the tough problem of vision.

If a visual system were able to implement latency correction, what kind of
algorithm might we expect it to employ? To answer this, let us consider what a
latency correction algorithm would have to do. In order to reliably generate a
percept at time ¢ of what is out there at time ¢ on the basis of retinal information
from ¢ — 100msec, the visual system would need to solve the following two
conceptually distinct problems.

1. The visual system must figure out what the scene at time ¢ — 100msec probably was
(e.g., a 10 meter flag pole 5 meters away), and

2. the visual system must determine what scene that scene will probably become by time ¢
(e.g., a 10 meter flag pole 4.5 meters away).

[Note that a scene consists of the properties of the objects in the vicinity of
the observer, including the observer’s viewpoint. Thus, a room viewed from a
different position would make for a different scene.]

Each of these problems is an inference problem, as it is underdetermined
by any information the observer may have. The visual system must infer what
might be out there at time ¢ — 100msec (the time of the retinal stimulus), even
though there are infinitely many scenes that can, in principle, have led to the
same information on the retina. And the visual system must also infer how the
scene will probably change, even though there are infinitely many ways that the
scene might, in fact, change. [l am not claiming that a brain must actually make
this distinction between 1 and 2. A brain could solve the latency correction “all
at once,” but it still would have conceptually dealt with both problems.]

2.1 Visual inferences

Therefore, if the visual system could carry out latency correction, it would
have to be good at making inferences. But making inferences is something the
visual system actually is good at, as has been noticed at least since Helmholtz
(1962), and has been taken up by many since (e.g., Gregory, 1997). The visual
system appears to act like a scientist, using the evidence present in the retinal
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stimulus to make a reasoned choice. The visual system also acts like a scientist
in that it can learn from past experience. Finally, the visual system is even like
a scientist in that it is also simply born with certain biases, or preconceptions,
toward some perceptual hypotheses over others. (In fact, it must be born with
such biases; see Chapter 3.) In this section | discuss two research paradigms
within this inference tradition.

Traditional visual inference

My main task for this chapter is to show how the classical geometrical illusions
are consequences of the visual system implementing a latency correction strat-
egy. Since, as we discussed earlier, latency correction is something we might
expect from any brain with finite computing speed, we also expect any such
brain to perceive illusions. But there already exist many theories of the visual
illusions; what are wrong with them? First, note that | am only interested here
in considering theories of visual perception that concern the purported function
computed by the visual system, and also the general kind of algorithm used. |
am not interested here in theories about the implementation-level mechanisms
found in the visual system (e.g., lateral inhibition, or some neural network).
One of the most venerable and most well-entrenched such (functional) theo-
ries of the geometrical illusions is what | will call the traditional inference
approach (Gregory, 1963, 1997; Gillam, 1980, 1998; Rock, 1975, 1983, 1984;
Nundy et al., 2000).

Before stating what the general form of this kind of theory is, it is useful
to present a sample stimulus with which I will introduce the theory. Consider
Figure 2.2, where observers perceive the bold vertical line on the right to have
greater angular size than the bold vertical line on the left; this is the illusion.
Note that observers also perceive the linear size of the line on the right to be
greater; that is, they perceive that it is a taller object in the depicted scene, when
measured by a ruler in, say, meters; and they also perceive that it is farther away.
But this latter perception of linear size is not what is illusory about the figure:
no one is surprised to learn that observers perceive that the line on the right
has greater linear size in the depicted scene. What is illusory is that observers
perceive the line on the right to have greater angular size—to fill more of the
visual field—than the line on the left, despite their angular sizes being identical.

The traditional inference explanation for this illusion states that the line on
the right is perceived to be longer because the cues suggest that it probably is
longer. Describers of the theory will usually also say that such a perception is
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Figure 2.2: Anillusion which is a variant of the Muller-Lyer. The two bold vertical lines
are the same angular size, but the right one appears to have greater angular size. One of the
most commonly accepted functional explanations for thisillusion is an inappropriate inference
explanation which says that the line on the right is perceived to be bigger because the cues
suggest that it is a bigger line out there. The cues suggest this as follows: the right line is
nearer to the vanishing point of the converging lines and thus is probably farther away, and
since it has the same angular size as the other line, it follows that it must be bigger. It is
“inappropriate” because, in this case, the lines are at the same distance, namely they are
both on the page. The deep problem with this explanation is that it equivocates between two
notions of perceived size: perception of angular size, and perception of linear (or objective)
size. Because theright line probably is bigger in linear size, we should perceive it to be bigger
inlinear size. Fine. But observers also perceive the right line to be bigger in angular size, and
its probably being bigger in linear size does not imply that it is bigger in angular size. They
are, in fact, probably the same angular size, since they project identically onto the retina. The
traditional inference explanation therefore cannot explain theillusion.
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useful for us in the real-world scene version of Figure 2.2—i.e., when you are
standing in front of a real hallway—but when the stimulus is from a piece of
paper as it actually is in this figure, this perceptual strategy is said to become
“inappropriate.” There is, however, a deep conceptual problem with this ex-
planation. To start, let us look again at the main statement, which is along the
lines of

The line on the right is perceived to be longer because the cues suggest that it
probably islonger.

What does the statement mean by ‘longer’?
The first possibility is that it means “greater linear size.” That is, the state-
ment would be,

The line on the right is perceived to have greater linear size (e.g., in meters)
because the cues suggest that it probably is greater in linear size.

The statement in this case would be fine, as far as it goes, since it is certainly
useful to perceive the linear size to be what it probably is. For example, if the
line on the right is probably three meters high, then it is appropriate to perceive
it to be three meters high. However, this interpretation is no longer relevant
to the illusion, since the illusion concerns the misperception of their angular
sizes.

The second possible interpretation is that ‘longer’ means ‘greater angular
size,” in which case the statement becomes,

The line on the right is perceived to have greater angular size (measured in de-
grees) because the cues suggest that it probably is greater in angular size.

This, however, is no good because the cues do not suggest that the line on the
right has greater angular size. The lines have, in fact, identical angular size,
and the visual system “knows” this since equal angular sizes are unambigu-
ously projected onto the retina. And it is a fallacious argument to say that the
angular size of the line on the right is probably greater because it’s linear size is
probably greater; linearly huge objects very often have tiny angular size (e.g.,
the moon), and linearly tiny objects often have tremendous angular size (e.g.,
hold your finger up near your eye).

So far, the traditional inference explanation statement is either irrelevant
(the first interpretation) or false because the cues do not suggest that the line on
the right has greater angular size (the second interpretation).
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The third and final possible interpretation | will consider is that the first
occurrence of ‘longer’ is interpreted as ‘greater angular size’ and the second
occurrence of ‘longer’ is interpreted as ‘greater linear size.” That is, in this
possibility the statement is equivocating between two meanings of ‘longer.’
The statement is now,

The line on the right is perceived to have greater angular size (measured in de-
grees) because the cues suggest that it probably is greater in linear size (bigger
in meters).

This appears to be the interpretation that people actually have when they utter
this view. It is sometimes even phrased as something along the lines of, “the
perception of the projective properties of the lines are biased toward the prob-
able objective properties of the lines.” The statement is not irrelevant as in the
first interpretation; this is because the claim concerns the perception of angu-
lar size, which is what the illusion is about. The statement also does not err
as in the second interpretation by virtue of claiming that the line on the right
probably has greater angular size. One preliminary problem concerns what it
could possibly mean to bias a projective property toward an objective property;
how can something measured in degrees get pushed toward something that is
measured in, say, meters? Another issue concerns how much the angular size
should be increased in the probably-linearly-longer line; the explanation gives
us no apparatus by which it is possible to say. | will focus on another problem,
which concerns the supposed usefulness of such a strategy for vision: of what
possible use is it to perceive a greater angular size merely because the linear
size is probably greater? The visual system’s goal according to these traditional
inference approaches is to generate useful percepts, and, in particular, to gener-
ate percepts that closely represent reality (because this will tend to be useful).
To accurately represent the angular sizes in Figure 2.2 would be to perceive
them as being identical in angular size. The visual system would also want to
perceive them as having different linear sizes, but there is no reason—at least
none that this traditional inference explanation gives—for the visual system to
misperceive the angular sizes.

It is sometimes said that the illusion is only an illusion because Figure 2.2
is just on a piece of paper. The inferential strategy of increasing the perceived
angular size of the line on the right because it is probably linearly longer is
inappropriate in this case because, it is said, the figure is just a figure on a page,
where the lines in fact have the same linear size. If, the argument continues,
the proximal stimulus were, instead, due to a real live scene, then the strategy
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would be appropriate. Unfortunately, the strategy would be inappropriate in
this latter scenario too. To see this, let us imagine that the stimulus is not the
one in Figure 2.2, but, instead, you are actually standing in a hallway of the kind
depicted, and your eye position is placed in just such a manner that the line on
the right has the same angular size as the one on the left. Is there anything
“appropriate” about perceiving the line on the right to have greater angular size
merely because its linear size is probably greater? It is not clear what would be
useful about it, given that its angular size is the same as that of the line on the
left, and perceiving their angular sizes to be equal does not preclude perceiving
their linear sizes to differ. (E.g., hold your finger out until it fills just as much
of your visual field as a tree off in the distance. You now perceive their angular
sizes to be identical, but you also perceive the tree to be linearly larger.)

Some may think I have constructed a straw man position for the traditional
inference explanation, and that the authors behind such explanations have more
sophisticated positions. Perhaps this is so, although I do not think so; | have no
interest, however, in whether or not this is really the explanation they intended.
What is important is that the idea as | stated it is what the “average psychologist
and neurobiologist on the street” appear to understand the explanations to be.
For example, pulling out the nearest undergraduate perception textbook to me,
the cogent author describes the traditional inference explanation for a figure
essentially just like Figure 2.2 as follows.

...the converging lines are unconsciously interpreted as parallel lines receding
into the distance. ..and the [vertical] lines as lying in the same receding. .. plane
as the converging lines.... The unconscious perception of differential depth
leads to the conscious perception of differential size: The [right] line would have
to be longer because it. .. connects the receding parallel lines, whereas the lower
one is not even close [Palmer, 1999, p. 324].

Now, as we will see later in this chapter, there isa good reason to perceive
the angular size of the line on the right to be greater: namely because its an-
gular size probably will be greater by the time the percept is actually generated
(due to the observer’s probable forward movement toward the vanishing point).
However, the traditional inference explanation of the geometrical illusions pro-
vides no such reason, and is thus, at best, an explanation that provides no real
explanation for why the visual system would generate the illusions.

In addition to the above conceptual difficulties, the traditional inference ap-
proach has more run-of-the-mill difficulties in explaining the illusions. As one
example, consider the Orbison illusion where the square is directly below the
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vanishing point (see Figure 2.1). The square in this case appears to project as
a trapezoid, with its longer edge on top. To explain this in the traditional infer-
ence manner, one needs to argue that the top edge of the projection is actually
due to a real world line that is bigger in meters than the bottom edge of the
square. For this to be the case, the projected square would have to be due to a
real world trapezoid with its top edge tilted backward. The difficulty is: Why
would such a tilted trapezoid be the probable source of a square projection?
This is a highly coincidental, or non-generic (Freeman, 1994), projection for
such an object. It seems obviously much more probable that the source of the
perfectly square projection is a square in the observer’s fronto-parallel plane
and near the vanishing point. But in this case, the top and bottom of the ob-
ject are identical in length, and so the traditional inference approach predicts
no illusion. Other explanations by the traditional approach require similarly
improbable sources. For example, in the Hering illusion (Figure 2.19), the
probable source of two vertical lines on either side of the vertical meridian
cannot be that they are two vertical lines, for then the distance in meters be-
tween each line would be the same and the traditional inference account would
predict no illusion. Instead, for traditional inference to work here, the probable
source would have to be that the two lines bend away from the observer, and as
they bend away, they also get farther apart in meters; and all this in just such a
manner that they happen to project perfectly straight. With this strange source,
the lines are farther apart in meters when nearer to the vanishing point, which
is why they are perceived to bow out according to the traditional inference ap-
proach. However, it seems much more plausible that the probable source of the
two lines is that they are two vertical lines.

2.1.1 Thestandard Bayesian approach

In recent years the visual-system-as-inference-engine approach has been rein-
vigorated by a Bayesian approach to inference. There are many ways of mod-
eling inference, but the Bayesian framework is a particularly good one. | will
not discuss it in detail here, but will only try to communicate what is so good
about it. [See Chapter 3 for an introduction to the Bayesian framework.]

The basic idea is that an agent has a numerical degree of confidence in
each of the perceptual hypotheses, the hypotheses which are mutually exclu-
sive. These degrees of confidences are modeled as probabilities, where each
hypothesis has a probability in the interval from 0 to 1, the sum of the proba-
bilities over all the hypotheses equals 1, and the probability of no hypothesis
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being true is 0. A probability of 1 for a hypothesis means that the agent has
complete confidence in the hypothesis. A probability of 0 means the agent has
complete confidence that the hypothesis is not true. The Bayesian framework
tells us how these probabilities should be altered when evidence, or retinal
information, is accumulated. This approach is, in a certain sense, optimal, be-
cause if you do not follow this approach, then others can dupe you out of all
your money; | am here intimating an important result called the Dutch Book
Theorem, or the Ramsey-de Finetti Theorem (Ramsey, 1931; de Finetti, 1974;
see also Howson and Urbach, 1989, pp. 75-89 and 99-105, for discussion).

Itis not only a nice framework because of this kind of optimality argument,
it is also nice because it makes certain conceptual distinctions that allow us,
the scientists, to make better sense of the inferential process. In particular, the
framework distinguishes between

e prior probabilities, which are the probabilities in the hypotheses before seeing the evi-
dence,

o likelihoods, which are the probabilities that the evidence would occur given that a hy-
pothesis were true, and

e posterior probabilities, which are the probabilities in the hypotheses after seeing the
evidence.

The reader is invited to read the introduction to the Bayesian framework in
Chapter 3, but it is not necessary to cover it in any detail here.

The main idea to get across is that the inference-engine idea appears to ap-
ply well to the human visual system, and has been taken up during the 1990s
within the Bayesian framework (Knill and Richards, 1996), where consider-
able success has been made: e.g., the perception of 3D shape (Freeman, 1994),
binocular depth (Nakayama and Shimojo, 1992; Anderson, 1999), motion (Ki-
tazaki and Shimojo, 1996), lightness (Knill and Kersten, 1992) and surface
color (Brainard and Freeman, 1997).

In fact, if the visual system truly can be described within a probabilistic
framework, then the proper treatment is a decision theoretic one, where the
brain is treated as attempting to maximize its expected utility. That is, percep-
tion is an act, and an agent cannot decide how to act purely on the basis of the
probabilities of hypotheses. For example, suppose there are two main possi-
bilities concerning the scene that caused the retinal stimulus: the first is that
there is a bed of flowers, and the second is that there is a tiger. Even if a flower
bed is more probable than the tiger, the costs are so high for not recognizing a
tiger that the perception that maximizes your expected utility may be the tiger
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perception. We would therefore expect that visual perception should be modi-
fiable by modifying only the utilities of the observer, and evidence exists that
even appetitive states such as thirst can modulate low-level perceptions such as
transparency (Changizi and Hall, 2001).

Although the Bayesian approach has allowed significant advances in un-
derstanding visual perception, there is a difficulty with the way in which it is
typically conceived. It is always assumed, either explicitly or implicitly, that
the visual system is attempting to generate a percept of the scene that prob-
ably caused the retinal stimulus. That is, the “standard Bayesian perception
approach” is to assume that the perceptual hypotheses are about the various
possible scenes that are consistent with the retinal stimulus actually received.
So, for example, when we say that a stimulus is bistable (such as the Necker
cube, which is just a line drawing of a wire cube), we mean that the visual sys-
tem jumps back and forth between two percepts of scenes that are consistent
with the stimulus. The possible percepts are confined to percepts of scenes that
could have caused the retinal stimulus. It is not, then, possible within the stan-
dard Bayesian perception approach to have percepts of scenes that are not even
consistent with the retinal stimulus. The standard Bayesian approach can only
accommodate consistent perception. Note that misperception can be consis-
tent perception, since the perception could be of something that is not actually
there, but is nevertheless consistent with the retinal stimulus. Many of our
perceptions are consistent with the retinal stimulus, and the standard Bayesian
approach is fine in such cases. For example, the examples of Bayesian suc-
cesses | mentioned earlier—perception of 3D shape, binocular depth, motion,
lightness and surface color—appear to be consistent perceptions. E.g., for the
motion aperture phenomenon there are many different possible motions con-
sistent with a line moving behind a circular aperture; it is a case of consistent
perception since subjects appear to perceive one of the possibilities consistent
with the stimulus.

The difficulty for the standard Bayesian perception approach lies in the
fact that there are many perceptual phenomena where the observer perceives a
scene that could not have caused the retinal stimulus. That is, there are cases of
inconsistent perception. For example, the geometrical illusion from the earlier
Figure 2.1 is an example of inconsistent perception. The angles of the squares
in the figure project toward your eye at nearly 9(0°, supposing you are looking
straight at it and are not too close. Yet many or all of the projected angles
are perceived to be significantly different from 90°. Why is this a case of
inconsistent perception? Because the actual stimulus does not project (much)
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differently than 90°.

[Note that if proximal stimuli possessed significant errors, it would be pos-
sible for the standard Bayesian perception approach to handle inconsistent per-
ception. For example, suppose that an object projects toward an observer with
an angular size of @, but that the retina records this angular size with error ac-
cording to some normal distribution. Then an ideal probabilistic engine would
realize that projected lines in the world can have angular sizes markedly differ-
ent from the angular size measured by the retina, and could sometimes generate
perceptual hypotheses inconsistent with the proximal stimulus, but hopefully
consistent with the true angular size. However, this does not appear to be rele-
vant for the retina and visual system; at least, any error for angular sizes (and
projected angles) are negligible.]

To help drive home the point, consider Figure 2.3. There is an object X in
the lower half of the figure, and whatever it may be, it is projecting toward your
eye as a perfect square. No, you certainly are not perceiving it to project as a
perfect square, but we’ll get to that in a moment. First, let us ask about what
the three-dimensional shape and orientation of object X are. Well, there are
infinitely many possible three-dimensional shapes and orientations for X that
would allow it to project toward you as a square. For example, it could simply
be a square in your fronto-parallel plane; or it could, instead, be a trapezoid
with its longer edge on top and tilted away from you until it projects as a perfect
square. And so on. So long as the three-dimensional shape and orientation
you perceive is consistent with its projecting toward you as a square, then you
are having a consistent perception. Now, however, let us ask about what the
projected shape of object X is. Despite the fact that X may be infinitely many
different things, all those things would still project as a square, so the projected
shape of X is, in fact, unambiguously a square. To perceive the projected
shape in a manner consistent with the stimulus, you must perceive X to project
toward you as a square. The problem is that we don’t perceive X to project
toward us as a square, despite the fact that it does project toward us as a square.
Instead, we perceive X to project toward us as a trapezoid. This is inconsistent
perception.

In fact, all the classical geometrical illusions are cases of inconsistent per-
ception: in each case, observers perceive a projected angle, an angular size, or
an angular separation to be inconsistent with the information in the proximal
stimulus. Note that all these are cases of perception of projective properties,
and projective properties are more likely to change quickly in time, and thus
ripe for latency correction. In Figure 2.3, observers misperceive all these three
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Figure 2.3: One perfect square on a radial display induces an illusion. There are many
possible three-dimensional orientations and shapes for the square-like object that are consis-
tent with the stimulus; i.e., where the object would project toward the observer as a perfect
square. Perceiving any one of these possible objective orientations and shapes would be a case
of consistent perception. However, since the square-like object in the figure actually projects
as a perfect square, it is not consistent with the stimulus that it projectsin any other way. Nev-
ertheless, we perceive it to project not as a perfect square, but as a trapezoid. This, then, isa
case of inconsistent perception.
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projective properties. (1) It has misperception of projected angle because ob-
servers perceive the top two angles to project differently (namely, smaller) than
the lower two angles, when they in fact all project identically. (2) It has mis-
perception of angular size because observers perceive the top side of the box to
have longer angular size than the bottom, but they have the same angular size.
(3) And it has misperception of angular separation because observers perceive
the higher parts of the sides to have greater angular separation than the lower
parts of the sides, but the angular separations are in fact identical. [(2) and (3)
are essentially the same kind of misperception, but | have distinguished them
here because in some classical illusions it is more natural to think in terms of
one over the other.]

It was only after understanding that certain kinds of illusions are cases
of inconsistent perception that | both realized the inadequacy of the standard
Bayesian approach to perception, and was propelled toward a nonstandard
Bayesian approach to perception: latency correction.

The principal feature making the standard Bayesian approach “standard” is
that, as mentioned, it presumes that the visual system is trying to choose among
hypotheses concerning the scene out there at the time the retinal stimulus oc-
curred. What if, however, the visual system is not trying to use the evidence to
figure out what was out there when the stimulus occurred, but, instead, is trying
to use the evidence to determine what is going to be out there by the time the
percept actually occurs? That is, what if the visual system is implementing la-
tency correction? For latency correction, the perceptual hypotheses the visual
system is picking from are not hypotheses about what was out there when the
retinal stimulus occurred, but hypotheses about what will be out there when the
perceptual computations are completed.

With this alternative Bayesian approach for perception, it becomes possi-
ble for inconsistent perception to occur. Why? Because now it is quite possible
that the scene probably out there at the time ¢ the percept is generated is differ-
ent than any possible scene that could have caused the retinal stimulus (which
occurred at t — 100msec). That is, it is entirely possible that the probable scene
out there at time ¢ is causing a new retinal stimulus that is different from the
one at time ¢ — 100msec. For example, in Figure 2.3, imagine that the object X
at the bottom actually is a perfect square in your fronto-parallel plane, but a lit-
tle below the horizon. Furthermore, suppose you are moving toward the center
point of the radial display. How would the projection of the square change as
you move forward? Well, the top would project larger—i.e., have greater an-
gular size—than the bottom because you are closer to the top than the bottom.
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That is, object X would project trapezoidally in the next moment. If, upon
being presented with Figure 2.3 as a retinal stimulus, your visual system infers
that you are moving toward the center point, then the elicited percept will, if a
latency correction strategy is being employed, be of object X projecting trape-
zoidally. This is, in fact, the central idea behind my latency correction theory
of the classical geometrical illusions, which we take up in detail in the next
section.

The latency correction (nonstandard Bayesian) approach to perception does
not predict only inconsistent perceptions; consistent perceptions are still possi-
ble. Consistent perceptions better be possible, since many of our perceptions
are (or at least appear to be) consistent. In what circumstances would latency
correction lead to consistent perception? That’s easy: any time the probable
scene properties causing the stimulus are probably unchanging. What kinds of
properties do not typically change much in the short term? Although projec-
tive properties—how objects project toward the observer, either geometrically
or spectrally—change very quickly through time since they depend on the ob-
server’s position relative to the objects, objective properties—the properties
of objects independent of their relationship to other things—do not typically
change much through time. For example, the angular size of a flag pole is a
projective property, as it depends on how far you are from it. Accordingly,
it often changes in the next moment as you move, projecting either larger or
smaller. The linear size of a flag pole, however, is an objective property, as it
is, say, 10 meters high independent of where you stand with respect to it. In the
next moment the linear size is very unlikely to change. Accordingly, we ex-
pect that perception of the flag pole’s linear size will be a consistent perception
because latency correction will generate a percept of a 10 meter pole, which is
still consistent with the retinal stimulus. In fact, the cases where the standard
Bayesian approach has mainly excelled are in applications to the perception of
objective properties, like surface color and object recognition.

To sum up some of our discussion, a latency correction approach to vision
can explain the existence of inconsistent perceptions; the standard Bayesian
approach cannot. This latency correction approach is a nonstandard Bayesian
approach, which means (i) it is a Bayesian approach, acquiring all of its pow-
ers and benefits, but (ii) it has a slightly different view concerning the kind of
perceptual hypotheses the visual system is looking for...namely, it is looking
for perceptual hypotheses about the way the world is, not about the way the
world was. Furthermore, in the special case of perception of objective prop-
erties this alternative, latency correction, Bayesian approach collapses to the
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standard Bayesian approach, thereby squaring with the Bayesian approach’s
many successes.

2.2 A simplelatency correction model

In this section | describe my model for how latency correction leads to the
classical geometrical illusions (Changizi, 2001; Changizi and Widders, 2002).
The following section applies the model to the illusions.

Recall that the latency correction hypothesis is, in my statement of it, as
follows:

On the basis of the retinal information the visual system generates a percept
representative of the scene that will probably be present at the time of the percept.

The “‘probably’ that appears in the statement means that the statement is a prob-
abilistic hypothesis, a Bayesian one in particular (but not a standard Bayesian
one where the percept would represent the scene probably causing the proxi-
mal stimulus). And as mentioned earlier, we may conceptually distinguish two
problems the visual system will have to solve.

1. First, the visual system must figure out what scene probably caused the proximal stimu-
lus.

2. And, second, the visual system must figure out how that scene will change by the time
the percept is elicited.

Again, this does not mean that the visual system’s algorithm or lower-level
mechanisms must distinguish these things, only that whatever function the vi-
sual system is computing, it would, in effect, have to solve both of these prob-
lems. This conceptual distinction is helpful for us scientists who wish to make
predictions from the latency correction hypothesis: to predict what percept a vi-
sual system will generate given some proximal stimulus, we can subdivide our
task into two smaller tasks. Namely, we must, for the geometrical illusions,
try to determine what the probable scene is that would cause the geometrical
figure, and then try to determine how the observer will typically move in the
next moment (i.e., by the time the percept occurs).

We first need a way of deciding what the probable scene is for simple ge-
ometrical figures like those in the classical geometrical stimuli. That is, we
need a way of figuring out what a figure probably depicts. Before | describe a
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Figure 2.4: Eight classical geometrical illusions. Corner Poggendorff: the line through the
corner of the rectangle appears to be bent. Poggendorff: the line through the rectangle appears
to be two, parallel, non-collinear lines. Hering (also a variant of the ZolIner stimulus): the two
parallel lines appear to be farther apart as one looks lower. Upside-down ‘T': the horizontal
bar appears to be shorter than the same-length vertical bar resting on top of it. Orbison: the
right angles near the top appear to be acute, and the right angles at the bottom appear to be
obtuse. Ponzo: the higher horizontal line appears to be longer than the same-length lower one.
Double Judd: the vertical shaft of the left figure appears higher than the same-height one on
the right. Muller-Lyer: the vertical shaft on the left appears longer than the same-length one
on the right. See Coren and Girgus (1978) for references; see Greene (1988) for the corner
Poggendorff.
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model for helping us do this, let us see some of the classical figures, as shown
in Figure 2.4.

The first feature to notice is that these most famous classical geometrical
illusions consist entirely of straight lines. The second thing to notice is that,
in addition to many oblique lines, there are also many horizontal and vertical
lines, many more than we would expect if lines were thrown onto the page with
random orientations. Finally, we can see that for many of the illusions there is
a subset of the obliques that seem to all point toward the same point. All these
features suggest that there may be simple rules for determining what the figures
depict. That is, that there may be simple rules for determining what kind of real
world line is the source of any given projected line.

Three principal kinds of line

The question | ask now is, For each kind of projected line in a figure, what
kind of real world line or contour probably projected it? To help us answer
this, let us look at a geometrical figure, namely Figure 2.5, where there are
S0 many cues that it is obvious what the source lines of the projected lines
are. The figure clearly depicts a room or hallway. It is my hypothesis that
the projected lines in the geometrical stimuli are typically caused by lines and
contours in “carpentered” environments like rooms and hallways. Furthermore,
I hypothesize that observers typically move down hallways and rooms; they do
not tend to zigzag wildly, nor do they tend to move vertically. The focus of
expansion—the point of the forward-moving observer’s visual field from which
objects are expanding radially outward—is thus the vanishing point.

There are three kinds of line in the scene depicted in Figure 2.5: z lines, y
lines and z lines.

e < lines are the lines that lie parallel with the ground, and perpendicular to the observer’s
direction of motion.

e y lines are the lines that lie perpendicular with the ground, and are also perpendicular to
the observer’s direction of motion.

e 2 lines are the lines that lie parallel with the ground, and are parallel to the observer’s
direction of motion.

Note that these kinds of line are defined in terms of the observer’s probable
direction of motion, which, again, is toward the vanishing point. In my simple
model, 1 will assume that these are the only kinds of line in the world; I call
them the principal lines. All we really need to assume, however, is that these
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Figure 2.5: A sample geometrical figure showing the probable kind of source line for each
line segment in the stimulus. The assumed observer direction of motion in such a stimulus is
toward the vanishing point. The classical geometrical figureswill be interpreted in thisfashion.
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three kinds of line are sufficiently more frequent in our experiences than other
kinds of line that, in simple geometrical stimuli, one of these kinds of line is
always the probable source.

Given that there are just three kinds of line in the world, we can ask of each
of them, How do they typically project toward the observer? Once we have
learned how each kind of line typically projects, we can work backward and
ask, Given the projection, which kind of line probably caused it?

How do principal linesproject?

x lines typically project horizontally in figures, as one can see in Figure 2.5. In
particular, they project from the left straight to the right when they are near the
vertical meridian, which is the vertical line drawn through the vanishing point
in the figure. When an z line is off to either the left or right side, however, x
lines begin to project more and more obliquely, as can again be seen in Figure
2.5. In fact, at the right side, the projections of = lines begin to point toward
a vanishing point way off to the observer’s right side; and, similarly, on the
left side x line projections begin to converge toward a vanishing point on that
side. We can understand how z lines project more clearly by considering a
projection sphere. A projection sphere allows us to visualize the way things
in the world project toward an observer. Projections are, by definition, devoid
of depth information; they only possess information about the direction from
which the stimulus was received. The set of all possible such directions from
the outside world toward the observer’s eye can be encapsulated as a sphere
with the observer’s eye at its center; each point on the sphere stands for a
different projection direction from the outside world. Figure 2.6 shows how the
three kinds of line may project toward the observer within our simple model.
The “x line” sphere in Figure 2.6 shows how z lines project. Every x line
segment lies along some great circle extending from the left pole to the right
pole. The contour on the sphere that goes through the focus of expansion (the
cross) is the way the horizon, for example, projects toward the observer, and is
called the horizontal meridian. If the observer is about to cross over railroad
tracks, the tracks project like the contours on the lower half of the sphere;
as the observer nears the tracks, they project progressively lower and lower,
eventually projecting along the very bottom of the projection sphere. As long as
x line segments are near the vertical meridian (which is the contour extending
from directly overhead, through the focus of expansion, and down to directly
below the observer), they project horizontally onto the projection sphere, and
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parallel to one another. However, in the left and right peripheral parts of the
sphere, z lines begin to converge toward the left and right poles; they no longer
project horizontally, and they are no longer parallel to one another. We must
be careful, however, because x lines do project horizontally in the periphery if
they happen to lie along the horizontal meridian.

How do y lines project? From Figure 2.5 one may see that y lines typically
project straight from the bottom to the top (i.e., non-obliquely), and that they
are parallel to one another. Although it is not all that common in our experi-
ence, if a y line segment is very high above or very low below an observer, they
begin to project obliquely, are no longer parallel to one another, and begin to
converge toward the top or bottom pole, respectively. We can make this more
precise by looking at the y line projection sphere in Figure 2.6. Every y line
segment lies along some great circle extending from the top or North pole to
the bottom or South pole. Suppose you are floating in front of a pole that goes
infinitely far above you and infinitely far below you. If you are moving directly
toward it, then it projects as the contour on the sphere that goes through the
focus of expansion. Suppose now that you are going to pass the pole on your
right. As you near it, the pole will project progressively more and more along
the right side of the projection sphere (which is on the left in the figure). As
long as the y segments are relatively near the horizontal meridian, they project
nearly purely up and down, and are parallel to one another, as they all are in
Figure 2.5. When the y line segments are in the upper or lower periphery, how-
ever, they begin to converge toward a pole of the sphere, and are no longer
parallel to one another. y lines in the periphery can still project non-obliquely
if they happen to lie along the vertical meridian.

Finally, how do z lines project? From Figure 2.5 we can see that z lines
project obliquely, and that they share a vanishing point, namely at the focus
of expansion. The z line projection sphere in Figure 2.6 encapsulates how
z lines project. Each z line segment lies along a great circle from the focus
of expansion all the way to the focus of contraction (which is directly behind
the observer). For example, if you are walking on a sidewalk, the sides of
the sidewalk project on the lower left and lower right of the projection sphere.
z lines typically project obliquely, but a z line can project horizontally if it
happens to lie along the horizontal meridian, and it can project vertically if it
happens to lie along the vertical meridian.
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Figure 2.6: Three projection spheres showing, respectively, how z lines, y lines and z lines
project toward an observer. The focus of expansion is shown as the cross. Note that each of
these figures depicts a convex sphere (even the “ z ling” one), and the contours are on the near

side.
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An aside on the non-Euclidean visual field

Before using these insights on how principal lines project to determine the
probable source of a projected line, there is a neat observation we may make
from the discussion thus far. Suppose you are about to cross railroad tracks.
The projection of each of the two tracks is a straight line in your visual field
(each follows a great circle on the projection sphere). Furthermore, these two
projected lines are parallel to one another when at the vertical meridian of your
visual field. However, the two projected lines become non-parallel to one an-
other in the periphery of your visual field, and eventually even intersect. How
is it possible that two straight lines which are parallel at the vertical meridian
can intersect one another? Can this really be?

It can really be, and it is possible because of the non-Euclidean nature of
the geometry of the visual field. The geometry that is appropriate for the visual
field is the surface of a projection sphere, and the surface of a sphere is not
Euclidean, but, well, spherical. There are three main kinds of geometry for
space: elliptical, Euclidean (or flat), and hyperbolic. Spherical geometries are
a special case of the elliptical geometries. In Euclidean geometry, the sum of
the angles in a four-sided figure (a quadrilateral) is 360°; in elliptical it is more,
and in hyperbolic it is less. Let us ask, then, what the sum of the angles in a
four-sided figure in the visual field is. A four-sided such figure is built out of
four segments of great circles. Figure 2.7 shows an example four-sided figure
on a projection sphere. In particular, it is a square. It is a square because (i)
it has four sides, (ii) each side is a straight line (being part of a great circle),
(iii) the lines are of (roughly) the same length, and (iv) the angles are (roughly)
the same. Notice that each angle of this square is bigger than 9¢°, and thus
the square has a sum of angles greater than 360°. The visual field is therefore
elliptical.

One does not need to examine projection spheres to grasp this. If you are
inside a rectangular room at this moment, look up at the ceiling. The ceiling
projects toward you as a four-sided figure. Namely, you perceive its four edges
to project as straight lines. Now, ask yourself what each of its projected angles
is. Each of its angles projects toward you greater than 90°; a corner would only
project as exactly 90° if you stood directly under it. Thus, you are perceiving a
figure with four straight sides, and where the sum of the angles is greater than
360°. The perception | am referring to is your perception of the projection, not
your perception of the objective properties. That is, you will also perceive the
ceiling to objectively be a rectangle, each angle having 90°. Your perception of
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a+b+c+d > 360°

Figure 2.7: Four great circles on a sphere (or on a visual field). In this case they make a
square on the sphere; that is, the figure is four-sided, each side is straight and of equal length,
and the angles are equal. Each angle of the square is greater than 90°, however. [To see this,
the reader must judge the angle on the sphere, not the angle on this page.] Thus, the sum of the
angles of the square isgreater than 360°, which means the space must have elliptical geometry.
In particular, it is spherical.
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the objective properties of the ceiling is Euclidean, or at least approximately so.
Your perception of the way the ceiling projects, however, conforms to elliptical
geometry. [There is a literature which attempts to discover the geometry of our
perception of three dimensional space, and it is argued to be hyperbolic. This
is an entirely different issue than the one we are discussing, as we are focusing
just on the perception of projective properties (without depth information).]

It is often said that non-Euclidean geometry, the kind needed to under-
stand general relativity, is beyond our everyday experience, since we think of
the world in a Euclidean manner. While we may think in a Euclidean manner
for our perception of the objective lines and angles, our perception of projec-
tive properties is manifestly non-Euclidean, namely spherical. We therefore do
have tremendous experience with non-Euclidean geometry, it is just that we
have not consciously noticed it. But once one consciously notices it, it is pos-
sible to pay more attention to it, and one then sees examples of non-Euclidean
geometry at one’s every glance.

Given a projection, which principal lineis source?

We have seen earlier the way that the three principal kinds of line—zx, y and z
lines—project toward an observer. Now we wish to utilize this knowledge to
ask the “inverse” question: Given some projected line in a proximal stimulus,
which of the three kinds of line is the probable source?

Observers typically are looking forward as they move, and it is therefore
reasonable to assume that, unless there are cues to the contrary, a projected
line is probably not in the extreme peripheral regions of the visual field. This
fact is useful because examination of the regions relatively near the focus of
expansion (i.e., not in the periphery) of the projection spheres in Figure 2.6
reveals some simple regularities. The only kind of line projecting obliquely in
this regime of the projection sphere is the z line, and all z lines converge to the
same vanishing point (which is also the focus of expansion since observers are
assumed to move parallel to the z axis). As a consequence of this, we may state
the following rule.

Rule 1: If there is a single set of oblique projected lines sharing a vanishing
point, then they are probably due to z lines.

The only kind of line projecting horizontally in this regime, and not lying on
the horizontal meridian, is the x line. Therefore...
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Rule 2: A horizontal projected line that does not lie on the horizontal meridian
is probably dueto an z line.

Both z and z lines can cause horizontal projected lines lying on the horizontal
meridian, and thus the following rule applies.

Rule 3: A horizontal projected line that does lie on the horizontal meridian may
be due to either an « lineor a z line.

The only kind of line projecting vertically in the relatively-near-the-focus-of-
expansion regime is the y line, and the following rule therefore applies.

Rule 4: A vertical projected line that does not lie on the vertical meridian is
probably dueto a y line.

Analogously with Rule 3, we also have. ..

Rule 5: A vertical projected line that does lie on the vertical meridian may be
dueto either ay lineor a z line.

One kind of proximal stimulus we will want to decipher is one where there are
two sets of converging projected lines with distinct vanishing points. Because
observers tend to look where they are going, one of these sets probably consists
of projected z lines, and it will probably be the set with lines for which it is most
salient that they converge to a vanishing point. The other set of converging lines
consists of either projected y lines (which would point toward a vanishing point
above or below the focus of expansion) or projected « lines (which would point
toward a vanishing point to the left or the right of the focus of expansion). This
is recorded as the following rule.

Rule 6: When there are two sets of projected lines with different vanishing points,
the set with the more salient vanishing point probably consists of projections of
z lines, and the other of either = or y lines, depending on where they point.

These rules are all consequences of the simple model of three kinds of principal
lines and forward motion parallel to the z axis.

Recall that, for us scientists to make predictions using the latency correc-
tion hypothesis, we must determine the probable scene causing the proximal
stimulus, and we must determine how that scene will probably change in the
next moment. Although we now have machinery enabling us to infer the prob-
able scene, we have not yet addressed the latter. How a scene will change in
the next moment depends on where the observer is moving toward, and how
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fast. Where the observer is moving can be determined by the vanishing point
of the z lines; since the observer moves along the z axis, the vanishing point
of the projected z lines is also the focus of expansion, or the direction of mo-
tion. Therefore, once we have discovered which projected lines in the proximal
stimulus are due to z lines, we have also discovered the direction of motion.
Because of the importance of this consequence, | record it as a final rule.

Rule 7: The probable location of the focus of expansion is the vanishing point of
the projected z lines.

The observer’s speed can be set to some reasonable value; | typically set it to
1 m/sec. | also often assume in simulations a latency of 50 msec, which is an
underestimate.

One important aspect of the probable scenes that this simple model does not
accommodate is distance from the observer. If all the probable sources were
as in the model, but were probably a mile away, then we can expect no change
in the nature of the projections in the next moment. It is reasonable to assume
that latency correction will be primarily tuned to nearby objects, objects that
we can actually reach, or that we might actually run into. Accordingly, it is
plausible that the visual system interprets these geometrical stimuli as scenes
having a distance that is on the order of magnitude of meters away (rather than
millimeters or hundreds of meters).

How general isthis model?

The model | have proposed above requires that the ecological environment of
the observer have an abundance of z, y and z lines, where the observer moves
parallel to the z lines. | have called this a “carpentered world assumption”
(Changizi, 2001c), but how much does my explanation depend on this assump-
tion?

First consider z lines. One of the principal roles they will play in the expla-
nation of the geometrical illusions is that they provide the cue as to the location
in the visual field of the focus of expansion. That is, the visual system figures
out where the observer is probably going on the basis of where the vanishing
point is for the z lines. However, there need not actually be any z lines in the
world for there to be, for the moving observer, projections which are like the
projections of z lines. If an observer is moving forward in an unstructured en-
vironment, the optic flow itself will cause “optical blur” projected lines, and
these will converge to the focus of expansion (Gibson, 1986). Thus, my ex-
planation does not require that the ecological environment actually possess a
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propensity for z lines. The projected z lines may be due not to z lines at all,
but to optic flow; radial lines mimic optic flow, and may trick the visual system
into believing it is probably moving forward.

For z and y lines, all that my model really requires is that the probable
source of a horizontal projected line (not on the horizontal meridian) is an
x line, and that the probable source of a vertical projected line (not on the
vertical meridian) is a y line. It could, for example, be the case that x lines and
y lines are relatively infrequent, but that they are still the most probable source
of horizontal and vertical projected lines, respectively.

It is also worth noting that a propensity for y lines does not require a car-
pentered world assumption. Forests, for example, have a propensity for y lines;
gravitation makes the y axis unique, and any gravitational ecology will prob-
ably have a propensity of y lines. x lines, on the other hand, really do seem
to require a carpentered world assumption; e.g., although the forest will have
a propensity for there to be lines parallel to the ground, which is half the def-
inition of an z line, it will not have a propensity to lie perpendicular to the
observer’s direction of motion. The model therefore does depend, in this re-
gard, on the carpentered world assumption. Humans raised in non-carpentered
environments would, then, be expected to have a different repertoire of geo-
metrical illusions, which appears to be the case (Segall et al., 1966).

2.3 Explaining the geometrical illusions

In this section | explain how the latency correction hypothesis explains the clas-
sical geometrical illusions. The first subsection answers the question, What is
the probable scene underlying the geometrical stimuli? This includes deter-
mining what the lines are and where they are with respect to the observer’s
direction of motion. The next subsection tackles the geometrical illusions that
are misperceptions of projected angle, which includes the corner, Poggendorff,
Hering and Orbison. The following subsection explains the illusions of angular
size or angular distance, which includes the double Judd, Muller-Lyer, Hering,
Orbison and the upside-down “T’. The final subsection tests a psychophysical
prediction of the latency correction hypothesis, providing further confirmation.

2.3.1 The probable source and focus of expansion

The rules developed in the previous section can now be applied to the illu-
sions from Figure 2.4, both in determining what are the probable sources of
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the stimuli, and in determining what is the probable direction of motion for the
observer. This is our task in this subsection.

The probable sources

Figure 2.8 shows the same illusions as in Figure 2.4, but each projected line
has been labeled with the probable kind of source line via the earlier rules. The
explanations for the probable sources are as follows.

o No vertical line in any of the illusory figures has cues suggesting it lies along the vertical
meridian, and thus each is probably due to a y line.

e Of all the horizontal lines, only the one in the upside-down ‘T’ illusion possesses a cue
that it might lie along the horizontal meridian. The cue is that there isa ‘T’ junction, and
such junctions are typically due to three-dimensional corners (i.e., an x-y-z corner). The
horizontal segment of the “T” junction is probably, then, due to two distinct segments,
one the projection of an z line, and one the projection of a z line. That is, it is probably
a corner that is being viewed “from the side.” | have arbitrarily chosen the left segment
to be the projection of an x line, but the cues in the upside-down “T” illusion (which
consists of just the upside-down “T”) do not distinguish which is which.

e All the remaining horizontal projected lines are parts of stimuli without any cues that
they lie along the horizontal meridian, and so are thus due to x lines.

e All that is left are the obliques. In the Hering, Orbison, Ponzo, Corner and Poggendorff
there exists just one set of converging obliques, and they are thus probably due to z lines.

e In each of the Miller-Lyer and the Double Judd there are two sets of converging pro-
jected lines: one set consists of the four inner obliques (the ones in between the two
vertical lines), and the other set consists of the four outer obliques (the ones not in be-
tween the two vertical lines). The four inner obliques are more salient and clustered, and
appear to share a vanishing point more clearly than do the outer ones. The inner obliques
are therefore probably due to z lines. Since the outer obliques have a vanishing point
horizontally displaced from the vanishing point for the inner obliques, the outer obliques
must be due to x lines. [While this serves as an adequate first approximation, greater
analysis in fact reveals that the outer obliques probably do not share a vanishing point at
all (and thus they cannot all be principal lines). Consider just the Miiller-Lyer Figure for
specificity. Lines in the world project more obliquely as they near their vanishing point
(see Figure 2.6). The two outer obliques on the left are far in the visual field from the
two outer obliques on the right; if they were projections of the same kind of line in the
world, then they would not project parallel to one another, one pair being considerably
closer to the vanishing point (for that kind of line) than the other. But the outer obliques
on the left are parallel to the outer ones on the right, and thus they cannot be projections
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of the same kind of line, and they do not point to a single vanishing point. Only the four
inner obliques are approximately consistent with a single vanishing point.]

The probable focus of expansion

Now that we know what the probable sources are for the eight illusory proximal
stimuli, we can use the information about the projected z lines to determine the
focus of expansion. That is, the z line vanishing point is the focus of expansion
(see Figure 2.8). Figure 2.9 shows the earlier figures, but where the illusions
now share the same focus of expansion, and Figure 2.10 shows the key features
of each illusion embedded in a display which provides a strong cue as to the
focus of expansion.

e For the Hering, Ponzo, Orbison and Muller-Lyer stimuli there is exactly one focus of
expansion determined by the projections of the z lines, and Figure 2.9 shows them em-
bedded in a radial display at the appropriate location with respect to the focus of expan-
sion. Notice that for the Mller-Lyer the fins act as cues as to the location of the focus
of expansion, and that in Figure 2.10, where the radial display does the cueing work, the
fins are no longer necessary for the illusion.

e The projected z lines for the double Judd are so similar in orientation that they may
converge either up and to the right of the figure, or down and to the left; that is, the
focus of expansion may be in one of these two spots. | have placed the fin-less version
of the double Judd in Figure 2.10 into these two positions with respect to the focus of
expansion. Note that the illusion is qualitatively identical in each case to the earlier one
(since the cues to the focus of expansion are provided by the radial display rather than
the fins).

e The corner and Poggendorff illusions could be placed anywhere in the display so long
as the projected z line points to the probable focus of expansion; | have chosen one spot
arbitrarily. Any conclusions | draw later will not depend on this choice.

e The upside-down ‘T’ illusion could be placed on either side of the vertical meridian,
so long as the horizontal segments lie along the horizontal meridian. | have arbitrarily
chosen one spot. Any conclusions | draw later will not depend on this choice.

At this point in this section I have used the model to determine the probable
source and focus of expansion given a sufficiently simple geometrical proximal
stimulus. The model has concluded that each of the eight classical geometri-
cal illusions | have been discussing are probably caused by a particular kind
of source in the world, and are probably located in a certain position in the
visual field with respect to the focus of expansion. These conclusions were
summarized in Figure 2.8.
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Figure 2.8: Eight classical geometrical illusions, now showing for each projected line the
probable kind of source line, z, y or z. The probable focus of expansion is also shown in each
case.
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Figure 2.9: The same eight classical geometrical illusions, showing, asin an earlier figure,
for each projected line the probable kind of source line, z, y or z. They have been placed such
that their focus of expansion is the same.
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We still have not explained the illusions, however. Recall that, under the
latency correction hypothesis, in addition to determining the probable scene
causing the proximal stimulus—which is what we have done thus far—we must
also figure out how that scene will probably change by the time the percept
occurs. Well, since we know the probable scene, and we know which direction
the observer is probably moving, all we have to do is to determine how the
sources will project when the observer is moved forward a small amount.

2.3.2 Projected angle misperception

One kind of illusion concerns misperception of projected angle. First, let me
be clear about what | mean by perception of projected angle. If you look up
at a corner of the room you are in, you will notice that you perceive there to
be three right angles; this perception is the perception of the objective angles.
You simultaneously perceive there to be three obtuse angles summing to 360°;
this perception is the perception of the projected angles. It is the latter that is
relevant for the geometrical illusions.

The corner, Poggendorff, Hering and Orbison can be treated as mispercep-
tions of projected angle. In the corner and the Poggendorff the angles appear to
be nearer to 90° than they actually are. The same is true for the angle between
the vertical line and the obliques in the Hering illusion. In the Orbison illusion,
the right angles appear to be bent away from 90°. How do we make sense of
these projected angle illusions? And why are some misperceived towards 9¢°
and some away from it?

First, let us distinguish between two kinds of projected angle. Since there
are just three kinds of line in my model, the only kinds of angle are those that
result from all the possible ways of intersecting these kinds of line. They are
z-y, x-z and y-z angles; these are the principal angles. That is, z-y angles are
any angles built from an z line and a y line, and so on. The latter two kinds
of angle are actually similar in that, having a z arm, the plane of these angles
lies parallel to the observer’s direction of motion. | call z-z and y-z angles
xy-z angles. z-y angles, on the other hand, lie in a plane perpendicular to the
observer’s direction of motion, and must be treated differently.

xy-z projected angles

Note that the corner, Poggendorff and Hering illusions have angle mispercep-
tions where the angles are xy-z angles, and the misperception is that observers
perceive the projected angles to be nearer to 9¢° than they actually are. Why is
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Figure 2.10: Eachillusion from Figure 2.9 is“ transferred” into a stimulus with strong cues
asto the location of the focus of expansion. The same kinds of illusion occur, suggesting that it
is cues to the location of the focus of expansion that is of primary importance in the illusions.
In the case of the double Judd and Milller-Lyer figures, the probable location of the focus of
expansion isthe same asin Figure 2.9, but now itslocation isdue to theradial linesrather than
the fins; because the double Judd is also consistent with being in the upper right quadrant, it
has been transferred there as well as in the bottom left quadrant. The corner and Poggendor ff
stimuli could be placed anywhere in the radial display so long asradial lines traverse themin
the appropriate fashion.
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this? The latency correction hypothesis says it is because in the next moment
the angles will project nearer to 90°, and thus the misperception is typically a
more veridical percept. [It is inappropriate in the case of a static stimulus.] But
do zy-z angles actually project more like 90° in the next moment? Yes, and
there are a number of ways to understand why.

The most obvious way to see this is to hold something rectangular, maybe
an index card, out in front of you, below, and to the right of your eyes. Hold the
card out flat (i.e., parallel with the ground), and orient it so that the near edge is
perpendicular to your line of sight. This is depicted in Figure 2.11 (A). Observe
how the four right angles of the card project toward you. The projected angles
nearest and farthest from the vertical meridian—i.e., angles a and d—are both
acute, and the other two are obtuse. What happens to these projected angles if
you move your head and eyes forward as if you are going to pass the card? If
you move so far that the card is directly below and to the right of your eyes—
i.e., you are just passing it—you will see that the four angles all project as 90°.
Thus, as you move forward, each of these z-z projected angles changes toward
90°, eventually becoming exactly 90° when you pass it. The same observation
applies any time an observer moves forward in the vicinity of z-z angles (e.g., a
rug, or the ceiling). The same observations also apply for the projection of y-z
angles, one case which is depicted in Figure 2.11 (B). A real world example is
when you walk past a window: all the projected angles begin either very acute
or very obtuse, but as you near the window, they progressively project more
and more as 90°.

Another way of comprehending how zy-z angle projections change is to
examine projection spheres upon which xy-z angles have been projected. Fig-
ure 2.11 (C) and (D) show such projection spheres; (C) consists of the intersec-
tions of 2 and z line projections, and (D) of y and z line projections. Recall the
nature of optic flow on the projection sphere: flow begins at the focus of ex-
pansion and moves radially outward toward the periphery of the sphere. Thus,
projected angles nearer to the focus of expansion are the way they project when
they are farther away from the observer, and projected angles in the periphery
of the projection sphere are the way they project when the observer is nearer to
passing the angle. For example, in Figure 2.11 (C) the reader may see asterisks
at four projected angles along the same radial line. The asterisk nearest the
focus of expansion is roughly 60°, the next one a bit bigger, the next still big-
ger, and the last one is 90°. [Recall that to judge these angles the reader must
judge the angle on the sphere, not on the page.] We could have, instead, put
our asterisks on the other side of the projected z line, and we would have had
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Figure 2.11: (A) Depiction of the view of a rectangular card below and to the right of an ob-
server’sdirection of motion (represented by the cross). The card islying parallel to the ground,
with one axis parallel to the observer’s direction of motion, and the other perpendicular to the
direction of motion. The card’s angles are thus z-z angles. (B) This depicts the analogous
card asin (A), but now the angles are y-z. (C) A projection sphere upon which = and z lines
are projected; their intersections are x-z angle projections. Notice how, along any radial line,
the angles of intersection between x and z lines become more like 90° in the periphery (see
the asterisks); that is how they change in the next moment, since the angles move toward the
periphery as the observer moves forward. (D) A projection sphere upon which y and z lines
are projected; their intersections are y-z angle projections. Notice how, along any radial line,
the angles of intersection between y and z lines become more like 90° in the periphery (see the
asterisks); thisishow they change in the next moment.
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the projected angles starting from around 120° and falling to 90°. A similar
account applies to the projections of y-z angles as shown in Figure 2.11 (D).

In short, zy-z angles project more like 90° as observers move forward. If a
proximal stimulus has cues suggesting that a projected angle is due to an xy-z
angle, then latency correction predicts that observers will perceive the angle
to be more like 90° than it actually is. That is, people should perceive the
projected angle to be “regressed” toward 90° (Thouless, 1931a). The corner,
Poggendorff, and Hering illusions each had projected xy-z angles, and each is
perceived to be nearer to 90° than it actually is. These illusions are, therefore,
consistent with latency correction.

The Poggendorff has another salient illusory feature in addition to the pro-
jected angles being perceived nearer to 90° than they are: the two oblique lines
are collinear, but do not appear to be. Each oblique line appears to, intuitively,
undershoot the other. Latency correction explains this illusory feature as fol-
lows. Suppose that a single z line lies above you and to your left along the
wall (perhaps the intersection between the wall and the ceiling). Now also
suppose that there is a black rectangle on your upper left, but lying in your
fronto-parallel plane. That is, the rectangle is made of « and y lines. Suppose
finally that the rectangle is lying in front of the z line. The projection of these
objects will be roughly as shown by the Poggendorff illusion in Figure 2.9. |
say “roughly” because the projection will not, in fact, be as in this figure. Con-
sider first the projected angle the z line will make with the right side of the
rectangle. Suppose it is 60°; that is, the (smaller) y-z angle on the right side of
the rectangle is 60°. What will be the projected angle between that same z line
and the other vertical side of the rectangle? The part of the z line on the other
vertical side of the rectangle is farther away from the focus of expansion and
more in your periphery. Thus, this more peripheral y-z angle will be nearer to
90°; let us say 63° for specificity. That is, when the same z line crosses through
or behind a rectangle as constructed, the projected angles will not be the same
on either side. Now, the two projected angles in the Poggendorff figure are the
same on either side, and thus the projected lines on either side cannaot be due to
one and the same z line. Instead, the more peripheral y-z projected angle, be-
ing farther from 90° than it would were it to be the projected angle made with
the z line from the other side, must actually be a line that is physically higher
along the wall. The visual system therefore expects that, in the next moment
(i.e., by the time the percept is generated), the oblique projected line on the
left should appear a little higher in the visual field compared to the extension
of the oblique line on the right (since differences in visual field position are
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accentuated as an observer moves forward).

-y projected angles

The Orbison illusion primarily concerns the misperception of the four projected
angles, each which is 90°, but which observers perceive to be greater or lower
than 90°. The squares in the Orbison illusion are composed of = and y lines
(Figure 2.8, and see also Figure 2.1), and we must ask how the projections of
x-y angles change as observers move toward the focus of expansion (which is
the vanishing point of the projected z lines in the Orbison figure).

The most straightforward way to understand how z-y angles change is to
hold up a rectangular surface like an index card in your fronto-parallel plane,
with one axis vertical and the other horizontal, and move your head forward.
When the card is sufficiently far out in front of you, each of its four angles
projects nearly as 90°. As you move your head forward as if to pass it, the
angles begin to project more and more away from 90°. Some angles begin to
project more acutely, and some more obtusely. When you are just about to pass
the card, some of its angles will project closer and closer to (?, and the others
will project closer and closer to 180°. If the card is in your lower right quadrant,
as is depicted in Figure 2.12 (A), two angle projections fall toward (*—b and
c—and two rise toward 180°—a and d. If, instead, it is directly below you, the
top two angle projections fall to zero and the bottom two rise to 18(°. If it is
directly to your right, then the near two go to zero and the far two straighten
out. If the card is directly in front of you—i.e., each of its four angles is in each
of the four quadrants of your visual field—then each angle gets more and more
obtuse as you move forward. For example, as you walk through a doorway,
each of the corners of the door projects more and more obtuse, so that when
you are just inside the doorway each corner projects as 180° (and the doorway
now projects as a single line all the way around you).

We may also comprehend how z-y angles change in the next moment by
examining a projection sphere on which 2 and y lines have been projected,
as shown in Figure 2.12 (B). If the reader follows the asterisks from the fo-
cus of expansion outward, it is clear that these z-y angles begin projecting at
approximately 90° and as the observer moves forward and the angle moves pe-
ripherally the projections become greater and greater. Following the ‘#’s shows
the same thing, except that the projected angles get smaller and smaller as the
observer moves forward.

In sum, x-y angles project further away from 9(° in the next moment; they
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X-y angles
A B Overhead

Left

Figure 2.12: (A) Depiction of the view of a rectangular card below and to the right of an
observer’s direction of motion (represented by the cross). The card is lying upright and in
the observer’s fronto-parallel plane. The card’s angles are thus z-y angles. (B) A projection
sphere upon which x and y lines are projected; their intersections are z-y angle projections.
Notice how, along any radial line, the angles of intersection between x and y lines become less
like 90° in the periphery (see the asterisks and ‘# signs); that is how they change in the next
moment since the angles move toward the periphery as the observer moves forward.

are “repulsed” away from 90° instead of regressed toward as in zy-z projected
angles. Which direction a projected z-y angle will get pushed away from 9¢°
depends on the angle’s orientation and its position relative to the focus of ex-
pansion. Figure 2.13 shows how one kind of z-y line changes its projection in
the next moment, and one can see that it depends on the quadrant. The figure
also shows the magnitude of the projected angle change as a function of posi-
tion along the x and y axes on a plane one meter in front of the observer. For
x-y angles of other orientations the plot looks similar, except that it may be
rotated by 90°. Figure 2.14 (A) summarizes the directions which x-y projected
angles change in the next moment as a function of position in the visual field
with respect to the focus of expansion.

The latency correction hypothesis predicts that if cues suggest that a pro-
jected angle is due to an z-y angle, then observers will misperceive the angle to
be whatever it will probably be in the next moment (by the time the percept is
elicited). Figure 2.14 (B) shows the same squares as in (A), but now embedded
in a radial display which provides strong cues as to the location of the focus
of expansion. In every case, observers misperceive the right angles in (B) in
the direction predicted by latency correction in (A). This is just a special case



Figure 2.13: Thechangein projected angle as a function of position with respect to the focus
of expansion on a plane one meter ahead and perpendicular to the direction of motion, for an
x-y angle with one arm pointing up and another arm pointing right. This assumes the observer
moves forward 5 cm (or that the latency is 50 msec and that the observer ismoving at 1 nvsec.)
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Figure 2.14: (A) Four perfect squares. If an observer were moving toward the cross at the
center, the projected angles for each angle would change away from 90°, and the pluses and
minuses show the direction of change. (B) The same squares embedded in a stimulus with
strong cues that the focus of expansion is at the center. Subjects perceive the angles to be
different than 90° as predicted by the directions shown in (A). (C) and (D) are the same, but
with more squares.
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of the Orbison illusion, and thus the Orbison illusion is consistent with latency
correction.

Before we leave the Orbison illusion, | should note that there is another
illusion also called by the same name (and also discovered by Orbison (1939)),
and shown on the left in Figure 2.15. The illusion is primarily that the two
projected angles nearer to the center of the circles appear to be a little obtuse,
and the other two a little acute. Recall that when the square is on the right
side of the other Orbison display with the radial lines (on the right in Figure
2.15) the two near-the-center angles are perceived to be a little acute, and the
two farther ones a little obtuse. That is, the concentric-circle version of the
Orbison leads to qualitatively the opposite illusion of the radial-line version.
The square in the concentric-circle Orbison looks more like the square on the
opposite side of the radial-line Orbison (see Figure 2.15), although it is less
dramatic. My model has no apparatus at this point to accommodate concentric
circles, but it is unclear what kind of ecologically valid scenario would lead
to such a stimulus. My hunch at the moment is that concentric circles have
no strong association with some probable source, and that, instead, the visual
system is noticing that in the vicinity of the square there are many oblique
lines, and they are all pointing to the right, and pointing toward the horizontal
meridian. The oblique lines are not straight, and they do not point to a single
vanishing point, but to the extent that the obliques all point to the right and
toward the horizontal meridian, the visual system may guess that the focus of
expansion is more probably somewhere on the right side of the square. This
would explain why observers misperceive this square in a qualitatively similar
manner as the square on the left in the radial-line Orbison.

Ambiguous projected angles

We have to this point showed how the latency correction hypothesis can explain
the misperception of projected angles with cues as to whether they are due to
xy-z angles or x-y angles. When cues suggest a projected angle is due to an
xy-z angle, observers perceive the projected angle to be nearer to 9%, just as
predicted by latency correction. And when cues suggest a projected angle is
due to an z-y angle, observers perceive the projected angle to be farther from
90°, also as predicted by latency correction.

But even ambiguous projected angles—i.e., projected angles for which
there are no cues as to what kind of angle caused it—are misperceived toward
90° (Fisher, 1969; Bouma and Andriessen, 1970; Carpenter and Blakemore,
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Figure 2.15: The concentric-circle version of the Orbison illusion, and the radial-line ver-
sion.

1973; Nundy et al., 2000). The illusion magnitude can be as great as a couple
degrees or so. For example, the projected angle in a ‘less than’ symbol—*<’—
is perceived nearer to 90° by observers. It is as if the visual system decides that
ambiguous projected angles are probably xy-z angles, since it is misperceiving
them like it misperceives projected angles with cues they are zy-z angles. Why
should this be?

Let us ask, what is the probable source of an ambiguous projected angle?
There are no cues, but it may still be the case that in the absence of cues one
kind of angle is much more probable. If you are in a rectangular room, look
over at one of the walls and suppose you are about to walk straight toward the
wall. Consider one of the corners of the wall you are approaching. It consists
of three right angles, an z-y angle, an -z angle, and a y-z angle. Two of these
three angles are therefore xy-z angles, and therefore xy-z angles tend to be
around twice as frequent in our experience. If a projected angle is ambiguous,
then without knowing any more information about it we should guess that it
is an xy-z projected angle. Another difference between z-y angles and xy-z
angles is that the former project nearly as 90° when they are in front of an
observer, only projecting much different from 90° when the observer is about
to pass the angle (Figure 2.16). zy-z angles, on the other hand, project in all
ways when out in front of an observer (Figure 2.16). This may be made more
precise by placing an observer at random positions within a room with the three



120 CHAPTER 2

Overhead

Left

x-z angles Below y-zangles Below

Overhead

Left

x-y angles Below

Figure 2.16: Projection spheres for the three kinds of angle. The top two are the two kinds
of zy-z projected angles, and the bottom is for z-y projected angles. The dashed ellipse in
each identifies the region of the projection sphere observers typically view (i.e., observers tend
to look in the direction they are going, and look left and right more than up and down). The
reader may observe that within the ellipse zy-z angles project in all sizes, acute to obtuse, but
that z-y angles project only very near 90°.
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angle types stuck in one spot, and seeing how often each projects a given angle.
Figure 2.17 shows this, and we can see that when a projected angle is near 9¢°
it is probably due to an z-y angle, but otherwise it is probably due to an xy-z
angle.

In sum, then, ambiguous projected angles are probably zy-z angles if they
are acute or obtuse. We therefore expect the perception of ambiguous projected
angles to be like the perception of projected angles with cues that the projected
angle is due to an zy-z angle, and, as mentioned earlier, this is indeed what
observers perceive. In particular, the latency correction hypothesis can predict
how much the projected angle should be misperceived depending on its angle.
Figure 2.18 shows how, on average, the projected angle changes in the next
moment as a function of the starting projected angle. We see that there is
no projected angle change when the angle is very close to (*, 90° or 180°;
the projected angle change is maximally positive somewhere in between @
and 90°, and maximally negative somewhere in between 90° and 180°. The
latency correction hypothesis therefore predicts that this will be the shape of
the psychophysical function for observers of ambiguous projected angles. The
inset of Figure 2.18 shows how observers misperceive projected angles as a
function of the angle, and the psychophysical function is indeed very similar to
that predicted by the latency correction hypothesis.

2.3.3 Angular size misperception

We have now seen that the illusions of projected angle—the corner, Poggen-
dorff, Hering and Orbison illusions—are just what we should expect if the vi-
sual system engages in latency correction. We have not, however, touched upon
the double Judd, the Miiller-Lyer or the upside-down ‘T illusion. Each of these
illusions involves the misperception of an angular distance or an angular size.
Even the Hering can be treated as a misperception of angular distance, since
the angular distance between the two lines appears to be greater nearer the van-
ishing point (see Figure 2.19 for two versions of the “full” Hering illusions).
The Orbison, too, can be classified as a misperception of angular size since the
sides of the squares are not all perceived to be the same. In this subsection |
describe how latency correction explains these angular size illusions.

Projected 2 and y lines

How do the angular sizes of projected x and y lines change as an observer
moves forward? Let us focus on how z projections change, and what we learn
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Figure 2.17: Histogram of counts for the projections of z-y and xy-z angles. One can
see that z-y angles rarely project angles much differently than 90°; most acute and obtuse
projected angles are due to zy-z angles. The curves were generated by placing a simulated
observer at 10° positions near an angle of the specified kind (10° for each of z-y, -z and
y-z). Each placement of the observer consisted of the following. First, a random orientation of
the principal angle was chosen. For example, for an z-z angle there are four orientations: +x
and +z, +x and —z, —z and +z, and —z and —z. Second, the angl€’s vertex was placed at
the origin. Third, a position for the simulated observer was determined by randomly choosing
values for « uniformly between 0.1 mand 1 mto one side of the angle, values for y uniformly
between 1 m above and below the angle, and values for z uniformly between 0.5 mand 1 min
front of the angle. The simulation was confined to these relatively nearby positions since one
might expect that veridical perception of nearby objects matters more in survival than veridical
perception of objects far away. The nature of my conclusions do not crucially depend on the
particular values used in the simulation.
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Figure 2.18: Average projected angle change as a function of the pre-move projected angle,
for principal right angles lying in a plane parallel to the direction of motion (zy-z angles).
One can see that the latency correction hypothesis predicts that, for projected angles that are
probably due to xy-z angles, acute projected angles are overestimated and obtuse projected
angles are underestimated. The graph was generated from the same simulation described in
Figure 2.17, except that for each placement of the observer, the observer was then moved along
the z-axis toward the angle (i.e., z got smaller) at a speed of 1 meter/sec for (a latency time
of) 0.05 sec. The particular position of the peak is not important, as it depends on the allowed
range of pre-move positions in the simulation. Inset shows two plots of actual misperceptions
for subjects. Diamonds are averages from one representative non-naive subject (RHSC) from
Carpenter and Blakemore (1973, Figure 3), and squares are averages from six naive subjects
from Nundy et al. (2000, Figure 5).
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Figure 2.19: Two versions of the Hering illusion. The perceived angular distance between
thetwo linesis greater near the middle than near the edges.

will immediately apply to y line projections as well.

Consider the angular distance between the sides of a doorway at eye level.
As you approach the doorway, the angular distance between the sides increases.
When you are just inside the doorway the angular distance is at its maximum
of 180°. Consider how the angular distance between the sides of the doorway
a little above eye level changes as you move forward. As before the angular
distance increases, but it now does more slowly, and when you are just inside
the doorway, the angular distance reaches its maximum at a value below 18(°.
The farther above or below eye level you look, the slower do the sides of the
doorway expand as you approach. The angular distance between the sides of
a doorway is really the length of a projected = line, namely an imaginary line
extending between the two sides. The same is true for projected y lines: the
angular distance between the top and bottom of the doorway increases as you
approach, and does so most quickly for the angular distance between the part
directly above and below your eye.

This may also be understood via examining projection spheres, as shown
in Figure 2.20. In each sphere of the figure there are three pairs of squares and
circles, the inner-most, the next-farther-out, and the outer-most pairs. They
represent three snapshots of the horizontal (A) or vertical (B) angular distance
between the points. Focusing just on (A), one can see that although the inner-
most pair of squares and circles have about the same horizontal angular distance
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Figure 2.20: Projection spheres with -, y and z line projections. (A) Thisaids us in under-
standing how angular sizes of z line projections change as an observer moves forward. The
inner-most pair of squares and circles depict the sides of a doorway that is far in front of an
observer, the squares are at eye level (i.e., lying on the horizontal meridian) and the circles
above eye level. The angular distance between the two squares is about the same as that be-
tween the two circles. But as an observer moves forward, in the next moment the sides of the
door expand, the sides at eye level project as the next-farther-out pair of squares, and the sides
above eye level project as the next-farther-out pair of circles. The horizontal angular distance
between the squares is now greater than that between the circles. Smilarly, in the next moment
the sides are depicted by the next pair of sguares and circles. (B) Identical to (A) but shows
how vertical angular distances grow most quickly when they lie along the vertical meridian.

between them—this corresponds to the sides of a doorway far in front of an
observer, the squares at eye level and the circles above eye level—by the time
the observer approaches, the horizontal angular distance between the squares
has grown considerably more than the horizontal angular distance between the
circles.

There is one major summary conclusion we can make concerning how pro-
jected x lines change as observers move forward:

The angular distance between any point and the vertical meridian increases as
observers move forward. Furthermore, thisangular distanceincreaseismaximal
for points lying along the horizontal meridian, and falls off as the point gets
farther away fromthe horizontal meridian.

This statement is just another way of saying that as you approach a doorway,
its sides bow out most quickly at eye level (and less and less quickly the further
it is from eye level). The analogous conclusion holds for y lines.
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Figure 2.21: The geometrical illusions which rely on misperception of angular distance are
shown again here for convenience.

Theangular distance between any point and the horizontal meridian increases as
observers move forward. Furthermore, thisangular distanceincreaseismaximal
for points lying along the vertical meridian, and falls off as the point gets farther
away fromthe vertical meridian.

These conclusions are sufficient to explain the angular size illusions shown
in Figure 2.21, except for the upside-down ‘T’ illusion (which | take up in the
next subsubsection). I will explain each in turn.

e Double Judd: The double Judd illusion consists of two projected y line segments, pro-
jections which do not cross the horizontal meridian (see Figure 2.21). It suffices to treat
each segment as if it were a point. We are interested in the angular distance between
each segment and the horizontal meridian. They are, in fact, the same in the figure.
However, the conclusion above states that in the next moment the segment nearer to the
vertical meridian—i.e., the inner segment—will have a greater distance from the hor-
izontal meridian than the other segment. The latency correction hypothesis therefore
predicts that observers will perceive the segment that is nearer to the vertical meridian
to have greater angular separation from the horizontal meridian. And this just is the illu-
sion for the double Judd illusion: the inner segment of each pair in Figure 2.21 appears
to be farther away from the horizontal meridian. [A similar explanation would work if
the double Judd stimulus were rotated 90°.]
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e Miuller-Lyer: The Muller-Lyer illusion consists of two projected y line segments, pro-
jections which do cross the horizontal meridian. Consider just the tops of each projected
y line. The top of the projected y line on the left in Figure 2.21 is nearer to the vertical
meridian than the top of the other projected y line, and so it will move upward more
quickly in the next moment. Thus, the angular distance between the top of the left pro-
jected y line and the horizontal meridian should appear to observers as greater than that
for the right projected y line. The same also holds for the lower halves of each projected
line, and thus the total angular distance from the top to the bottom of the left projected
line will be longer in the next moment than that of the right projected line, and thus
should be perceived in that way if latency correction applies. And, of course, this is the
illusion in the case of the Miller-Lyer. The same explanation holds for the variants of
the Miiller-Lyer in Figure 2.22.

e Ponzo: The explanation for the Ponzo illusion follows immediately from the argument
for the Muller-Lyer illusion, except that it concerns the distance from points to the verti-
cal meridian.

e Hering: In the Hering illusion in Figure 2.21, there are two projected y lines on either
side of the vertical meridian. The angular distance between the lines is perceived to
depend on how high one is looking above or below the horizontal meridian. At the
horizontal meridian the perceived angular distance between the two projected y lines is
greatest, and it falls as one looks up or down. The conclusion concerning z lines above
explains this: points on one of the Hering lines nearer to the horizontal meridian will,
in the next moment, move away from the vertical meridian more quickly. [A similar
explanation would hold if the Hering had been presented as two projected z lines lying
on either side of the horizontal meridian.]

We see, then, that one simple latency correction rule underlies these three,
seemingly distinct, classical geometrical illusions.

Projected z lines

The angular size and distance illusions discussed above concerned the angular
sizes for z and y lines. What about the angular size of z lines? Consider how
projected z line segments change as an observer moves forward. When the
segment is very far away, it projects small, and as you near it it projects larger.
This is no different from the behavior of x and y lines. Consider, though, how
a z line projection changes when you are already relatively nearby. It still
projects larger in the next moment. This is partly because it is closer, but also
partly because it begins to project more perpendicularly toward the observer.
Consider, as a contrast, how an x line segment lying on the horizontal meridian
and to one side of the vertical meridian projects as an observer near it moves
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Figure 2.22: The angular size of the vertical bold lines are the same in each figure, but the
left one appears larger because the cues suggest that the focus of expansion is to the left, and
thus the left one will grow more quickly in the next moment. Note that in (C) the illusion isthe
opposite of the standard Muller-Lyer: the fins-in line appears longer than the fins-out line.

forward. Eventually, the x line begins to project less perpendicularly toward the
observer—i.e., less of the line is facing the observer. When the observer passes
the z line, its angular size will have fallen to zero. For the z line segment,
however, when the observer passes it, its angular size will be at its maximum.

With this under our belts we can ask and answer the question of how the
probable source of the upside-down ‘T illusion will change in the next mo-
ment. Recall that the source of the ‘T’ is a corner made of an x, y and z line,
whose point lies on the horizontal meridian, and thus so does the x and z line.
The probable focus of expansion is somewhere on the same side as the z arm,
but past the tip of the projected =z arm (e.g., see Figure 2.21). The angular size
of the horizontal bar is due to the sum of the angular sizes of the x line and the
z line, these lines being at right angles to one another in the world. Suppose
each line has a length of L meters. It’s angular size could then be mimicked by
a single straight real world line (it is not a principal line) going from the tips
of each line that is the square root of I? + L2, or 1.414L. The y line must,
then, be approximately 1.414L meters long as well, since it projects the same
angular size and is approximately the same distance away. Consider now what
happens when the observer is about to pass the corner. Since the x line is to
one side of the vertical meridian, its angular size has fallen to (*. The angular
size of the z arm is at its maximum, however. The bottom of the y arm rests
on the horizontal meridian, and it will therefore not get smaller in the last mo-
ments before passing it, but, instead, will increase to its maximum. Since the
z line is of length L and the y arm length 1.414L, and since each is about the



INEVITABILITY OF ILLUSIONS 129

same distance from the observer, the angular size of the y arm will be about
1.41 times as large as the angular size of the z arm. This is how the corner will
project when the observer is just passing it, but the more general conclusion is,
then, that the total angular size of the bottom of the “T” grows less quickly than
does the angular size of the y line. Latency correction therefore predicts that
observers will perceive the vertical line to have greater angular size, as is the
case.

A new illusion

In the explanation of the upside-down “T” illusion, we learned that, when rel-
atively nearby, x line segments lying on the horizontal meridian and on one
side of the vertical meridian—Ilike the one in the upside-down ‘T’ illusion—
increase their angular size more slowly than do z line segments lying in the
same part of the visual field. We can use this observation to build a novel illu-
sion. Figure 2.23 shows two identical horizontal lines lying on the horizontal
meridian, one on each side of the vertical meridian. The one on the left has cues
suggesting it is due to an z line, and the one on the right has cues that it is due
to a z line. Although they are at equal distances from the vertical meridian, the
z line appears to have greater angular size, as latency correction predicts. (The
bold vertical lines are also identical in angular size to the horizontal lines.)

2.3.4 Psychophysical confirmation

It is possible to summarize the explanation for all those illusions that did not
rely on misperception of the angular size of z lines; i.e., all the illusions except
for the upside-down ‘T’ and the new illusion just discussed above. Figure 2.24
shows how much a point in an observer’s visual field moves away from the
horizontal meridian in the next moment. The figure for movement away from
the vertical meridian is identical, but rotated 9(°.

I will describe how this one plot explains most of the illusions discussed
thus far.

e ry-z projected angles, including corner, Poggendorff, Hering, and ambiguous angle
perception: The two white dots in Figure 2.24 can be thought of as the endpoints of an
x line extending between them. The figure indicates that the dot nearer to the vertical
meridian will move up more than the other dot in the next moment. Consider the angle
this projected x line segment makes with a projected =z line (which goes radially outward
from the focus of expansion in the figure). The projected z line will, after the move,
make an angle with the projected z line that is more near 90° than it originally was. This
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Figure 2.23: Two predicted illusions. First, the left horizontal line appears to have smaller
angular size than the right one, but they are identical. The reason is that the right one is
probably due to a z line (being part of the flag on the wall), whose angular size will increase
in the next moment more than that of the = line on the left. Second, and for the same reason,
the horizontal line on the right appears to have greater angular size than the adjacent vertical
line, but the two lines on the left appear roughly identical (and, the predicted perception on the
left is that the vertical line should be a little larger than the horizontal line).

captures the regression to 90° phenomenon we discussed earlier. The explanation for
y-z projected angle illusions is similar, but relies on the plot that is rotated by 90°.

e -y projected angles, and the Orbison illusion: We just learned that the projected x
line extending between the two points in Figure 2.24 will “lift up” on its left side (i.e.,
its left side will acquire greater angular distance from the horizontal meridian than the
right side). Consider the projected angle the x line makes in the next moment with a
y line. The projected angle begins at 90°, but gets pushed away from 90° in the next
moment. Projected y lines also change, and change so as to accentuate this projected
angle change.

e r and y angular distances, including the double Judd, Muller-Lyer, Ponzo and Hering
illusions: When we just consider the two dots in Figure 2.24, we have the raw material
of the double Judd illusion, and the plot states that the one nearer to the vertical meridian
moves away from the horizontal meridian more in the next moment, which agrees with
perception. Not only does the dot on the left appear higher, the angular distance between
it and the horizontal meridian appears greater, which is essentially the Miiller-Lyer, Her-
ing and Ponzo illusion.

Since Figure 2.24 encapsulates most of the predictions my model of latency
correction has made, it would be nice if we could test observers to see if their
perceptions of the angular distance between each dot and the horizontal merid-
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Figure 2.24: Change in angular distance from the horizontal meridian as a function of
position within the visual field. Rim of circle is 90° from the focus of expansion. Plot uses
a linear gray scale, with white representing zero degrees angular distance change, and black
representing approximately two degrees. The two dots are props referred to in the text. To help
explain the plot, suppose you are walking down a long corridor toward a doorway at the end.
When you begin, the top of the doorway is nearly at the focus of expansion (FOE), but just
dightly above it. In the plot, the gray scaleis very white here, telling us that the top of the door
does not move upward in the visual field very much in the next moment. As long as you are
far away, the top of the doorway moves slowly upwards in your visual field. Asyou get nearer,
though, the doorway is high enough in your visual field that it is well within the darker regions
above the focus of expansion in the plot, and it thus moves upward in your visual field very
quickly in the next moment. Asyou begin to passit, the doorway is nearly overhead, and slows
down a bit before it finally goes behind you. The plot was generated by simulating forward
movement around a point, starting at a z distance of one meter, and moving with speed one
nvsec for (a latency time of) 100 msec. By rotating the plot by 90°, one obtains the plot for
the change in angular distance from the vertical meridian as a function of position within the
visual field.
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ian fits this composite prediction. This is what an undergraduate student and
myself did, with intriguing and encouraging results (Changizi and Widders,
2002).

Using a computer, two dots were placed on a radial display of black lines,
the whole display was 20 cm in diameter, and subjects typically sat about one
to two feet from the screen (this was not experimentally controlled). The dots
were kept horizontally separated by about 2 cm, and were red to be easily dis-
tinguished from the radial lines. They were moved as a pair to each of 300
different positions in an 18 by 18 grid in the radial display (six positions at
the extremity of each quadrant lie outside the radial display and were not mea-
sured). For each position, the subject was asked to move the outer dot (the one
farther from the vertical meridian) up or down until its perceived angular dis-
tance from the horizontal meridian was the same as that for the less peripheral
dot. The resolution was roughly a third of a millimeter. (See Changizi and
Widders, 2002, for detailed methods.)

The data from subjects is not of a form directly predicted by the plot in
Figure 2.24 because the subjects were judging the difference in angular distance
from the horizontal meridian, whereas the plot measures how much any given
point will move upward in the next moment. Instead, the predictive plot we
want is the one that records, for each point in the visual field, how much more
the less peripheral dot will move away from the horizontal meridian than the
more peripheral dot. This plot can be obtained from Figure 2.24 by simply
taking, for each point in the visual field, the next-moment angular distance of
the less peripheral dot minus the next-moment angular distance of the more
peripheral dot. This is shown in Figure 2.26; this figure shows the predicted
strength of the vertical angular distance illusion as a function of position in the
visual field. This one plot encapsulates the predicted illusion magnitude for
nearly all the illusions discussed in this section. If the visual system follows
a latency correction strategy, then we expect it to approximate the predicted
plot, at least to first order; this plot is the fingerprint of latency correction. The
predicted plot assumes that all points are equidistant from the observer, whereas
in reality it may be that points at different positions in the visual field have
different probable distances from the observer. However, the basic “bauplan”
of the predicted plot is expected to be followed, even if not the particulars.

Figure 2.27 shows averages from the above described experiment for my-
self, David Widders, and one naive undergraduate (NG), along with the aver-
age of our averages. In each case, the psychophysical results have the latency
correction fingerprint, which provides further strong confirming evidence for
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Figure 2.25: An example of the stimulus used in the psychophysical test of the latency
correction hypothesis. The arrows indicate that the more peripheral dot could be moved up
and down by the subject.
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Figure 2.26: This plot shows the predicted misperception for the vertical angular distances
fromthe horizontal meridian for two horizontally displaced dots, as a function of position of the
points in the visual field. This plot is the predicted fingerprint of a latency correction strategy
for vision. The plot is generated by assuming that all dots are at the same distance from the
observer. Whiter here means greater predicted illusion.



INEVITABILITY OF ILLUSIONS 135

Latency correction Average over

Proximal stimulus prediction all three subjects

=-S5

Average for MC Average for DW Average for NG

Figure 2.27: (A) The general kind of stimulus used in the experiment is repeated here for
convenience, asis(B) the predicted plot for the latency correction hypothesis. (C) The average
of the average results over the three subjects. (D) Three experimental plots for three subjects
individually, the first two (non-naive) averaged over four experiments, and the last (naive) av-
eraged over two runs. The range of misperceptions for the three subjects are approximately,
in centimeters: MC [—0.07, 0.13], DW [—0.04, 0.14], NG [—0.03, 0.11], and average of the
averages [—0.04, 0.11]. Experiments for angular-distance-from-vertical-meridian perceptions
were similar. Note that the predicted plot ranges over the entire visual field, whereas the ex-
perimental results are for some subset of it. Whiter means greater illusion. For each plot,
zero misperception is represented by whatever gray level lies along the horizontal and vertical
meridians (where subjects experience no illusion). [I thank Nirupa Goel for being the naive
subject here]
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latency correction. Not only do observers experience illusion gradients in the
areas predicted, but the illusion magnitude tends to be more clustered, in any
given quadrant, nearer to the horizontal meridian, which is also a property
found in the predicted plot. Our experimental results are qualitatively iden-
tical for the perception of angular distance from the vertical meridian. We have
also noticed a tendency for greater illusion magnitudes in the bottom half of the
visual field, which may be due to the fact that, on average, objects tend to be
nearer to observers in the lower half of their visual field, and they consequently
move more quickly in the visual field in the next moment.

2.4 Further directionsfor latency correction

In this chapter I have introduced a basic strategy for vision, a strategy so useful
that we might expect any kind of computational system to utilize it. That strat-
egy is latency correction: rather than carrying out computations whose intent is
to provide a solution relevant to the problem that initiated the computation, the
intent is, instead, to provide a solution that will be relevant when the computing
is finally finished. This strategy is useful because it allows an optimal tradeoff
between fast computation and powerful computation. More powerful compu-
tations can be carried out if the system has more time, and the system can
buy itself more time for computing if it can correct for this computing time,
or latency. | have concentrated only on vision in this chapter, and provided
evidence that the visual system utilizes a latency correction strategy. The evi-
dence thus far has concerned the perception of classical geometrical illusions;
we have seen that observers perceive the projected angles and angular sizes of
scenes not as they actually project, but as they probably will project in the next
moment, i.e., at the time the percept is actually elicited.

The explanatory value of the latency correction hypothesis is, | believe,
much greater than just explaining the classical geometrical illusions or cases
such as the flash-lag effect (which I will mention below). | believe that a con-
siderable fraction of all visual illusions may be due to latency correction; in
particular, | believe that all inconsistent perceptions are due to latency correc-
tion. There is much work ahead of us in understanding the consequences of
latency correction, and before leaving this chapter | will discuss preliminary
ideas and research in progress.
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Motion-induced illusions

Evidence for latency correction in the literature has, except for my own work,
concentrated on motion-induced illusions. (The stimuli in the work | have de-
scribed here are all static.) The most famous effect is called the flash-lag ef-
fect, where an unchanging object is flashed in line with a continuously moving
object such that, at the time of the flash both objects are identical (MacKay,
1958; Nijhawan, 1994, 1997, 2001; Schlag et al., 2000; Sheth et al., 2000).
[There has also been a fireworks-like debate about this interpretation (Baldo
and Klein, 1995; Khurana and Nijhawan, 1995; Whitney and Murakami, 1998;
Purushothaman et al., 1998; Lappe and Krekelberg, 1998; Krekelberg and
Lappe, 1999; Whitney et al., 2000; Eagleman and Sejnowski, 2000; Brenner
and Smeets, 2000; Khurana et al., 2000).] The continuously moving object
appears to be “past” the flashed object, even though they are identical. In the
first flash-lag effect, the continuously moving object is a rotating bar, and the
flashed object is a light that flashes in line with the moving bar; observers per-
ceive the flashed light to lag behind the moving bar. [Some of this extrapolation
may even be carried out by retinal ganglion cells (Berry et al., 1999).] Sheth et
al. (2000) showed that the effect holds for other modalities besides perceived
position. The continuously changing stimulus may be in the same position, but
changing in luminance from dim to bright, and the flashed stimulus has, at the
time of its appearance, the same luminance as the other stimulus; in this case
observers perceive the changing stimulus to be brighter than the flashed one.
It also works for hue and other modalities. Other evidence for latency correc-
tion can be found in Thorson et al. (1969) who have shown that when two
very nearby points are consecutively flashed, motion is perceived to extend be-
yond the second flashed point. Also, Anstis (1989) and DeValois and DeValois
(1991) have shown that stationary, boundaryless figures with internal texture
moving in a direction induce a perceived figure that is substantially displaced
in the same direction (see also Nishida and Johnston, 1999; and Whitney and
Cavanagh, 2000).

One difficulty with these illusions is that they cannot be shown in a book;
one needs a computer display or real live moving objects to see them. There
are, however, two illusions from the literature that are motion-induced and are
able to be displayed here. Furthermore, although neither illusion was intro-
duced by the authors for the purposes of latency correction, there is a relatively
straightforward latency correction explanation for both.

The first is due to Foster and Altschuler (2001) and is called the Bulging
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Figure 2.28: TheBulging Grid illusion (Foster and Altschuler, 2001) occurs when you move
your head quickly toward the checkerboard. In addition to the perception of a bulge, the pro-
jected angles and angular sizes change just as in the Orbison illusion. The Orbison illusion
does not require observer motion because the radial lines provide the cue as to the focus of
expansion.
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Grid (Figure 2.28). Before | tell you what the illusory aspects of it are, note
that it is essentially a bunch of squares, or projections of x and y lines. The
Orbison illusion (see Figure 2.1), recall, was when the cues suggest that the
probable source consists of = and y lines, and the radial lines in the Orbison
acted as cues to the observer’s direction of motion—the vanishing point was
the probable focus of expansion. The Bulging Grid figure is, in a sense, then,
like the Orbison illusion, except that it does not possess any cues as to the prob-
able focus of expansion. Well, there is one obvious way to create a probable
focus of expansion: move your head toward the image. There is arguably no
better cue to a focus of expansion than optical flow emanating radially from
some point. We should predict that if an observer moves his head toward it, he
should experience an Orbison-like illusion. Indeed this is what occurs. Try it.
Forget for the moment about the bulge, and focus just on the perception of the
projected angles and the angular sizes. The angles change away from 90° as
in the Orbison illusion, and in the same ways. [What about the bulge? | have
no good answer to this as of yet, although | can make two observations. First,
if one overlays the bulging grid (or any grid of squares) with a radial display,
one also perceives a bulge (albeit smaller). This suggests that the radial lines
are indeed serving to cue direction of motion. Second, a bulge is consistent
with the misperceived projected angles, although it is inconsistent with the ac-
tual projected angles. That is, the actual projected angles are best explained by
a flat grid in front of the observer, and so | would expect that they would be
perceived as such. Instead, the perception of a bulge suggests that it is as if the
visual system determines the perceived projected angles according to latency
correction, and then uses these angles to compute the probable depths. At any
rate, more thinking on this is needed.]

The next motion-induced illusion worth bringing up is one by Pinna and
Brelstaff (2000), and is displayed in Figure 2.29. In my opinion is it is the
most striking illusion ever; plus it requires no complex computer display or
stereoscopic glasses, etc. It was invented by them without latency correction
in mind, but it has a relatively straightforward latency correction explanation.
When you move toward the point at the center that point becomes the probable
direction of motion. What kind of scene probably generated this stimulus?
One intuitive conjecture is that the observer is walking down a circular tube
or tunnel. Consider just the inner ring. The oblique lines pointing roughly
toward the center do not actually point at the center. If they did, then the lines
would probably be the projections of z lines. Instead, they point inward and a
little counter-clockwise. What kind of line would project this way? Answer:
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A line that was painted on the inside wall of the tube, but was spiraling around
it and going down the tube simultaneously. That is, if there were lines on
the inside wall of the tube that wrapped counter-clockwise around the tube
once every, say, ten meters, the nearest segments of those lines would project
just like the nearly-radial lines of the inner ring. We must also suppose that,
for whatever reason, the observer is only able to see the nearby parts of these
spiraling lines. Now that we have an idea of what kind of scene might cause
such a stimulus as the inner ring, we can ask how that scene will project as the
observer moves forward. In the next moment, the spiraling lines nearest the
observer will no longer be at the same positions, but will, instead, have rotated
or spiraled counter-clockwise a little. That is, as the observer moves forward,
the spirals will move counter-clockwise around him. And this is exactly the
illusion we experience here. The illusion may, then, be due to the visual system
attempting to engage in latency correction; but it is inappropriate here since
there is no tube. The explanation is similar for the outer ring, and is similar
for when you move your head away from the stimulus rather than toward it.
Much work is needed to examine in detail such images and whether latency
correction really is the explanation. At this time, it is just highly suggestive
and encouraging.

Brightness and color

There is considerable evidence since Helmholtz that, when cues make it proba-
ble that a surface has a certain reflectance, brightness and color judgements—to
be distinguished from lightness and surface color judgements—are influenced
away from the actual luminance and chromaticity in the proximal stimulus and
partially towards the probable reflectance, or partially towards the “typical” or
“generic” luminance and chromaticity emitted by the probable surface (Arend
and Reeves, 1986; Arend and Goldstein, 1990; Arend et al., 1991; Arend and
Spehar, 1993; Adelson, 1993; Kingdom et al., 1997). There has been little suc-
cess, however, in explaining this “regression toward the ‘real’ object” (Thou-
less, 1931a, 1931b) phenomenon. The reason it has been difficult to explain
these brightness and color illusions is that they are cases of inconsistent percep-
tion (see Subsection 2.1.1). For example, in brightness contrast (Figure 2.30)
two identical gray patches are surrounded by, respectively, dark and light sur-
rounds. The patch in the dark surround is perceived to be lighter and brighter
than the other patch.

That the patch is perceived to be lighter—i.e., perceived to have greater
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Figure 2.29: In thisstriking illusion from Pinna and Brelstaff (2000), you should move your
head either toward or away from the figure while focusing on the point at the center.
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Figure 2.30: Demonstration of lightness and brightness contrast. The gray patches are
identical, but the one in the dark surround appears to have greater reflectance than the onein
light surround. Thisis called lightness contrast, and is easily accommodated by an inference
approach (namely, a “ subtracting the illuminant” account going back to Helmholtz). The
display also demonstrates brightness contrast, where the patch in dark surround appears to
send more light to the eye (i.e., appears to have greater luminance) than the patch in light

surround.
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reflectance, or greater ability to reflect more light—is easily explained by an
inference or Bayesian framework. The explanation is that the dark surround
suggests that its patch is under low illumination, and the light surround sug-
gests that its patch is under high illumination. Since the patches have the same
luminance—i.e., they send the same amount of light to the eye—the patch in
the dark surround must be a more reflective object. This is sometimes referred
to as the “subtracting the illuminant™ explanation. The same idea applies for
perception of surface color, which refers to the perception of the reflectance of
the object, where now we care about the full spectral reflectance properties, not
just the amount of light reflected.

However, the explanation for why the patch in the dark surround is per-
ceived to be brighter—i.e., perceived to have greater luminance—is not ex-
plainable by the traditional inference or Bayesian account. The reason is that
the luminances of the two patches are probably identical; the retina “knows”
this. Yet the brain generates a percept of the patch in dark surround having
greater luminance than the patch in light surround. The brain therefore gener-
ates a percept that is inconsistent with the proximal stimulus. As we discussed
earlier in this chapter, inconsistent perception can, in principle, be accommo-
dated within a latency correction approach. This observation led me to look for
latency correction explanations for brightness illusions. Similar arguments lead
us to the same conclusion for the perception of color—perception of the chro-
matic quality of the light sent to the eye, or perception of the chromaticity—as
opposed to the perception of surface color.

Latency correction is, indeed, suggestive of an explanation for brightness
(and color) contrast illusions. As an observer walks through the world, the
luminance and chromaticity received from any given surface can change rad-
ically as a function of the surface’s angle with respect to the observer. It is
reasonable to assume that the following is true:

If a surface currently has a luminance/chromaticity that is atypical for it, then
the luminance/chromaticity is probably going to become more typical in the next
moment, not less.

For example, if a surface with high (low) reflectance currently has low (high)
luminance, then it is more probably going to have higher (lower) luminance in
the next moment. Similarly, if the chromaticity from a red surface is currently
yellowish (because of a yellow illuminant), the chromaticity is more probably
going to become less yellowish and more reddish in the next moment. La-
tency correction accordingly predicts that if cues suggest that the actual lumi-
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Figure 2.31: The Kanizsa square. An illusory square is perceived, along with a illusory
luminance contours at its top and bottom.

nance/chromaticity is atypical for the probable source, an observer will per-
ceive a brightness/color representative of a luminance/chromaticity more to-
ward the typical luminance/chromaticity of the probable source, as that is more
probably what will be present at the time the percept is elicited. This prediction
is qualitatively consistent with actual psychophysical trends in the perception
of brightness and color, as cited above.

Even the illusory contour phenomenon is a case of inconsistent percep-
tion, as one perceives luminance contours despite the proximal stimulus being
inconsistent with luminance contours. Illusory contours are perceived along
the edges of objects that are probably there, like in the Kanizsa square (Fig-
ure 2.31). This may be expected within latency correction, however, since
although there is no luminance discontinuity at the time of the stimulus, since
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there probably isa surface discontinuity, it is probable that in the next moment
there will be a luminance discontinuity. That is, a surface discontinuity without
a luminance discontinuity is a rare situation, and it is much more likely to have
a luminance discontinuity by the time the percept occurs, so the visual system
includes one.

At best, though, this is all just encouraging; it does not provide any strong
evidence that latency correction explains brightness and color illusions. These
illusions are merely roughly what one might, prima facie, expect if latency
correction were true. What I need are more detailed models akin to what | have
put forth for geometrical stimuli. Such theoretical work is in progress.

| leave this subsection with a very exciting illusion that strongly suggests
that brightness illusions will fall to latency correction explanations. It is a
motion-induced illusion like the Bulging Grid and the spiral discussed earlier—
each seemingly explainable by latency correction. This illusion, however, is a
brightness illusion, also with a latency correction explanation. The illusion is
due to David Widders, an undergraduate student of mine, and is shown in Fig-
ure 2.32. Move your head towards the center of the figure, and you should
perceive the middle to become brighter and the dark edges to become brighter.
The brightness appears to flow radially outward. If the probable scene causing
such a stimulus is a tunnel with an illumination gradient along it (due to, say,
some light at the end), then latency correction would predict such an outflowing
brightness illusion, since that is how the luminances would be in the next mo-
ment. If you move your head backward the effect is the opposite. Even more
interestingly, the illusion works for hue and other gradients as well, and is es-
pecially stunning on a computer or a glossy printout. We are further examining
motion-based illusions of this kind within a latency correction framework.

Representational momentum

There exists a literature, possibly of great relevance to latency correction, called
“representational momentum?” (see, e.g., Freyd, 1983a, 1983b; Freyd and Finke,
1984, 1985; Hubbard and Ruppel, 1999, and references therein). The phe-
nomenon is as follows. Freyd (1983b) showed subjects images taken from a
scene possessing motion. The images possessed ample cues as to the motion in
the scene, and two images were chosen from successive moments in the scene,
so that one image, A, obviously just preceded the next, B. Subjects were pre-
sented two images in succession, and asked to say whether the two were the
same or different. When the images were presented in the order they actually
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Figure 2.32: Move your head toward the center of this figure, and you should perceive the
brightness to “ flow” outward towards the edges. It works best on either a computer screen or
glossy paper. If the stimulusis probably due to a tunnel with an illumination gradient, then as
an observer moves forward the brightness will, indeed, “ flow” outward. Thus, theillusion is
consistent with latency correction. The illusion was invented by David Widders.
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occurred—A followed by B—subjects took more time to respond that they
were different than when the images were presented in the opposite order. It
is as if subjects, upon seeing image A, forward it a little, so that by the time
B is displayed, their memory of A is already depicted in B, and they have
difficulty noticing any difference. | introduce the connection here only to note
that representational momentum may be another long-known effect that, like
the classical illusions, may be due to latency correction.

Other cuesto the focus of expansion

Thus far, the cues to the location of the focus of expansion have been projected
z lines, which, as we have discussed, may be due either to real live z line con-
tours, or may be due to optic flow itself (that is, the radial lines may mimic
optic blur). Optic flow is not actually necessary, however, to perceive forward
movement (Schrater et al., 2001); all that is necessary is that the overall size of
image features increases through time. Accordingly, we might expect that we
can create a static image such that there is a size gradient, with larger image
features (i.e., larger spatial frequency) near the periphery and smaller image
features near the center. Such an image would suggest that the peripheral parts
of the image are nearby, that the parts nearer to the center are farther away, and
that the “flow” is that the smaller image features near the center are becoming
the bigger images features on the sides. The probable focus of expansion there-
fore is the center, and we expect to find the same kinds of illusions as in the
radial display stimuli from earlier.

In this light, consider moving down a tubular cave with constant-sized
“rocks” along the inside wall. At any given radial angular distance from the
focus of expansion, all the rocks at that angular distance will project at the
same size. Thus, arguing backward, if two features in an image have the same
size (i.e., the objects causing them are projecting the same size), then they are
probably due to rocks at the same angular distance from the focus of expan-
sion. Consider Figure 2.33 (A) which shows a bunch of similar-sized projected
shapes, and the probable location of the focus of expansion is shown at the cen-
ter. Since this is the probable focus of expansion, the vertical dotted line on the
left should increase in angular size more in the next moment than the equal an-
gular size vertical dotted line on the right. And this is what observers perceive.
Actually, this is now just like a standard class of variants of the Miiller-Lyer
illusion, one which is shown in Figure 2.33 (B). These variants may, then, be
explained by the fact that the probable focus of expansion for them is a point
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Figure 2.33: (A) When there is a set of projected shapes all of the same size and projecting
roughly equal angular distancesfroma single point in the visual field, this point is probably the
focus of expansion. (Thisis because the projected shapes are probably due to similar objects at
similar positions relative to the observer.) Snce the observer is probably, then, moving toward
this point, the angular distance of the dotted line on the left is expected, if latency correction is
true, to be perceived to have greater angular size than the one on the right. Thisis consistent
with what observers, in fact, perceive. (B) Furthermore, this explains a class of variants of
the Muller-Lyer illusion, where there is some object—in this case a circle—outside and inside
the vertical lines. The vertical line with the object outside is always perceived to have greater
angular size, no matter the object’s shape. Thisis because the probable focus of expansion is
the point that is equi-angular-distant from the four objects, and this point must be nearer to the
left vertical line, as depicted in (A).
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Figure 2.34: The Ebbinghausiillusion: the middle circles on the left and right are identical,
but the one on the left appears to have greater angular size. Since the circle on the left is
surrounded by smaller circles, it is probably nearer to the focus of expansion, and should
increase in angular size in the next moment (supposing it is not too different in distance from
the observer than the other circle).

nearer to the line with the objects on the outside of the line.

The same observations concerning the tubular cave above can allow us to
make another qualitative conclusion. The objects nearer to the focus of expan-
sion project smaller, being farther away. Thus, all things equal, the part of the
visual field with smaller image features is more probably nearer the focus of
expansion. Consider now Figure 2.34 showing a classical illusion called the
Ebbinghaus. The circle in the middle on the left and in the middle on the right
are identical, and yet the one on the left appears to have greater angular size.
This is readily explained by the conclusion just made: since the circle on the
left is surrounded by smaller projections, it is probably nearer to the focus of
expansion than is the circle on the right. Supposing that the probable distances
from the observer for each of the two middle circles is roughly the same, the
one on the left will increase in angular size more quickly in the next moment.
Thus, latency correction predicts that the left middle circle will be perceived to
be larger, which is consistent with actual perception.

These ideas are preliminary at this point, but very promising. They suggest
that my latency correction model may be easily extendable beyond z, y and z
lines, so that it may be applied to stimuli with many other kinds of projections.
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Further discussion of these ideas will have to await further research on my part.



Chapter 3

| nduction and I nnateness

One of the deepest problems in philosophy concerns how we learn about the
world, and whether there are right or wrong ways to go about it. In this chapter
I introduce this problem—the “problem of induction”—and describe its rele-
vance to understanding learning in intelligent agents, and brains in particular.
One consequence of the problem of induction is that there can be no such thing
as a universal learning machine; it is not even possible that brains could en-
ter the world as blank slates equipped with universal learning algorithms. The
goal of the chapter is to provide a kind of solution to the problem of induction,
and also to put forth something | call a theory of innateness. The latter would
be a mathematical framework in which we are able to make sense of the kinds
of structures that must be innately generated in a brain in order for that brain
to have its own innate way of learning in the world. | present a theory called
Paradigm Theory (Changizi and Barber, 1998) that purports to do these things.

What isinduction?

“John is a man. All men are mortal. Therefore, John is mortal.” This argument
from two premises to the conclusion is a deductive argument. The conclusion
logically follows from the premises; equivalently, it is logically impossible for
the conclusion not to be true if the premises are true. Mathematics is the pri-
mary domain of deductive argument, but our everyday lives and scientific lives
are filled mostly with another kind of argument.

Not all arguments are deductive, and ‘inductive’ is the adjective labelling
any non-deductive argument. Induction is the kind of argument in which we
typically engage. “John is a man. Most men die before their 100th birthday.
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Therefore John will die before his 100th birthday.” The conclusion of this
argument can, in principle, be false while the premises are true; the premises do
not logically entail the conclusion that John will die before his 100th birthday.
It nevertheless is a pretty good argument.

It is through inductive arguments that we learn about our world. Any time
a claim about infinitely many things is made on the evidence of only finitely
many things, this is induction; e.g., when you draw a best-fit line through data
points, your line consists of infinitely many points, and thus infinitely many
claims. Generalizations are kinds of induction. Even more generally, any time
a claim is made about more than what is given in the evidence itself, one is
engaging in induction. It is with induction that courtrooms and juries grap-
ple. When simpler hypotheses are favored, or when hypotheses that postulate
unnecessary entities are disfavored (Occam’s Razor), this is induction. When
medical doctors diagnose, they are doing induction. Most learning consists
of induction: seeing a few examples of some rule and eventually catching on.
Children engage in induction when they learn the particular grammatical rules
of their language, or when they learn to believe that objects going out of sight
do not go out of existence. When rats or pigeons learn, they are acting induc-
tively. On the basis of retinal information, the visual system generates a percept
of its guess about what is in the world in front of the observer, despite the fact
that there are always infinitely many ways the world could be that would lead
to the same retinal information—the visual system thus engages in induction.

If ten bass are pulled from a lake which is known to contain at most two
kinds of fish—bass and carp—it is induction when one thinks the next one
pulled will be a bass, or that the probability that the next will be a bass is more
than 1/2. Probabilistic conclusions are still inductive conclusions when the
premises do not logically entail them, and there is nothing about having fished
ten or one million bass that logically entails that a bass is more probable on
the next fishing, much less some specific probability that the next will be a
bass. It is entirely possible, for example, that the probability of a bass is now
decreased—"it is about time for a carp.”

What the problem is

Although we carry out induction all the time, and although all our knowledge
of the world depends crucially on it, there are severe problems in our under-
standing of it. What we would like to have is a theory that can do the following.
The theory would take as input (i) a set of hypotheses and (ii) all the evidence
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known concerning those hypotheses. The theory would then assign each hy-
pothesis a probability value quantifying the degree of confidence one logically
ought to have in the hypothesis, given all the evidence. This theory would
interpret probabilities as logical probabilities (Carnap, 1950), and might be
called a theory of logical induction, or a theory of logical probability. (Logical
probability can be distinguished from other interpretations of probability. For
example, the subjective interpretation interprets the probability as how confi-
dent a person actually is in the hypothesis, as opposed to how confident the
person ought to be. In the frequency interpretation, a probability is interpreted
roughly as the relative frequency at which the hypothesis has been realized in
the past.)

Such a theory would tell us the proper method in which to proceed with our
inductions, i.e., it would tell us the proper “inductive method.” [An inductive
method is a way by which evidence is utilized to determine a posteriori beliefs
in the hypotheses. Intuitively, an inductive method is a box with evidence and
hypotheses as input, and a posteriori beliefs in the hypotheses as output.] When
we fish ten bass from the lake, we could use the theory to tell us exactly how
confident we should be in the next fish being a bass. The theory could be
used to tell us whether and how much we should be more confident in simpler
hypotheses. And when presented with data points, the theory would tell us
which curve ought to be interpolated through the data.

Notice that the kind of theory we would like to have is a theory about what
we ought to do in certain circumstances, namely inductive circumstances. It
is a prescriptive theory we are looking for. In this way it is actually a lot like
theories in ethics, which attempt to justify why one ought or ought not do some
act.

Now here is the problem: No one has yet been able to devel op a successful
such theory! Given a set of hypotheses and all the known evidence, it sure
seems as if there is a single right way to inductively proceed. For example, if
all your data lie perfectly along a line—and that is all the evidence you have
to go on—it seems intuitively obvious that you should draw a line through the
data, rather than, say, some curvy polynomial passing through each point. And
after seeing a million bass in the lake—and assuming these observations are all
you have to help you—it has just got to be right to start betting on bass, not
carp.

Believe it or not, however, we are still not able to defend, or justify, why
one really ought to inductively behave in those fashions, as rational as they
seem. Instead, there are multiple inductive methods that seem to be just as
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Figure 3.1: The purpose of an inductive method is to take a set of hypotheses and the evi-
dence as input, and output the degree to which we should believe in each hypothesis in light
of the evidence, i.e., output the posterior probability distribution over the set of hypotheses.
Inductive methods may, in principle, be any function from the hypotheses and evidence to a
posterior probability distribution, but some inductive methods seem better than others. Which
one ought we use? That isthe riddle of induction. An ideal answer would be a theory of logical
probability that tells us, once and for all, which inductive method to use. But there is no such
ideal theory.

good as one another, in terms of justification. Figure 3.1 depicts the problem.
The hypothesis set and evidence need to be input into some inductive method
in order to obtain beliefs in light of the evidence. But the inductive method is,
to this day, left variable. Different people can pick different inductive meth-
ods without violating any mathematical laws, and so come to believe different
things even though they have the same evidence before them.

But do we not use inductive methods in science, and do we not have jus-
tifications for them? Surely we are not picking inductive methods willy nilly!
In order to defend inductive methods as we actually use them today, we make
extra assumptions, assumptions going beyond the data at hand. For example,
we sometimes simply assume that lines are more a priori probable than parabo-
las (i.e., more probable before any evidence exists), and this helps us conclude
that a line through the data should be given greater confidence than the other
curves. And for fishing at the lake, we sometimes make an a priori assumption
that, if we pull n fish from the lake, the probability of getting n bass and no
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carp is the same as the probability of getting n — 1 bass and one carp, which
is the same as the probability of getting n — 2 bass and two carp, and so on;
this assumption makes it possible (as we will see later) to begin to favor bass
as more and more bass, and no carp, are pulled from the lake. Making different
a priori assumptions would, in each case, lead to different inductive methods,
i.e., lead to different ways of assigning inductive confidence values, or logical
probabilities, to the hypotheses.

But what justifies our making these a priori assumptions? That’s the prob-
lem. If we had a theory of logical probability—the sought-after kind of theory |
mentioned earlie—we would not have to make any such undefended assump-
tion. We would know how we logically ought to proceed in learning about our
world. By making these a priori assumptions, we are just a priori choosing an
inductive method; we are not bypassing the problem of justifying the inductive
method.

| said earlier that the problem is that “no one has yet been able to develop a
successful such theory.” This radically understates the dilemma. It suggests
that there could really be a theory of logical probability, and that we have
just not found it yet. It is distressing, but true, that there simply cannot be
a theory of logical probability! At least, not a theory that, given only the evi-
dence and the hypotheses as input, outputs the degrees of confidence one really
“should” have. The reason is that to defend any one way of inductively pro-
ceeding requires adding constraints of some kind—perhaps in the form of extra
assumptions—constraints that lead to a distribution of logical probabilities on
the hypothesis set even before any evidence is brought to bear. That is, to get
induction going, one needs something equivalent to a priori assumptions about
the logical probabilities of the hypotheses. But how can these hypotheses have
degrees of confidence that they, a priori, simply must have. Any theory of log-
ical probability aiming to once-and-for-all answer how to inductively proceed
must essentially make an a priori assumption about the hypotheses, and this is
just what we were hoping to avoid with our theory of logical probability. That
is, the goal of a theory of logical induction is to explain why we are justified in
our inductive beliefs, and it does us no good to simply assume inductive beliefs
in order to explain other inductive beliefs; inductive beliefs are what we are
trying to explain.
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Bayesian formulation of the problem

We have mentioned probabilities, but it is important to understand a simple,
few-centuries-old theorem of Bayes. Using Bayes’ Theorem it will be pos-
sible to understand inductive methods more deeply. As set up thus far, and
as depicted in Figure 3.1, the inductive method is left entirely variable. Any
way of using evidence to come to beliefs about hypotheses can fill the ‘induc-
tive method’ role. Different inductive methods may utilize evidence in distinct
ways to make their conclusions. Bayes’ Theorem allows us to lay down a fixed
principle dictating how evidence should modify our beliefs in hypotheses. The
variability in inductive methods is constrained; inductive methods cannot now
differ in regards to how evidence supports hypotheses. As we will see, the
Bayesian framework does not dictate a single unique inductive method, how-
ever; the variability is pushed back to prior probabilities, or the degrees of con-
fidence in the hypotheses before having seen the evidence. Let me first explain
Bayes’ Theorem and the framework.

First, the Bayesian framework is a probabilistic framework, where degrees
of confidence in hypotheses are probabilities and must conform to the axioms
of Probability Theory. The axioms of probability are these: (i) Each probability
is in the interval [0,1]. (ii) The sum of all the probabilities of the hypotheses
in the hypothesis set must add to 1. (iii) The probability of no hypothesis
being true is 0. And (iv), the probability of two possibilities A and B is equal
to the sum of their individual probabilities minus the probability of their co-
occurrence. We will be assuming our hypotheses in our hypothesis sets to be
mutually exclusive, and so no two hypotheses can possibly co-occur, making
axiom (iv) largely moot, or trivially satisfied for us.

Suppose the probability of event A is P(A), and that for event B is P(B).
What is the probability of both A and B. We must first consider the probabil-
ity that A occurs, P(A). Then we can ask, given that A occurs, what is the
probability of B; this value is written as P(B|A). The probability of A and B
occurring is the product of these two values. That is, we can conclude that

P(A&B) = P(A) - P(B|A).

But note that we could just as well have started with the probability that B
occurs, and then asked, given that B occurs, what is the probability of A. We
would then have concluded that

P(A&B) = P(B) - P(A|B).
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The right hand sides of these two equations differ, but the left hand sides are
the same, so we may set them equal to one another, resulting in

P(A) - P(B|A) = P(B) - P(A|B).

This is essentially Bayes’ theorem, although it is usually manipulated a little.
To see how it is usually stated, let us change from A and B to A and e,
where h denotes some hypothesis, and e denotes the evidence. The formula
now becomes
P(h) - P(e|lh) = P(e) - P(hle).

What do these values mean?

e P(h) stands for the probability of hypothesis h before any evidence exists. It is called
the prior probability of h. Each hypothesis might have its own distinct prior probability.

e P(hle) is the probability of hypothesis & after the evidence has been considered; it is
the hypothesis’ probability given the evidence. Accordingly, it is called the posterior
probability of 4. Each hypothesis might have its own distinct posterior probability.

e P(e|h) is the probability of getting the evidence if hypothesis ~ were true. It is called
the likelihood. Each hypothesis might have its own distinct likelihood, and its likelihood
is usually determinable from the hypothesis.

e P(e) is the probability of getting that evidence. This value does not depend on the
hypothesis at issue. It may be computed from other things above as follows:

P(e) =Y _[P(h)P(e|h)].
h

Ultimately, the value that we care about most of all is P(hle), the posterior
probability. That is, we want to know how much confidence we should have in
some hypothesis given the evidence. So, let us solve for this term, and we get
a formula that is the traditional way of expressing Bayes’ Theorem.

P = PP

Since P(e) does not depend on which hypothesis is at issue, it is useful to
simply forget about it, and write Bayes’ Theorem as
P(hle) ~ P(h) - P(elh).

That is, the posterior probability is proportional to the prior probability times
the likelihood. This makes intuitive sense since how much confidence you have
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in a hypothesis should depend on both how confident you were in it before the
evidence—the prior probability—and on how much that hypothesis is able to
account for the evidence—the likelihood.

Using the evidence to obtain posterior probabilities is the aim of induction.
Figure 3.2 shows the material needed to obtain posterior probabilities within
the Bayesian framework. As in Figure 3.1, the hypothesis set (along with the
likelihoods) and the evidence are inputs to the inductive method (which may be
of many different kinds, and is thus variable), which outputs posterior proba-
bilities. But now the inductive method box has some boxes within it; inductive
methods are now determined by variable prior probability distributions and the
fixed Bayes’ Theorem.

Consider an example first. | present to you a coin, and tell you it is possibly
a trick coin. | tell you that there are three possibilities: it is fair, always-heads,
or always-tails. These three possibilities comprise the hypothesis set. Your task
is to flip the coin and judge which of these three possibilities is true. Your ev-
idence is thus coin flip outcomes. Your likelihoods are already defined via the
decision to consider the three hypotheses. For example, suppose two heads are
flipped. The likelihood of getting two heads for the coin-is-fair hypothesis is
(1/2)? = 1/4. The likelihood for the always-heads hypothesis is 1> = 1, and
for the always-tails hypothesis it is (> = 0. What is the posterior probability
for these three hypotheses given that the evidence consists of the two heads?
To answer this, we still need prior probability values for the hypotheses. This is
where things get hairy. In real life, we may have experience with tricksters and
coins with which we can make guesses as to the prior (i.e., the prior probability
distribution). But the point of this example is to imagine that you have no expe-
rience whatsoever with tricksters or coins, and you somehow need to determine
prior probabilities for these three hypotheses. Let us suppose you declare the
three to be equally probable, a priori. Now you can engage in induction, and
the posterior probabilities are as follows:

1
) 1o
e P(always-tails|two heads) = % = 0.
Different prior probability assignments would have led to different posterior
probability assignments; i.e., led to different inductive conclusions.
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Figure 3.2: To acquire beliefs about the world, evidence and a set of hypotheses must be
input into an inductive method, whose job it is to output the degrees of belief about those
hypotheses one ought to have given the evidence. In the Bayesian framework, the inductive
method is determined by a choice of prior probabilities over the hypothesis set. This variable
prior is put, along with the evidence, into Bayes' Theorem, which outputs the posterior proba-
bilities. Now it is not the case that any old inductive method is justified, unlike in Figure 3.1.
However, there is still tremendous variability in the possible inductive methods due to the vari-
ability in the choice of prior. One of the nice things about thisis that the variability no longer
concerns how evidence is brought to bear on hypotheses; this is kept constant by the use of
Bayes' Theorem. All the variability in inductive methods is reduced to just one kind of thing:
one's degrees of belief in the hypotheses before having seen the evidence. Also, note that the
Bayesian framework is also a probabilistic framework, which constrains the numerical degrees
of confidence in hypotheses to satisfy the axioms of Probability Theory; this constraint is not
depicted in the figure.
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What does the Bayesian framework for induction buy us? After all, we
still have many possible inductive methods to choose from; we have not solved
the problem of the variability, or indeterminacy, of inductive methods. For one
thing, it rules out whole realms of possible inductive methods; inductive meth-
ods must now fit within the framework. Algorithmic learning rules that take
evidence and assign probabilities to the hypotheses are not allowable inductive
methods if they cannot be obtained by starting with a prior probability distri-
bution and grinding it through Bayes’ Theorem. The second nice thing about
the Bayesian framework is that it gets inside inductive methods and helps to
distinguish between two things an inductive method needs in order to do its
job: evidence principles and prior probabilities. Any inductive method needs
“evidence principles,” principles by which it employs the evidence to affect the
degrees of confidence in the hypotheses. For example, if | fish one more bass,
is this good or bad for the hypothesis that the next fish will be a bass? The
Bayesian framework encapsulates its evidence principle in Bayes’ Theorem,
effectively declaring that all inductive methods must use this same evidence
principle. Whatever variability in inductive method choice is left is not, then,
due to differences in evidence principles. The second thing the Bayesian frame-
work serves to distinguish is the prior probability distribution. This is left in-
determinate, but any inductive method within the Bayesian framework requires
some setting for this variable. All the variability in inductive methods is, then,
reduced to one kind: one’s a priori degrees of confidence in the hypotheses. A
final important thing about the Bayesian framework is that the evidence prin-
ciple is not just any old evidence principle; it is justifiable in the sense that it
follows from probability axioms that everyone believes. Not only does “every-
one believe” the probability axioms, they are, in a certain clear sense, principles
a reasoner ought to hold. This is due to the fact that if someone reasons with
numerical confidences in hypotheses that do not satisfy the probability axioms,
then it is possible to play betting games with this fellow and eventually take all
his money. This is called the Dutch Book Theorem, or the Ramsey-de Finetti
Theorem (Ramsey, 1931; de Finetti, 1974; see also Howson and Urbach, 1989,
pp. 75-89 for discussion). And Bayes’ Theorem follows from these axioms, so
this evidence principle is rational, since to not obey it would lead one to being
duped out of one’s money.!

1Things are actually a bit more complicated than this. Using Bayes’ Theorem as our princi-
ple of evidence (or our “principle of conditionalization,” as it is sometimes said) is the rational
principle of evidence—i.e., in this case because any other will lead you to financial ruin—if,
upon finding evidence e, e does not entail that your future degree of confidence in the hypoth-
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With this machinery laid before us, the riddle of induction can now be
stated more concisely as, “What prior probability distribution ought one use?”
By posing induction within the Bayesian framework, one cannot help but see
that to have a theory of logical induction would require a determinate “best”
choice of prior probabilities. And this would be to make an a priori assumption
about the world (i.e., an assumption about hypotheses concerning the world).
But our original hope was for a theory of logical induction that would tell us
what we ought to do without making a priori assumptions about the world.

What would atheory of logical probability look like?

There is, then, no solution to the riddle of induction, by which we mean there is
no theory of logical probability which, given just a set of hypotheses and some
evidence, outputs the respectable inductive method. There simply isno unique
respectable inductive method.

If one tries to solve a problem, only to eventually realize that it has no
solution, it is a good idea to step back and wonder what was wrong with the
way the problem was posed. The problem of induction must be ill posed, since
it has no solution of the strong kind for which we were searching. Let us now
step back and ask what we want out of a theory of logical probability.

The Bayesian framework serves as a strong step forward. Within it, we
may make statements of the form,

If the prior probability distribution on H is P(h), then, given the evidence, the
posterior probability distribution ought to be given by P(h|e), as dictated by
Bayes’ Theorem.

There are a number of advantages we mentioned earlier, but a principal down-
side remains. What the inductive method is depends entirely on the prior prob-
ability distribution, but the prior probability distribution comprises a set of be-
liefs about the degrees of confidence in the hypotheses. That is, prior probabil-
ities are judgements about the world. Thus, the Bayesian statement becomes
something like,

If one has certain beliefs about the world before the evidence, then he should
have certain other beliefs about the world after the evidence.

esis given e will be different from that given by Bayes’ Theorem. That is, if, intuitively, the
evidence does not somehow logically entail that Bayes” Theorem is inappropriate in the case at
issue. This “if” basically makes sure that some very weird scenarios are not occurring; no weird
circumstances. .. Bayes’ Theorem is the rational principle of evidence. See Howson and Urbach
(1989, pp. 99-105) for details.
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But one of the goals of a logical theory of induction is to tell us which beliefs
about the world we ought to have. The Bayesian framework leaves us unsatis-
fied because it does not tell us which a priori beliefs about the world we should
have. Instead, it leaves it entirely open for us to believe, a priori, anything we
want!

In our move from the pre-Bayesian framework (Figure 3.1) to the Bayesian
framework (Figure 3.2), we were able to encapsulate a fixed evidence princi-
ple, and were left with variable prior probabilities. Now | submit that the task
of a theory of logical probability isto put forth fixed principles of prior proba-
bility determination, and to have left over some variable that does not possess
information about the world (unlike prior probabilities). Just as the left over
variable in the Bayesian framework was non-evidence-based, the variable left
over within this new framework will be non-induction-based, or non-inductive,
or not-about-the-world. If we had something like this, then we could make
statements like,

If one has non-inductive variable @Q, then one ought to have prior probability dis-
tribution Pg(h), as dictated by the principles of prior probability determination.

It should also be the case that the non-inductive variable has some coherent
(non-inductive) interpretation, lest one not know how anyone would ever pick
any value for it. The principles of prior probability determination would pos-
sess a few things that one ought to do when one picks prior probabilities given
the non-inductive variable. In this way, we would have reduced all oughts
found in induction to a small handful of principles of ought, and no undefended
assumptions about the world would need to be made in order to get different
inductive methods up and going.

Figure 3.3 is the same as Figure 3.2, but now shows the kind of machinery
we need: (i) some fixed, small number of axioms of a priori logical probability
determination, in the form of rationality principles, and (ii) some variable with
a meaningful interpretation, but not with any inductive significance.

The bulk of this chapter consists of the development and application of
a theory of logical induction aiming to fill these shoes. The theory is called
Paradigm Theory. Three abstract symmetry-related principles of rationality
are proposed for the determination of prior probabilities, and a kind of non-
inductive variable—called a “paradigm”—is introduced which is interpreted
as a conceptual framework, capturing the kinds of properties of hypotheses one
acknowledges. A paradigm and the principles together entail a prior probability
distribution; the theory allows statements of the form,



INDUCTION AND INNATENESS 163

Hypothesis set )
and likelihoods | | Evidence
Variable inductive method
- - — A 4 A4
Variable prior probabilities )
Bayes’ Posterior
o —» Theorem > probabilities
Non- Pr|n0|p_les_ of
inductive > apriori
variable logical
probability

Figure 3.3: The structure of a sought-after theory of logical induction. The prior probability
distribution should follow from the combination of a small number of rationality principles—
things a rational agent ought to do—and some non-inductive variable with a meaningful inter-

pretation.
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If one has paradigm @, then one ought to have prior probability distribution
Pg(h), as dictated by the symmetry-related principles of prior probability deter-
mination.

| nnateness

The brain learns. It therefore entertains hypotheses, and implements inductive
methods. What do we mean by a hypothesis in regards to the brain? Here
are a couple examples. The human brain quickly learns the grammar of natural
language, and there are (infinitely) many possible hypotheses concerning which
grammar is the correct one. Kids eventually converge to the correct grammar;
i.e., after sufficient accumulation of evidence, they impart the highest degree
of belief to the correct (or nearly correct) grammatical hypothesis. Another
example is vision. The retina is a two-dimensional sheet, and the world is three-
dimensional, with many properties such as reflectance and object type. The
information on the retina cannot uniquely specify the thing in the world that
caused it, the reason being that there are infinitely many things in the world that
may have caused it. Each possible cause of the retinal stimulus is a “perceptual
hypothesis,” and after acquiring experience in the world, upon presentation of a
stimulus, the visual system typically finds one perceptual hypothesis to be more
probable than the others, which is why we see just one scene at a time most of
the time. When the probabilities are tied between two perceptual hypotheses,
we jump back and forth between them, as in bistable stimuli such as the Necker
Cube (which is just a line drawing of a cube, which can be seen in one of two
orientations). These two examples for hypotheses entertained by the brain do
not even scratch the surface; the brain indeed is a kind of learning machine,
and thus entertains possible hypotheses at every turn.

Not only does the brain learn, but it is thought by many to enter the world
a blank slate, and to be endowed with powerful and general learning abilities.
One can get the impression that the cortex is some kind of universal learning
engine. The relatively homogenous nature of the anatomy and connectivity of
the cortex is one reason scientists come away with this impression: the cortex
is a few millimeter thick sheet (its exact thickness depending on the brain’s
size), with six layers, and with statistically characterized connectivity patterns
for the neurons within it. Roughly, the cortex seems to be built from many re-
peating units called “minicolumns.” And although the cortex is divided up into
distinct areas, connecting to other areas primarily via myelinated white matter
axons, and although the areas often have distinguishing anatomical features,
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they appear to be fairly similar in basic design. The high degree of plasticity of
the cortex also suggests that it is a general learning machine, not a prisoner to
instinct. When, for example, a limb is lost, somatosensory areas formerly de-
voted to the limb sometimes become employed by other areas. Also, the basic
connectivity features of our cortex do not appear much different than that of
monkey or cat, animals leading drastically different lives. The intuitive conclu-
sion sometimes drawn is that we differ from monkeys merely in that our brains
are relatively much larger, and that our ecologies and thus experiences are dif-
ferent. Our perception of the world appears to rely on general learning strate-
gies by the visual system. People raised in non-carpentered environments, like
Bushmen, do not experience some of the classical geometrical illusions that
we find illusory (Segall et al., 1966). Even thirst and hunger, two appetitive
states one might imagine would be innate if anything is innate, appear to be
learned (Changizi et al., 2002b): rats do not know to orient toward a known
water source when cellularly dehydrated unless they have experienced dehy-
dration paired with drinking water, and similarly they do not know to orient
toward a known food source when food restricted unless they have experienced
food restriction paired with eating.

But being highly homogeneous and plastic does not entail that the brain
does not possess innate content, or knowledge. Whatever is innate could well
be wrapped up in the detailed connectivity patterns in the brain. And a strong
role for experience does not mean the cortex is a universal learning machine.
Even those scientists that are fans of a strongly innate brain, such as those that
believe that grammar is innate (e.g., Chomsky, 1972; Pinker, 1994), obviously
believe in an immense role for learning.

With an understanding of the riddle of induction under our belts, we can
say, without knowing anything about the particulars of our brains, that we must
enter the world with innate knowledge. There is no universal learning machine.
There are, instead, just lots and lots of different inductive methods. Whatever
our brains are doing when they learn, they are engaging in an inductive method
(although perhaps a different inductive method for different kinds of learning).
As discussed earlier, the brain must therefore, in effect, be making an assump-
tion about the world in the form of a prior probability distribution over the
possible hypotheses. That is, in order to learn, brains must enter the world with
something equivalent to preconceptions about the degrees of confidence of all
the possible hypotheses. Brains are not blank slates; they are born with what
are, in effect, a priori assumptions about the world.
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What would a theory of innateness be?

Brains, then, come furnished with an inductive method; i.e., they have some
way by which they take evidence and determine the posterior probabilities of
hypotheses. Different brain types—e.g., human versus cat—may employ dif-
ferent inductive methods, and these differences are innate. We will assume that
the principal innate differences between brain types are due to their instantiat-
ing different inductive methods. (They may also differ in their choice of what
hypotheses to consider in the first place, and they may well differ concerning
what things matter to them (i.e., utilities).)

What | wish to consider here is a theory of innateness, a theory aimed at
characterizing the nature of the information that must be innately generated.
How much must innately differ between two kinds of brain (or two parts of the
same brain) in order for them to possess distinct inductive methods? The the-
ory of innateness | seek is not one that actually claims that brains conform to
the theory. Rather, the aim is to construct a mathematical theory, or framework,
within which we can conceptually distinguish among the kinds of structure re-
quired for an innate inductive method. With a theory of innateness in hand,
we will then have the conceptual apparatus to begin to speak about the prin-
ciples governing how brains—or any intelligent learning agents—have innate
inductive methods.

Here is one thing that we would like out of a theory of innateness. | have
already mentioned that brains of different kinds have a lot in common. It would
accordingly be useful to find a theory of innateness that postulates no greater
innate differences than are absolutely necessary to account for the different
inductive methods used. We would like to be able to model brains of differ-
ent types—i.e., brains employing different inductive methods—as following
the same underlying principles, principles used in determining their inductive
method. All these brains are, after all, brains, and the way they go about their
learning should be describable using universal principles. Furthermore, these
principles should be rationality principles of some kind, or principles stating
what a rational agent would do. We would then be able to model brains hav-
ing different innatenesses as nevertheless being similar to the extent that they
follow the same rationality principles. We would be able to say that all these
kinds of brains may be different in some regard that specifies what is innate,
but that in all other ways we may model these brains identically.

The second aspect of our theory of innateness that requires concern is the
distinguishing feature between brains of different types—the feature that is the
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possessor of the innate information. There must be some variable property of
brains, distinct settings of the variable which lead to distinct inductive methods
used by the brain. As mentioned earlier, the theory of innateness for which we
search would postulate no greater innate differences than are absolutely neces-
sary to account for the different inductive methods used. Accordingly, we want
the variable that determines the innate differences to be as weak as possible.
Furthermore, innate content is derided by many because it seems absurd that,
say, natural language grammar could be encoded into the brain at birth. Surely
it is an incredible claim that brains enter the world with a priori beliefs, or as-
sumptions. With this in mind, we would also like the “innateness variable” to
say as little as possible about the world; i.e., to be non-inductive. Finally, this
innateness variable should be interpretable in some plausible fashion; if it has
no interpretation, then one begins to suspect that it is just a stand-in for an a
priori inductive assumption.

In short, we would like a theory of innateness that models brains, or any in-
telligent agent, as following fixed principles of rationality in their learning, and
models the differences with an innateness variable that is weak, non-inductive,
and has a meaningful interpretation.

If you recall the earlier subsection on what we want out of a theory of log-
ical probability, you will notice a close connection to that and to what we here
want out of a theory of innateness. This is not a coincidence. The discovery of
a theory of logical probability of the kind described would state how, through
a fixed set of prior probability determination principles, a rational agent with
a setting of the non-inductive variable should proceed in assigning his prior
probabilities, and consequently what inductive method he ought to follow. On
the one hand, the theory would tell us what we ought to do, but on the other
hand, the theory tells us what a rational agent will, in fact, do—since this agent
will do what he should. If our interest is in modeling innateness in assumed-to-
be-rational brains, then the theory of logical probability can be used to describe
brains, not just to say how brains ought to perform.

Let us go through the connection between a theory of induction and a the-
ory of innateness more slowly, beginning with the earlier Figure 3.1. One way
to treat innateness differences in different brain types is to postulate that they
are governed by entirely different principles altogether. Brains of different
types are, in regards to learning, just (computable) functions of any old kind
taking evidence and outputting posterior probabilities. Each brain would in-
nately make different assumptions about the world, and follow different rules
concerning how evidence supports hypotheses (i.e., follow different evidence
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principles). But we wish to be able to retain the view that brains and other intel-
ligent agents learn in a rational fashion, and thus are all fundamentally similar,
following identical principles, and differing only in regard to some small, in-
terpretable, weak variable that does not correspond to an assumption about the
world.

Bayesianism provides a great first step toward satisfying these demands,
just as it provided a great first step for a theory of logical induction. Figure
3.2 was our corresponding figure for the problem of induction, and it is apt to
look at it again for innateness. Bayes’ Theorem is helpful toward a theory of
innateness and learning because it allows us to treat all agents, or brains, as
following Bayes’ Theorem in their modification of their degrees of confidence
in hypotheses in the light of evidence. And the Bayesian evidence principle is
not just any old evidence principle, it seems to be the right principle—it is the
way one should use evidence to modify the degree of confidence in hypotheses.
This is why Bayesian approaches have been so popular in the psychological,
brain and decision sciences. This Bayesian framework is used to model the
visual system, memory, learning, behavior, economic agents and hosts of other
cases where there is some kind of “agent” dealing with an uncertain world.
The argument goes something like this: (a) These agents have probably been
selected to learn in an optimal, or rational, manner. (b) The optimal learning
manner is a Bayesian one. (c) Therefore, we may treat these agents as follow-
ing Bayesian principles. The Bayesian framework also severely constrains the
space of possible inductive methods, from anything-goes down to only those
using its evidence principle.

As powerful as the Bayesian framework is, it leaves us with some resid-
ual dissatisfaction concerning a theory of innateness. The Bayesian framework
has prior probabilities that differ between agents that follow different induc-
tive methods. A prior probability distribution, then, is the innateness variable.
Brains that differ in innateness would be postulated to enter the world with
different a priori beliefs about the degree of confidence in the hypotheses. As
discussed earlier, this is one thing we want to avoid with a theory of innate-
ness. We would like it to be the case that innateness can be much more subtle
than a priori beliefs about the world in the head. Perhaps there are further
principles—principles beyond Bayes’ Theorem—that an optimally engineered
agent will follow, so that two such agents might innately differ in some non-
inductive fashion, yet by following these fixed principles they come to have
different prior probabilities. Figure 3.3 from earlier is again appropriate, for it
shows what we are looking for. Such a theory would even further constrain the
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space of possible inductive methods, from any-prior-probability-distribution-
goes down to only those using the fixed principles of prior probability determi-
nation.

That is our goal for a theory of innateness. The theory that | will propose
in the next section—called Paradigm Theory—consists of fixed symmetry and
symmetry-like principles of rationality—or principles of non-arbitrariness—
which | argue any rational agent will follow. The non-inductive variable is
something | call a “paradigm”, which is just the kinds of hypotheses the agent
acknowledges; for example, you and | might possess the same hypothesis set,
but I may carve it up into kinds differently than do you. The intuition is that
we have different conceptual frameworks, or belong to different (Kuhnian)
paradigms. Innateness differences, then, would be attributable to differences in
the conceptual frameworks they are born with. But in all other regards agents,
or brains, of different innatenesses would be identical, having been selected to
follow fixed optimal, or rational, principles, both of prior probability determi-
nation and of evidence.

Avre there really innate paradigms in the head? | don’t know, and at the
moment it is not my primary concern. Similarly, the Bayesian framework is
widely considered a success, yet no one appears particularly worried whether
there is any part of the developing brain that corresponds to prior probabilities.
The Bayesian framework is a success because it allows us to model brains as
if they are rational agents, and it gives us the conceptual distinctions needed
to talk about evidence principles and a priori degrees of belief in hypotheses.
Similarly, the importance of Paradigm Theory in regards to innateness will be
that it allows us to model brains as if they are rational agents, giving us more
conceptual distinctions so that, in addition to evidence principles and a pri-
ori degrees of belief in hypotheses, we can distinguish between principles of
non-arbitrariness for prior probability determination and a priori conceptual
frameworks. Paradigm Theory gives us the power to make hypotheses we oth-
erwise would not be able to make: that brains and intelligent learners could
have their innate inductive methods determined by innate, not-about-the-world
paradigms, along with a suite of principles of rationality. Whether or not brains
actually utilize these possibilities is another matter.
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In this section | introduce a theory of logical probability (Changizi and Barber,
1998), with the aim of satisfying the criteria | put forth in the previous section.
The plan is that it will simultaneously satisfy the demands | put forward for a
theory of innateness. The theory’s name is “Paradigm Theory,” and it replaces
prior probabilities with a variable that is interpreted as a conceptual framework,
and which we call a “paradigm.” A paradigm is roughly the way an agent
“carves up the world”; it is the kinds of hypotheses acknowledged by the agent.

[The idea that induction might depend on one’s conceptual framework is
not new. For example, Harsanyi (1983, p. 363) is sympathetic to a depen-
dency on conceptual frameworks for simplicity-favoring in induction. Salmon
(1990) argues for a Kuhnian paradigmatic role for prior probabilities. Earman
(1992, p. 187) devotes a chapter to Kuhnian issues including paradigms. Di
Maio (1994, especially pp. 148-149) can be interpreted as arguing for a sort of
conceptual framework outlook on inductive logic. DeVito (1997) suggests this
with respect to the choice of models in curve-fitting. Also, Gardenfors (1990)
develops a conceptual framework approach to address Goodman’s riddle, and
he attributes a conceptual framework approach to Quine (1960), Carnap (1989)
and Stalnaker (1979).]

Having a paradigm, or conceptual framework, cannot, all by itself, tell us
how we ought to proceed in our inductions. Oughts do not come from non-
oughts. As discussed in the previous section, we are looking for principles of
ought telling us how, given a paradigm, we should assign a priori degrees of
belief in the hypotheses. | will put forward three symmetry-related principles
that enable this.

Before moving to the theory, let us ask where the hypothesis set comes
from. This is a difficult question, one to which | have no good answer. The
difficulty is two-fold. First, what hypotheses should one include in the hypoth-
esis set? And second, once this set is chosen, how is that set parameterized?
I make some minimal overtures toward answering this in Changizi and Barber
(1998), but it is primarily an unsolved, and possibly an unsolvable problem. |
will simply assume here that the hypothesis set—a set of mutually exclusive
hypotheses—and some parameterization of it is a given.
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3.1.1 A brief first-pass at Paradigm Theory

Before presenting Paradigm Theory in detail, | think it is instructive to give a
short introduction to it here, with many of the intricacies missing, but never-
theless capturing the key ideas. Paradigm Theory proposes to replace the vari-
able prior probabilities of the Bayesian framework with variable “paradigms,”
which are interpreted as comprising the inductive agent’s way of looking at
the set of hypotheses, or the agent’s conceptual framework. For example, you
and | might share the same hypothesis set, but | might acknowledge that there
are simple and complex hypotheses, and you might, instead, acknowledge that
some are universal generalizations and some are not. More generally, a parad-
igm consists of the kinds of hypotheses one acknowledges. One of the most
important aspects of paradigms is that they do not make a claim about the
world; they are non-inductive. If, in complete ignorance about the world, |
choose some particular paradigm, | cannot be charged with having made an
unjustifiable assumption about the world. Paradigms are just a way of carving
up the space of hypotheses, so they make no assumption. Prior probabilities,
on the other hand, are straightforwardly claims about the world; namely, claims
about the a priori degree of confidence in the hypotheses. The justification of
induction in Paradigm Theory rests not on a variable choice of prior probabili-
ties as it does in the Bayesian framework, but, instead, on a variable choice of
a non-inductive paradigm. Paradigm Theory puts forth three principles which
prescribe how prior probabilities ought to be assigned given that one possesses
a paradigm. Different inductive methods differ only in the setting of the parad-
igm, not on any a priori differences about claims about the world or about how
one ought to go about induction.

To understand the principles of prior probability determination, we have to
understand that any paradigm naturally partitions the hypothesis set into dis-
tinct sets. [A partition of a set B is a set of subsets of B, where the subsets
do not overlap and their union is B.] The idea is this. From the point of view
of the paradigm—i.e., given the properties of hypotheses acknowledged in the
paradigm—there are some hypotheses which cannot be distinguished using the
properties in the paradigm. Hypotheses indistinguishable from one another are
said to be symmetric. Each partition consists of hypotheses that are symmetric
to one another, and each partition is accordingly called a symmetry type. Hy-
potheses in distinct partitions can be distinguished from one another. Since hy-
potheses cannot be distinguished within a symmetry type, the symmetry types
comprise the kinds of hypothesis someone with that paradigm can distinguish.
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Note that the symmetry types may well be different than the properties in the
paradigm; the properties in the paradigm imply a partition into symmetry types
of distinguishable (from the paradigm’s viewpoint) types of hypotheses.

With an understanding that paradigms induce a natural partition structure
onto the hypothesis set, | can state Paradigm Theory’s principles for how one
should assign prior probabilities. One principle states that each distinguishable
type of hypothesis should, a priori, receive the same degree of confidence; this
is the Principle of Type Uniformity. The intuition is that if one is only able
to distinguish between certain types of hypotheses—i.e., they are the kinds
of hypotheses one is able to talk about in light of the paradigm—and if there
is no apparatus within the paradigm with which some of these distinguished
types can a priori be favored (and there is no such apparatus), then it would
be the height of arbitrariness to give any one type greater prior probability than
another. The second principle states that hypotheses that are symmetric to one
another—i.e., the paradigm is unable to distinguish them—should receive the
same probability; this is the Principle of Symmetry. The motivation for this
is that it would be entirely arbitrary, or random, to assign different a priori
degrees of confidence to symmetric hypotheses, given that the paradigm has no
way to distinguish between them; the paradigm would be at a loss to explain
why one gets a higher prior probability than the other. There is one other
principle in the full Paradigm Theory, but it is less central than these first two,
and we can skip it in this subsection.

The Principle of Type Uniformity distributes equal shares of prior proba-
bility to each symmetry type, and the Principle of Symmetry distributes equal
shares of the symmetry type’s probability to its members. In this way a prior
probability distribution is determined from a paradigm and the principles. Par-
adigms leading to different symmetry types usually lead to different prior prob-
ability distributions. Justifiable inductive methods are, then, all the same, in
the sense that they share the Bayesian principle of evidence, and share the
same principles of prior probability determination. They differ only in having
entered the world with different ways of conceptualizing it. | can now make
claims like, “If you conceptualize the world in fashion @, then you ought to
have prior probabilities [, (H ) determined by the principles of Paradigm The-
ory. This, in turn, entails a specific inductive method you ought to follow, since
you ought to follow Bayes’ Theorem in the application of evidence to your
probabilities.”

The remainder of this subsection, and the next subsection, develop this ma-
terial in detail, but if you wish to skip the details, and wish to skip example
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applications of Paradigm Theory (to enumerative induction, simplicity favor-
ing, curve-fitting and more), you may jump ahead to Section 3.3.

3.1.2 Paradigms, Symmetry and Arbitrariness

In the next subsection | will present the principles of prior probabilities de-
termination, i.e., principles of ought which say what one’s prior probabilities
should be given that one has a certain paradigm. But first we need to intro-
duce paradigms, and to motivate the kinds of symmetry notions on which the
principles will rest.

Paradigms

Let us begin by recalling that we are assuming that we somehow are given
a hypothesis set, which is a set filled with all the hypotheses we are allowed
to consider. The hypotheses could concern the grammar of a language, or the
curve generating the data, and so on. The hypothesis set comprises an inductive
agent’s set of all possible ways the world could be (in the relevant regard).

Now, what is a paradigm? A paradigm is just a “way of thinking” about
the set of hypotheses. Alternatively, a paradigm is the kinds of similarities and
differences one appreciates among the hypotheses. Or, a paradigm stands for
the kinds of hypotheses an inductive agent acknowledges. A paradigm is a kind
of conceptual framework; a way of carving up the set of hypotheses into distinct
types. It is meant to be one way of fleshing out what a Kuhnian paradigm might
be (Kuhn, 1977). If the hypothesis set is the “universe,” a paradigm is the
properties of that “universe,” a kind of ontology for hypothesis sets. When an
inductive agent considers there to be certain kinds of hypotheses, | will say that
the agent acknowledges those kinds, or acknowledges the associated properties.
I do not mean to suggest that the agent would not be able to discriminate,
or notice, other properties of hypotheses; the agent can presumably tell the
difference between any pair of hypotheses. The properties in the paradigm,
however, are the only properties that are “sanctioned” or endowed as “genuine”
properties in the ontology of that universe of hypotheses.

For example, suppose the hypothesis set is the set of six outcomes of a roll
of a six-sided die. One possible paradigm is the one that acknowledges being
even and being odd; another paradigm is the one that acknowledges being small
(three or less) and big (four or more). Or, suppose that the hypothesis set is the
set of all points in the interior of a unit circle. One possible paradigm is the one
that acknowledges being within distance 0.5 from the center. Another possible
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paradigm would be the one acknowledging the different distances from the
center of the circle; that is, points at the same radius would be of the same
acknowledged kind. For a third example, suppose the hypothesis set is the
set of all possible physical probabilities p of a possibly biased coin; i.e., the
hypothesis set is H = [0, 1], or all the real numbers from 0 to 1 included.
One possible paradigm is the one that acknowledges the always-heads (p = 0)
and always-tails (p = 1) hypotheses, and lumps the rest together. Another
paradigm on this hypothesis set could be to acknowledge, in addition, the coin-
is-fair hypothesis (p = 1/2).

For each of these examples, there is more than one way to carve up the
hypothesis set. One person, or inductive community, might acknowledge prop-
erties that are not acknowledged by another person or community. Where do
these properties in the paradigm come from? From Paradigm Theory’s view-
point it does not matter. The properties will usually be interpreted as if they are
subjective. There are two kinds of subjective interpretations: in the first kind,
the properties in the paradigm have been consciously chosen by the inductive
agent, and in the second kind, the properties are in the paradigm because the
inductive agent has evolved or been raised to acknowledge certain properties
and not others.

Recall that our aim for a theory of logical probability was to have an in-
terpretable, non-inductive variable to replace prior probabilities. In Paradigm
Theory, the variable is the paradigm, and we have just seen that paradigms are
interpreted as conceptual frameworks. But we also want our variable—namely,
paradigms—to also be non-inductive, or not-about-the-world. (And, similarly,
for our hoped-for theory of innateness, the innate content was to have some
interpretable, non-inductive variable.)

Are paradigms about the world? A paradigm is just the set of properties
acknowledged, and there is no way for a paradigm to favor any hypotheses
over others, nor is there any way for a paradigm to favor any properties over
others—each property is of equal significance. Paradigms cannot, say, favor
simpler hypotheses, or disfavor hypotheses inconsistent with current ontolog-
ical commitments; paradigms can acknowledge which hypotheses are simpler
than others, and acknowledge which hypotheses are inconsistent with current
ontological commitments. Paradigms make no mention of degrees of belief,
they do not say how inductions ought to proceed, and they do not presume that
the world is of any particular nature. Do not confuse a paradigm with infor-
mation. Being unbiased, the properties in the paradigm give us no information
about the success or truth of any hypothesis, and in this sense the paradigm is
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not information. Therefore, paradigms are non-inductive.

To help drive home that paradigms are non-inductive, suppose that an agent
discounts certain hypotheses on the basis of something not measured by the
paradigm (e.g., “too complex™) or favors some properties over others. Parad-
igm Theory is not then applicable, because the inductive agent now effectively
already has prior probabilities. Paradigm Theory’s aim is to attempt to defend
inductive beliefs such as priors themselves. If an agent enters the inductive
scenario with what are in effect prior probabilities, then Paradigm Theory is
moot, as Paradigm Theory is for the determination of the priors one should
have. Consider the following example for which Paradigm Theory is inappli-
cable. A tetrahedral die with sides numbered 1 through 4 is considered to have
landed on the side that is face down. Suppose one acknowledges that one of
the sides, side 4, is slightly smaller than the others, and acknowledges nothing
else. The paradigm here might seem to be the one acknowledging that side 4
is a unique kind, and the others are lumped together. If this were so, Parad-
igm Theory would (as we will see) say that 4 should be preferred. But side
4 should definitely not be preferred! However, Paradigm Theory does not ap-
ply to cases where one begins with certain inductive beliefs (e.g., that smaller
sides are less likely to land face down). Paradigm Theory is applicable in those
kinds of circumstances where one has not yet figured out that smaller sides are
less likely to land face down. [There may remain an issue of how we assign
a precise prior probability distribution on the basis of an imprecise inductive
belief such as “smaller sides are less likely to land face down,” but this issue
of formalization of imprecise inductive beliefs is a completely different issue
than the one we have set for ourselves. It is less interesting, as far as a theory
of logical probability goes, because it would only take us from imprecise in-
ductive beliefs to more precise inductive beliefs; it would not touch upon the
justification of the original imprecise inductive belief.]

I now have the concept of a paradigm stated, but | have not quite formally
defined it. Here is the definition.

Definition 1 A paradigm is any set of subsets of the hypothesis set that is
closed under complementation. The complements are presumed even when, in
defining a paradigm, they are not explicitly mentioned. A

Recall that when you have a set of objects of any kind, a property is just a
subset of the set: objects satisfying the property are in the set, and objects not
satisfying the property are not in the set (i.e., are in the complement of the set).
The definition of a paradigm just says that a paradigm is a set of subsets, or
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properties; and it says that for any property P in the paradigm, the property of
not being P is also in the set. And that is all the definition says.

Being Symmetric

We now know what a paradigm is: it is the non-inductive variable in our theory
of logical probability that | call Paradigm Theory, and paradigms are inter-
preted as conceptual frameworks, or ways of conceptualizing the set of hy-
potheses. Our goal is to present compelling principles of rationality which
prescribe how one ought to assign prior probabilities given one’s paradigm; we
would thereby have fixed principles of prior probability determination that all
rational agents would follow, and all justifiable differences in inductive meth-
ods would be due to differences in the way the inductive agent carved up the
world before having known anything about it.

Before we can understand Paradigm Theory’s principles of prior proba-
bility determination, we must acquire a feel for the intuitive ideas relating to
symmetry, and in this and the following subsubsection | try to relate these in-
tuitions.

One of the basic ideas in the rational assignment of prior probabilities will
be the motto that names should not matter. This motto is, generally, behind
every symmetry argument and motivates two notions formally introduced in
this subsubsection. The first is that of a symmetry type. Informally, two hy-
potheses are of the same symmetry type if the only thing that distinguishes
them is their names or the names of the properties they possess; they are the
same type of thing but for the names chosen. One compelling notion is that hy-
potheses that are members of smaller symmetry types may be chosen with less
arbitrariness than hypotheses in larger symmetry types; it takes less arbitrari-
ness to choose more unique hypotheses. The principles of Paradigm Theory
in the Subsection 3.1.3, founded on different intuitions, respect this notion in
that more unique hypotheses should receive greater prior probability than less
unique hypotheses. The second concept motivated by the “names should not
matter” motto, and presented in the next subsubsection, is that of a defensibility
hierarchy, where picking hypotheses higher in the hierarchy is less arbitrary, or
more defensible. The level of defensibility of a hypothesis is a measure of how
“unique” it is. Subsection 3.1.3 describes how the principles of rationality of
Paradigm Theory lead to a prior probability assignment which gives more de-
fensible types of hypotheses greater prior probability. Onward to the intuition

pumping.
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Imagine having to pick a kitten for a pet from a box of five kittens, num-
bered 1 through 5. Imagine, furthermore, that you deem no Kitten in the litter
to be a better or worse choice for a pet. All these kittens from which to choose,
and you may not wish to pick randomly. You would like to find a reason to
choose one from among them, even if for no other reason but that one is dis-
tinguished in some way. As it turns out, you acknowledge some things about
these kittens: the first four are black and the fifth is white. These properties
of kittens comprise your paradigm. Now suppose you were to pick one of the
black Kittens, say Kitten #1. There is no reason connected with their colors you
can give for choosing #1 that does not equally apply to #2, #3 and #4. “I’ll
take the black kitten” does not pick out #1. Saying “I’ll take kitten #1” picks
out that first kitten, but these number-names for the kittens are arbitrary, and
had the first four kittens been named #2, #3, #4 and #1 (respectively), “I’ll take
kitten #1” would have picked out what is now called the fourth kitten. #1 and
#4 are the same (with respect to the paradigm) save their arbitrary names, and
we will say that they are symmetric; in fact, any pair from the first four are
symmetric.

Imagine that the five kittens, instead of being just black or white, are each a
different color: red, orange, yellow, green and blue, respectively. You acknowl-
edge these colors in your paradigm. Suppose again that you choose Kitten #1.
Unlike before, you can at least now say that #1 is “the red one.” However,
why is redness any more privileged than the other color properties acknowl-
edged in this modified paradigm? ‘red’ is just a name for a property, and had
these five properties been named ‘orange’, ‘yellow’, ‘green’, ‘blue’ and ‘red’
(respectively), “the red one” would have picked out what is now called the blue
one. #1 and #5 will be said to be symmetric; in fact, each pair will be said to
be symmetric.

For another example, given an infinite plane with a point above it, consider
the set of all lines passing through the point. If the plane and point “inter-
act” via some force, then along which line do they do so? This question was
asked by a professor of physics to Timothy Barber and myself as undergrad-
uates (we shared the same class), and the moral was supposed to be that by
symmetry considerations the perpendicular line is the only answer, as for ev-
ery other line there are lines “just as good.” In our theoretical development
we need some explicit paradigm (or class of paradigms) before we may make
conclusions. Suppose that you acknowledge the properties of the form “having
angle 8 with respect to the plane,” where a line parallel to the plane has angle
0. Any pick of, say, a parallel line will be arbitrary, as one can rotate the world
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about the perpendicular line and the parallel line picked would become another
one. Each parallel line is symmetric to every other. The same is true of each
non-perpendicular line; for any such line there are others, infinitely many oth-
ers, that are the same as far as the paradigm can tell. The perpendicular line is
symmetric only with itself, however.

In the remainder of this subsubsection we make the notion of symmetry
precise, but there is no real harm now skipping to the next subsubsection if
mathematical details bother you. The following defines the notion of being
symmetric.

Definition 2 Fix hypothesis set H and paradigm (. h; and hy are (Q-Ssymmetric
in H if and only if it is possible to rename the hypotheses respecting the un-
derlying measure such that the paradigm is unchanged but the name for iy be-
comes the name for hy. Formally, for p: H — H, if X C H then let p(X) =
{p(z)|x € X}, and if @ is a paradigm on H, let p(Q) = {p(X)|X € Q}.
h1 and hy are Q-symmetric in H if and only if there is a measure-preserving
bijection p : H — H such that p(Q) = @ and p(hy) = ha. A

In the definition of ‘@Q-symmetric’ each measure-preserving bijection p :
H — H is arenaming of the hypotheses. @ represents the way the hypothesis
set H “looks,” and the requirement that p(Q) = @ means that the renaming
cannot affect the way H looks. For example, if H = {ly, ha, hs} with names
‘a’, ‘b’, and ‘¢, respectively, and Q@ = {{hy,ha},{h2, h3}}, the renaming
p1: (a,b,¢) — (c,b,a) preserves @, but the renaming p : (a,b,¢) — (c,a,b)
gives po(Q) = {{hs,h1},{h1,ha}} # Q. Suppose we say, “Pick a.” We are
referring to h;. But if the hypotheses are renamed via p; we see H in exactly
the same way yet we are referring now to hg instead of hq; and thus h; and hs
are Q-symmetric. Two hypotheses are QQ-symmetric if a renaming that swaps
their names can occur that does not affect the way H looks. Only arbitrary
names distinguish Q-symmetric hypotheses; and so we say that (Q-symmetric
hypotheses cannot be distinguished non-arbitrarily. Another way of stating this
is that there is no name-independent way of referring to either iy or hz because
they are the same symmetry type. h; and hg are of the same type in the sense
that each has a property shared by just one other hypothesis, and that other
hypothesis is the same in each case.

But cannot one distinguish h; from hg by the fact that they have different
properties? The first property of @ is, say, ‘being red,” the second ‘being short.’
hq is red and not short, A3 is short and not red. However, so the intuition goes,
just as it is not possible to non-arbitrarily refer to 7y because of the “names
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should not matter” motto, it is not possible to non-arbitrarily refer to the red
hypotheses since p1(Q) = @ and py({h1,ha}) = {hs, ha} (i.e., p1(red) =
short). Our attempt to refer to the red hypotheses by the utterance “the red
ones” would actually refer to the short hypotheses if ‘red” was the name for
short things. The same observation holds for, say, @@ = {{ha},{hs}, {h~}}.
The fact that each has a distinct property does not help us to refer to any given
one non-arbitrarily since each pair is (J-symmetric.

Consider hy from above for a moment. It is special in that it has the unique
property of being the only hypothesis having both properties. | say that a hy-
pothesis is Q-invariant in H if and only if it is Q-symmetric only with itself.
ho is invariant (the white Kitten was invariant as well, as was the perpendicular
line). Intuitively, invariant hypotheses can be non-arbitrarily referred to.

Three other notions related to ‘symmetric’ we use later are the following:
First, I(Q, H) is the set of Q-invariant hypotheses in H, and —I1(Q, H) is
its complement in H. Above, I(Q,H) = {hy}, and —=1(Q, H) = {hi, hs}.
Second, a paradigm @ is called totally symmetric on H if and only if the hy-
potheses in H are pairwise Q-symmetric. @ above is totally symmetric (on
{ha, hs, hy}). Third, ¢ is a Q-symmetry type in H if and only if ¢ is an equiv-
alence class with respect to the relation ‘Q-symmetric’. {h} and {hq, h3} are
the Q-symmetry types. In each of the terms we have defined, we omit Q) or H
when either is clear from context.

The Q-symmetry types are the most finely grained objects one can speak of
or distinguish via the paradigm . One can distinguish between no hypotheses
when the paradigm is totally Q-symmetric. When we say that a property is
“acknowledged” we mean that the property is in the paradigm. Acknowledging
a property does not mean that it is distinguishable, however, as we saw above
with @’. When we say that a property is “distinguishable” we mean that it is a
symmetry type (but not necessarily a set appearing in the paradigm). {/, ho}
is acknowledged in @ above but is not distinguishable. {/} is distinguishable
but not acknowledged in the paradigm.

Invariant hypotheses, then, can be non-arbitrarily referred to—non-invariant
hypotheses cannot. From the point of view of the paradigm, invariant hypothe-
ses can be “picked for a reason,” but non-invariant hypotheses cannot. In this
sense to pick an invariant hypothesis is to make a non-random choice and to
pick a non-invariant hypothesis is to make a random choice; however | will try
to avoid using this terminology for there are already many rigorous notions of
randomness and this is not one of them. Any “reason” or procedure that picks
a non-invariant hypothesis picks, for all the same reasons, any other hypothesis
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in its symmetry type; where “reasons” cannot depend on names. We say that
invariant hypotheses are more defensible, or less arbitrary, than non-invariant
ones. Picking a hypothesis that is not invariant means that had it been named
differently you would have chosen something else; this is bad because surely a
defensible choice should not depend on the names. Invariant hypotheses would
therefore seem, a priori, favorable to non-invariant hypotheses. More gener-
ally, the intuition is that hypotheses that are members of larger symmetry types
are less preferred, as picking one would involve greater arbitrariness. These in-
tuitions are realized by the rationality principles comprising Paradigm Theory
(as we will see later).

Consider the following example. H, = {ho, h1,h2,hs}, Qa = {{ho},
{h1}, {ha}, {he, hs}}. The reader may check that hg is symmetrical to h,, and
that ho and hg are each invariant. Suppose one chooses hy. Now suppose that
the hypotheses hg, h1, ho, hg are renamed hq, hg, ho, h3, respectively, under
the action of p. Since p(Q,) = Q., the choice of hypotheses is exactly the
same. However, this time when one picks hg, one has really picked h;. hg is
invariant because, intuitively, it is the only element that is not in a one-element
set. ho is invariant because, intuitively, it is the only element occurring in a
two-element set with an element that does not come in a one-element set.

One way to visualize paradigms of a certain natural class is as an undirected
graph. Hypothesis set H and paradigm ( are associated with undirected graph
G with vertices V and edges E C V2 if and only if there is a bijectionp : V' —
H such that @ = {{p(v)}|v € V} U {{p(v1),p(v2)} |(v1,v2) € E}}. This
just says that a graph can represent certain paradigms, namely those paradigms
that (i) acknowledge each element in H and (ii) the other sets in @ are each
composed of only two hypotheses. Consider the following graph.

U1 (%)
U3 V4 Us
The associated hypothesis set is H, = {v1,...,v5} and the associated parad-

igm is Qp = {{v1}, ..., {vs}} U {{v1,v2}, {v1,v3}, {v1,va}, {v1,05},
{v9,v5}}. Notice that {v; }, {ve, v5}, and {vs, v4} are the Q,-symmetry types;
so only vy is Qp-invariant—informally, it is the vertex that is adjacent to every
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other vertex. When visualized as graphs, one is able to see the symmetry.

Defensibility Hierarchy and Sufficient Reason

In the previous subsubsection I introduced the notion of a symmetry type, and
we saw that a paradigm naturally induces a partition on the hypothesis set,
where each partitions consists of hypotheses that are symmetric to one an-
other. The symmetry types are the kinds of hypotheses that the inductive agent
can distinguish, given his paradigm. Hypotheses that are members of smaller
symmetry types can intuitively be chosen with less arbitrariness, as there are
fewer hypotheses just like it as far as the paradigm is concerned. An invariant
hypothesis—a hypothesis that is all alone in its symmetry type—can be chosen
with the least arbitrariness since there are no other hypotheses symmetrical to
it. Invariant hypotheses can, intuitively, be picked for a reason.

Although an invariant hypothesis may be able to be picked for a reason and
is thus more defensible than non-invariant hypotheses, if there are one hundred
other invariant hypotheses that can be picked for one hundred other reasons,
how defensible can it be to choose that hypothesis? Why that reason and not
any one of the others? Among the invariant hypotheses one may wonder if
there are gradations of invariance. The way this may naturally be addressed is
to restrict the hypothesis set to the invariant hypotheses, consider the induced
paradigm on this set (we discuss what this means in a moment), and again ask
what is invariant and what is not. Intuitively, concerning those hypotheses that
can be picked for a reason, which of these reasons is justifiable? That is to say,
which of these hypotheses can now be picked for a reason?

For the remainder of this subsubsection we say how to make this precise,
but if you wish to skip the details, it will serve the purpose to simply know
that there is a certain well-motivated, well-defined sense in which a paradigm
induces a hierarchy of more and more defensible hypotheses, where being more
defensible means that it can, intuitively, be picked with less arbitrariness.

A paradigm ( is just the set of acknowledged properties of the hypotheses
in H. If one cares only about some subset A’ of H, then the induced paradigm
is just the one that acknowledges the same properties in H'. Formally, if H' C
H, let @ M H' denote {A N H'|A € Q}, and call it the induced paradigm on
H'. @ H'is Q after throwing out all of the hypotheses in H — H'. For
example, let H; = {ho, hi, hsa, hg, h4} and Qq = {{ho, hg}, {hl, hg}, {hg},
{hg,hs,h4}}. ho and hy are the non-invariant hypotheses; hy, hs and hy are
the invariant hypotheses. Now let H), be the set of invariant hypotheses, i.e.,
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H, = I(Qq, Hq) = {ha, hs, ha}. The induced paradigm is Q; = Q4 M H); =
{{h2}, {hs}, {h2, h3, ha}}.

Now we may ask what is invariant at this new level. hy and hg are together
in a symmetry type, and hy is invariant. hy is the least arbitrary hypothesis
among H/;; and since H, consisted of the least arbitrary hypotheses from Hy,
hy is the least arbitrary hypothesis of all. This hierarchy motivates the follow-
ing definition.

Definition 3 Fix hypothesis set H and paradigm Q. H° = H, and for any nat-
ural number n, Q" = QM H™. For any natural number n, H**! = 1(Q", H"),
which just means that "t consists of the invariant hypotheses from H". This
hierarchy is the defensibility hierarchy, or the invariance hierarchy. A

For instance, for H; and Q4 above we had:

o HY = {ho, h1, ha, h3, ha}, Q) = {{ho, ha}, {h1, ha}, {hs}, {h2, h3,
hy}}.

o Hj={ha, hs, ha}, Qy = {{h2}, {3}, {h2, h3, ha}}.
o Hi={h}, Q7= {{ha}}.

o H}={ha}, Q= {{ha}}.

e ctc.

For any hypothesis set H and paradigm () there is an ordinal number
a(Q, H) such that H* = H**1; this is the height of the defensibility hier-
archy of Q on H.2 We say that a hypothesis A is at level m in the defensibility
hierarchy if the highest level it gets to < « is the m". For H;/Qg, hy is at
level 1, or the second level of the defensibility hierarchy; A is at level 2, or
the third level. We let A,,, denote the set of hypotheses at level m. Hypotheses
at higher levels in the hierarchy are said to be more defensible. This defines
‘defensibility” respecting our intuition that, other things being equal, the more
defensible a hypothesis the less arbitrary it is. hy is the lone maximally defen-
sible hypothesis, and the intuition is that it is the most non-arbitrary choice and
should, a priori, be favored over every other hypothesis.

2When H is infinite it is possible that the least ordinal number « such that H* = H**! is
transfinite. To acquire hypothesis sets H” when /3 is a limit ordinal we must take the intersection
of H” forall v < 3. Q° = Q M H” (as usual).
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For H;/Q4 above, notice that he and hg are similar in that, although they
are not symmetric with each other at level 0, they are symmetric at level 1.
We will say that they are ()z-equivalent. Generally, two hypotheses are Q-
equivalent in H if and only if at some level H™ they become symmetric (i.e.,
there is a natural number n such that they are Q 1 H™-symmetric). Two in-
variant hypotheses may therefore be Q-equivalent but not Q)-symmetric. d
is a Q-equivalence type in H if and only if d is an equivalence class of Q-
equivalent hypotheses. {hg,hi1}, {h2,hs} and {hs} are the Q4-equivalence
types, whereas {hg, h1}, {ho}, {hs} and {hy} are the symmetry types. The
equivalence types are therefore coarser grained than the symmetry types. Two
members of an equivalence type are equally defensible. For Q-equivalence
types dy and do, we say that d; is less (Q-defensible than d, if and only if for all
h € di and b/ € ds, his less Q-defensible than /. Our central intuition was
that hypotheses that are more unique are to be preferred, a priori. Similarly
we are led to the intuition that more defensible types of hypotheses are to be
preferred, a priori. Paradigm Theory’s rationality principles, presented in the
next section, result in higher (actually, not lower) prior probability for more
defensible equivalence types.

As an example, consider the paradigm represented by the following graph,
where Hy = {a,...,l}.

[ T R

The symmetry types are {h, i}, {7, k, [} and every other vertex is in a singleton
symmetry type. The defensibility types are {h,:}, {4, k, 1}, {e, f, g}, {a,d}
and {b,c}. The defensibility levels are A® = {h,i,7j,k, 1}, Al = {e, f, g},
and A? = {a, b, c,d}.

We noted earlier that invariant hypotheses can be picked “for a reason,”
and this is reminiscent of Leibniz’s Principle of Sufficient Reason, although
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not with his metaphysical import? which says, in Leibniz’s words, “we can
find no true or existent fact, no true assertion, without there being a sufficient
reason why it is thus and not otherwise...” (Ariew and Garber, 1989, p. 217.)
Rewording our earlier intuition, we can say that invariant hypotheses can be
picked “for sufficient reason.” The problem with this statement is, as we have
seen, that there may be multiple invariant hypotheses, and what sufficient rea-
son can there be to pick from among them? This subsubsection’s defensibility
hierarchy answers this question. It is perhaps best said that lone maximally de-
fensible hypotheses may be picked “for sufficient reason.” More important is
that the defensibility hierarchy is a natural formalization and generalization of
Leibniz’s Principle of Sufficient Reason (interpreted non-metaphysically only),
giving a more finely grained breakdown of “how sufficient” a reason is for
picking a hypothesis: hypotheses in smaller symmetry types possess more suf-
ficient reason, and hypotheses higher in the hierarchy possess (other things
equal) more sufficient reason. Paradigm Theory, further, quantifies the degree
of sufficiency of reason with real numbers in [0,1], as we will soon see.

3.1.3 Paradigm Theory’s principles

In this subsection | present the guts of Paradigm Theory: its principles of ought.
Let us first, though, sum up the previous subsection: | showed how acknowl-
edging any set of subsets of a hypothesis set—i.e., a paradigm—naturally de-
termines a complex hierarchical structure. We saw that the “names should not
matter” motto leads to a partition of the hypothesis set into types of hypothe-
ses: the symmetry types. Among those hypotheses that are the lone members of
their symmetry type—i.e., the invariant (or “unique”) hypotheses—there may
be some hypotheses that are “more” invariant, and among these there may some
that are “even more” invariant, etc. This led to the defensibility, or invariance,
hierarchy. Hypotheses that “become symmetric” at some level of the hierarchy
are equivalent, and are said to be members of the same equivalence type.

We also noted in Subsection 3.1.2 the following related intuitions for which
we would like principled ways to quantitatively realize: a priori, (i) hypotheses
in smaller symmetry types are more favorable; or, more unique hypotheses are
to be preferred as it takes less arbitrariness to choose them, (ii) (equivalence)

3eibniz believed that Sufficient Reason arguments actually determine the way the world
must be. However, he did seem, at least implicitly, to allow the principle to be employed in a
purely epistemic fashion, for in a 1716 letter to Newton’s friend and translator Samuel Clarke,
Leibniz writes, “has not everybody made use of the principle upon a thousand occasions?”
(Ariew and Garber, 1989, p. 346).
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types of hypotheses that are more defensible are more favorable, and (iii) the
lone most defensible hypothesis—if there is one—is most favorable (this fol-
lows from (ii)). Each is a variant of the central intuition that less arbitrary
hypotheses are, a priori, more preferred.

These intuitions follow from the three rationality principles concerning
prior probabilities | am about to present. The principles are conceptually dis-
tinct from these intuitions, having intuitive motivations of their own. The fact
that two unrelated sets of intuitions converge in the way we see below is a sort
of argument in favor of Paradigm Theory, much like the way different intu-
itions on computability leading to the same class of computable functions is
an argument for Church’s Thesis. The motivations for stating each principle is
natural and intuitive, and the resulting prior probability distributions are natural
and intuitive since they fit with intuitions (i), (ii) and (iii).

The first subsubsection presents the three principles of rationality, the next
discusses the use of “secondary paradigms” to acquire more detailed prior
probability distributions, and the final subsubsection sets forth the sort of ex-
planations Paradigm Theory gives.

The Principles

Paradigm Theory consists of three principles of rationality that, from a given
paradigm (and a hypothesis set with a finite measure), determine a prior prob-
ability distribution. Paradigm Theory as developed in this section is only ca-
pable of handling cases where there are finitely many symmetry types® We

*1f one begins with H and @ such that there are infinitely many symmetry types, one needs
to restrict oneself to a proper subset H’ of H such that there are only finitely many symmetry
types with respect to the induced paradigm. There are some compelling rationality constraints
on such a restriction that very often suffice: (i) any two members of the same equivalence
type in H either both appear in H’ or neither, (ii) if an equivalence type from H appears in
H’, then (a) all more defensible equivalence types appear in H’, and (b) all equally defensible
equivalence types in H that are the same size or smaller appear in H’. These constraints on
hypothesis set reduction connect up with the observation that we do not seriously entertain all
logically possible hypotheses. This is thought by F. Suppe (1989, p. 398) “to constitute one of the
deepest challenges we know of to the view that science fundamentally does reason and proceed
in accordance with inductive logic.” These rationality constraints help guide one to focus on
the a priori more plausible hypotheses, ignoring the rest, and is a first step in addressing this
challenge. These constraints give us the ability to begin to break the bonds of a logic of discovery
of a prior assessment sort, and claim some ground also as a logic of discovery of a hypothesis
generation sort: hypotheses are generated in the first place by “shaving off” most of the other
logically possible hypotheses.
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will assume from here on that paradigms induce just finitely many symmetry
types.>

Assume hypothesis set H and paradigm @ are fixed. P(A) denotes the
probability of the set A. P({h}) is often written as P(h).

Principle of Type Uniformity

Recall that the symmetry types are precisely the types of hypotheses that
can be referred to with respect to the paradigm. Nothing more finely grained
than symmetry types can be spoken of. Prima facie, a paradigm gives us no
reason to favor any symmetry type (or “atom”) over any other. To favor one
over another would be to engage in arbitrariness. These observations motivate
the first principle of Paradigm Theory of Induction.

Principle of Type Uniformity: Every (symmetry) type of hypothesis is equally
probable.

There are other principles in the probability and induction literature that are
akin to the Principle of Type Uniformity. For example, if the types are taken
to be the complexions (where two strings are of the same complexion if they
have the same number of each type of symbol occurring in it), then Johnson’s
Combination Postulate (Johnson, 1924, p. 183) says to set the probability of
the complexions equal to one another. Carnap’s m* amounts to the same thing.

The (claimed) rationality of the Principle of Type Uniformity emanates
from the seeming rationality of choosing a non-arbitrary prior; to choose a
non-uniform prior over the symmetry types would mean to give some symme-
try types higher probability for no good reason. Is favoring some symmetry
types over others necessarily arbitrary? Through the eyes of a paradigm the
symmetry types are distinguishable, and might not there be aspects of symme-
try types that make some, a priori, favorable? If any are favorable, it is not
because any is distinguished among the symmetry types; each is equally dis-
tinguished. Perhaps some could be favorable by virtue of having greater size?
Size is, in fact, relevant in determining which sets are the symmetry types. Ac-
tually, though, it is size difference, not size, that is relevant in symmetry type
determination. Paradigms are not capable of recognizing the size of symmetry
types; symmetry types are the primitive entities, or atoms, in the paradigm’s

5This restriction ensures that the height of the defensibility hierarchy is finite (although hav-
ing infinitely many symmetry types does not entail a transfinite height).
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ontology. From the paradigm’s point of view, symmetry types cannot be fa-
vored on the basis of their being larger. Given that one possesses a paradigm
and nothing else (like particular inductive beliefs), it is plausible that anything
but a uniform distribution on the symmetry types would be arbitrary.

Now, perhaps one could argue that the weakness of paradigms—e.g., their
inability to acknowledge larger symmetry types—counts against Paradigm The-
ory. Paradigm Theory aims to be a “blank slate” theory of induction, taking
us from innocuous ways of carving the world to particular degrees of belief.
Paradigms are innocuous in part because of their weakness. Strengthening
paradigms to allow the favoring of symmetry types over others would have the
downside of decreasing the explanatory power; the more that is packed into
paradigms, the less surprising it is to find that, given them, they justify par-
ticular inductive methods. That is my motivation for such a weak notion of
paradigm, and given only such a weak paradigm, the Principle of Type Unifor-
mity is rational since to not obey it is to engage in a sort of arbitrariness.

Principle of Symmetry

The second principle of rationality is a general way of asserting that the
renaming of objects should not matter (so long as the paradigm @ is unaltered).
Recall the convention that the underlying measure on H is finite.

Principle of Symmetry: Within a symmetry type, the probability distribution is
uniform.

For finite H this is: hypotheses of the same type are equally probable, or,
hypotheses that can be distinguished only by their names or the names of their
properties are equally probable. Unlike the Principle of Type Uniformity whose
intuition is similar to that of the Classical Principle of Indifference (which says
that if there is no known reason to prefer one alternative over another, they
should receive equal probability), the Principle of Symmetry is truly a sym-
metry principle. Violating the Principle of Symmetry would result in a prior
probability distribution that would not be invariant under renamings that do not
alter the paradigm; names would suddenly matter. Violating the Principle of
Type Uniformity, on the other hand, would not contradict the “names should
not matter” motto (and is therefore less compelling).

If one adopts the Principle of Symmetry without the Principle of Type Uni-
formity, the result is a Generalized Exchangeability Theory. Each paradigm
induces a partition of symmetry types, and the Principle of Symmetry, alone,



188 CHAPTER 3

requires only that the probability within a symmetry type be uniform. When
the hypothesis set is the set of strings of outcomes (0 or 1) of an experiment
and the paradigm is such that the symmetry types are the complexions (see
@1, then the Principle of Symmetry just is Johnson’s Permutability Postulate
(Johnson, 1924, pp. 178-189), perhaps more famously known as de Finetti’s
Finite Exchangeability.

The Basic Theory

Carnap’s m*-based theory of logical probability (Carnap, 1950, p. 563)—
which | will call Carnap’s logical theory—uses versions of the Principles of
Type Uniformity and Symmetry (and leads to the inductive method he calls
c*). His “structure-descriptions,” which are analogous to complexions, are
given equal probability, which amounts to the use of a sort of Principle of
Type Uniformity on the structure-descriptions. Then the probabilities are uni-
formly distributed to his “state-descriptions,” which are analogous to individual
outcome strings of experiments, which amounts to a sort of Principle of Sym-
metry. But whereas Carnap (and Johnson) is confined to the case where the
partition over the state-descriptions is given by the structure-descriptions (or
for Johnson, the partition over the outcome strings is given by the complex-
ions), Paradigm Theory allows the choice of partition to depend on the choice
of paradigm and is therefore a natural, powerful generalization of Carnap’s ni -
based Logical Theory. The paradigm determines the symmetry types, and the
symmetry types play the role of the structure-descriptions. When the hypoth-
esis set is totally symmetric, one gets something akin to Carnap’s m/-based
logical theory (which he calls ¢').

It is convenient to give a name to the theory comprised by the first two
principles alone.

Basic Theory: Assign probabilities to the hypothesis set satisfying the Princi-
ples of Type Uniformity and Symmetry.

Applying the Basic Theory to H, and Q, from Subsection 3.1.2, we get
P(hg) = P(h1) = 1/6 and P(hy) = P(hs) = 1/3. Applying the Basic
Theory to Hy, and @, from the same subsection, we get P(v;) = 1/3, and the
remaining vertices each receive probability 1/6. Applying it to H; and Qg,

Notice that since the underlying measure of the hypothesis set is finite, the
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probability assignment for the Basic Theory is unique. For h € H let c¢(h)
be the cardinality of the symmetry type of h. Let w denote the number of
symmetry types in H. The following theorem is obvious.

Theorem 1 Fixfinite H. Thefollowing is true about the Basic Theory. For all

heH, Ph)= gy O

Theorem 1 may be restated more generally to include infinite hypothesis sets:
for any measure p and all A C H with measure p that are a subset of the same
symmetry type, P(A) = wiu

We see that the probability of a hypothesis is inversely proportional to both
the number of symmetry types and the number (or measure) of other hypothe-
ses of the same symmetry type as itself. The fraction 1/w is present for ev-
ery hypothesis, so c¢(h) is the variable which can change the probabilities of
hypotheses relative to one another. The more hypotheses in a type, the less
probability we give to each of those hypotheses; this fits with our earlier in-
tuition number (i) from the beginning of this section. The following corollary
records that the Basic Theory fits with this intuition and the intuition that in-
variant hypotheses are more probable. The corollary is true as stated no matter
the cardinality of the hypothesis set.

Theorem 2 The following are true about the Basic Theory.

1. Hypotheses in smaller symmetry types acquire greater probability.

2. Each invariant hypothesis receives probability 1/w, which is greater
than (in fact, at least twice as great as) that for any non-invariant hy-
pothesis. A

The Basic Theory is not Paradigm Theory, although when the defensibility
hierarchy has no more than two levels the two theories are equivalent. The Ba-
sic Theory does not notice the hierarchy of more and more defensible hypothe-
ses, and noticing the hierarchy will be key to providing a general explanation
for why simpler hypotheses ought to be favored. When | say things like, “only
the Basic Theory is needed to determine such and such probabilities,” | mean
that the probabilities are not changed upon the application of the third principle
(to be stated below) of Paradigm Theory.

Principle of Defensibility
The third principle of rationality is, as far as | know, not similar to any previous
principle in the induction and probability literature. It encapsulates an intuition
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similar to that used when | discussed gradations of invariance in Subsection
3.1.2. | asked: Among the invariant elements, which are more defensible?
Now | ask: Among the invariant elements, which are more probable? From the
viewpoint of the entire hypothesis set H the invariant hypotheses seem equally
and maximally defensible. But when focusing only on the invariant hypotheses
we see further gradations of defensibility. Similarly, from the viewpoint of the
entire hypothesis set H the invariant hypotheses look equally and maximally
probable. But when focusing only on the invariant hypotheses we see further
gradations of probability. The third principle of rationality says to refocus at-
tention on the invariant hypotheses.

Principle of Defensibility: Reapply the Principles of Type Uniformity, Symme-
try, and Defensibility to the set of invariant hypotheses (H = I(Q, H)) via
the induced paradigm (Q M H').

Since the Principle of Defensibility is one of the three rationality principles
mentioned in its own statement, it applies to itself as well. | have named the
principle the Principle of Defensibility because it leads to the satisfaction of
intuition (ii) from the beginning of this section, i.e., to more defensible types
of hypotheses acquiring higher prior probability. However, neither the intuitive
motivation for the principle nor the statement of the principle itself hints at this
intuition. The principle only gets at the idea that there is structure among the
invariant hypotheses and that it should not be ignored.

Paradigm Theory
With the three principles presented | can state Paradigm Theory.

Paradigm Theory: Assign probabilities to the hypothesis set satisfying the Prin-
ciples of Type Uniformity, Symmetry, and Defensibility.

The proposal for the prior probability assignment is to use the principles in
the following order: (i) Type Uniformity, (ii) Symmetry, and (iii) Defensibility
(i.e., take the invariant hypotheses and go to (i)). These principles amount to
a logical confirmation function, as in the terminology of Carnap, but ours is a
function of a hypothesis h, evidence e, and paradigm Q; i.e., c(h, e, Q).

Paradigm Theory is superior to the Basic Theory in the sense that it is able
to distinguish higher degrees of defensibility. Paradigm Theory on H,/Q, and
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H,/Q, from Section 3.1.2 behaves identically to the Basic Theory. Applying
Paradigm Theory to H; and Q) is different, however, than the Basic Theory’s
assignment. First we get, as in the Basic Theory, P(hy) = P(hy) = 1/8,
P(hy) = P(hs) = P(hy) = 1/4. Applying the Principle of Defensibility,
the probability assignments to i and h; remain fixed, but the 3/4 probability
assigned to the set of invariant hypotheses is to be redistributed among them.
With respect to {hq, hs, hs} and the induced paradigm {{hg, hs}, {h4}}, the
symmetry types are {hs, h3} and {h4}, SO each symmetry type receives prob-
ability (3/4)/2 = 3/8. The probabilities of hy, ... hy are, respectively, 2/16,
2/16, 3/16, 3/16, 6/16. Recall that h4 is the lone most defensible element but
the Basic Theory gave it the same probability as h, and hs3; Paradigm Theory
allows richer assignments than the Basic Theory.

It is easy to see that since the underlying measure of the hypothesis set is
finite and there are assumed to be only finitely many symmetry types, Paradigm
Theory assigns a unique probability distribution to the hypothesis set, and does
so in such a way that each hypothesis receives positive prior probability density
(i.e., priors are always “open-minded” within Paradigm Theory). Theorem 14
in the appendix at the end of this chapter examines some of its properties.
Unlike the Basic Theory, Paradigm Theory respects the intuition (number (ii))
that more defensible (less arbitrary) implies higher probability by giving the
more defensible equivalence types not less probability than the less defensible
equivalence types. Also, unlike the Basic Theory, Paradigm Theory respects
the intuition (number (iii)) that if a hypothesis is lone most defensible (the
only least arbitrary one) then it receives higher probability than every other
hypothesis. The following theorem states these facts; the proofs along with
other properties are given in the appendix to this chapter.

Theorem 3 The following are true about Paradigm Theory.

1. For all equivalence types d; and d», if d; isless defensible than ds, then
P(dy) < P(ds).

2. For all hypotheses h; h isthe lone most defensible if and only if for all
n # h, P(h') < P(h). A

Theorem 3 is an argument for the superiority of Paradigm Theory over the
Basic Theory.
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Secondary Paradigms

Suppose we have found the prior probability distribution on H given a parad-
igm @, and, say, half of the hypotheses end up with the same probability; call
this subset H*. Now what if we acknowledge other properties concerning H*,
properties which are, in some sense, secondary to the properties in the orig-
inal paradigm? May H*’s probabilities be validly redistributed according to
this secondary paradigm? After all, cannot any hypothesis set and paradigm be
brought to Paradigm Theory for application, including H* and this secondary
paradigm? The problem is that to do this would be to modify the original, or
primary probability distribution, and this would violate the principles in the
original application of Paradigm Theory.

Here is an example of the sort of thing | mean. Let H = {3,...,9} and
@ acknowledge the property of being prime. There are two symmetry types,
{4,6,8,9} and {3,5,7}, each receiving probability 1/2. Now suppose that
there are secondary paradigms for each symmetry type, in each case acknowl-
edging the property of being odd. The second symmetry type above remains
unchanged since all are odd, but the first gets split into {4, 6,8} and {9}, each
receiving probability 1/4. Notice that this is different than what a primary
paradigm that acknowledges both being prime and odd gives; in this case the
probability of {3,5,7}, {4,6,8} and {9} are 1/3, 1/3, 1/3 instead of, re-
spectively, 1/2, 1/4, 1/4, as before. The first method treats being prime as
more important than being odd in the sense that primality is used to determine
the large-scale probability structure, and parity is used to refine the probabil-
ity structure. The second method treats being prime and being odd on a par. A
more Kuhnian case may be where one allows the primary paradigm to acknowl-
edge scope, and allows the secondary paradigm to acknowledge simplicity; this
amounts to caring about scope first, simplicity second.

| generalize Paradigm Theory to allow such secondary paradigms in a mo-
ment, but | would first like to further motivate it. There is a sense in which
Paradigm Theory, as defined thus far, is artificially weak. For simplicity con-
sider only the Principles of Type Uniformity and Symmetry; i.e., the Basic
Theory. These two principles are the crux of the probability assignment on the
hypothesis set. Together they allow only two “degrees of detail” to probability
assignments: one assignment to the symmetry types, and another to the par-
ticular hypotheses within the symmetry types. The Principle of Defensibility
does allow further degrees of detail for the invariant hypotheses, and it accom-
plishes this without the need for secondary paradigms. But for non-invariant
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hypotheses there are just two degrees of detail. Why two? This seems to be a
somewhat artificial limit.

Allowing secondary paradigms enables Paradigm Theory to break this limit.
Paradigm Theory is now generalized in the following way: Secondary parad-
igms may modify the primary prior probability distribution by applying the
three principles to any subset H* such that the primary prior in H* is uni-
form. In other words, we are licensed to tinker with the primary prior using
secondary paradigms, so long as we tinker only on subsets that were originally
equiprobable. When H* and a secondary paradigm Q* are brought to Parad-
igm Theory for application, they can be treated as creating their own primary
distribution within H*. Secondary paradigms with respect to H* and Q* are
tertiary paradigms with respect to the original hypothesis set H and paradigm
Q. The point is that any degree of detail in the sense mentioned above is now
sanctioned, so long as there are n*"-ary paradigms for large enough n.

All this increase in power may make one skeptical that one can create any
prior one wants by an ad hoc tuning of the secondary (tertiary, and so on)
paradigms. An explanation by Paradigm Theory is only as natural and ex-
planatory as is the paradigm (primary, secondary, and so on) used (see Section
3.1.3). Ad hoc secondary paradigms create ad hoc explanations. The only
use of paradigms in this chapter beyond primary ones are secondary ones. |
use them later where they are quite explanatory and give Paradigm Theory the
ability to generalize a certain logical theory of Hintikka’s (o« = 0). | also note
in Subsection 3.2.3 their ability to give a non-uniform prior over the simplest
hypotheses. If in any particular application of Paradigm Theory there is no
mention of secondary paradigms, then they are presumed not to exist.

The Paradigm Theory Tactic

In the following section Paradigm Theory is used to explain why certain induc-
tive methods we tend to believe are justified are, indeed, justified. The general
tactic is two-fold. First, a mathematical statement concerning the power of
Paradigm Theory is given (often presented as a theorem). Second, an informal
explanatory argument is given. Paradigm Theory’s ability to justify induction
is often through the latter.

Most commonly, the mathematical statement consists of showing that par-
adigm @ entails inductive method 2. This alone only shows that inductive
method z is or is not within the scope of Paradigm Theory; and this is a purely
mathematical question. Such a demonstration is not enough to count as an ex-
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planation of the justification of inductive method . Although paradigm @ may
determine inductive method z, Q@ may be artificial or ad hoc and thereby not be
very explanatory; “who would carve the world that way?” If () is very unnatu-
ral and no natural paradigm entails inductive method z, then this may provide
an explanation for why inductive method z is disfavored: one would have to
possess a very strange conceptual framework in order to acquire it, and given
that we do not possess such strange conceptual frameworks, inductive method
x is not justified. Typically, the paradigm () determining inductive method x
is natural, and the conclusion is that inductive method « is justified because
we possess () as a conceptual framework. | do not actually argue that we do
possess any particular paradigm as a conceptual framework. Rather, “inductive
method = is justified because we possess paradigm (" is meant to indicate the
form of a possible explanation in Paradigm Theory. A fuller explanation would
provide some evidence that we in fact possess  as conceptual framework.

A second type of mathematical statement is one stating that every parad-
igm entails an inductive method in the class Z. The explanatory value of such a
statement is straightforward: every conceptual framework leads to such induc-
tive methods, and therefore one cannot be a skeptic about inductive methods in
Z; any inductive method not in Z is simply not rational. A sort of mathemati-
cal statement that sometimes arises in future sections is slightly weaker: every
paradigm @ of such and such type entails an inductive method in the class Z.
The explanatory value of this is less straightforward, for it depends on the sta-
tus of the “such and such type.” For example, open-mindedness is of this form
for the Personalistic (of Subjective) Bayesian on the hypothesis set H = [0, 1]:
every prior that is open-minded (everywhere positive density) converges in the
limit to the observed frequency. If the type of paradigm is extremely broad and
natural, and every paradigm not of that type is not natural, then one can con-
clude that inductive skepticism about inductive methods in Z is not possible,
unless one is willing to possess an unnatural paradigm; inductive skepticism
about inductive methods in Z is not possible because every non-artificial con-
ceptual framework leads to Z. Similar observations hold for arguments of the
form, “no paradigm @ of such and such type entails an inductive method in the
classY.”

These claims of the “naturalness” of paradigms emanate from our (often)
shared intuitions concerning what properties are natural. The naturalness of a
paradigm is not judged on the basis of the naturalness of the inductive method
to which it leads; this would ruin the claims of explanatoriness.
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3.2 Applications

3.21 Simple preliminary applications

By way of example we apply the Basic and Paradigm Theories to some prelim-
inary applications, first presented in Changizi and Barber (1998).

Collapsing to the Principle of Indifference

Paradigm Theory (and the Basic Theory) gives the uniform distribution when
the paradigm is empty. This is important because, in other words, Paradigm
Theory collapses to a uniform prior when no properties are acknowledged, and
this is a sort of defense of the Classical Principle of Indifference: be ignorant
and acknowledge nothing...get a uniform prior. More generally, a uniform
distribution occurs whenever the paradigm is totally symmetric. Since being
totally symmetric means that there are no distinctions that can be made among
the hypotheses, we can say that Paradigm Theory collapses to a uniform prior
when the paradigm does not have any reason to distinguish between any of
the hypotheses. Only the Principle of Symmetry—and not the Principle of
Type Uniformity—needs to be used to found the Principle of Indifference as a
subcase of Paradigm Theory.

Archimedes Scale

Given a symmetrical scale and (allegedly) without guidance by prior experi-
ment Archimedes (De aequilibro, Book |, Postulate 1) predicts the result of
hanging equal weights on its two sides. The hypothesis set in this case is plau-
sibly the set of possible angles of tilt of the scale. Let us take the hypothesis
set to include a finite (but possibly large) number, N, of possible tilting angles,
including the horizontal, uniformly distributed over the interval [—9C, 90°].
Archimedes predicts that the scale will remained balanced, i.e., he settles on
# = 0° as the hypothesis. He makes this choice explicitly on the basis of the
obvious symmetry; that for any 8 # (° there is the hypothesis —6# which is
“just as good” as 6, but & = 0° has no symmetric companion.

To bring this into Paradigm Theory, one natural paradigm is the one that
acknowledges the amount of tilt but does not acknowledge which way the tilt
is; i.e., @ = {{—0,0}/0° < 0 < 90°}. & = 0° is the only hypothesis in a
single-element set in (), and it is therefore invariant. Furthermore, every other
hypothesis can be permuted with at least its negation, and so 8 = ( is the only
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invariant hypothesis. With the paradigm as stated, any pair —6, 6 (with 8 > (°)
can permute with any other pair, and so there are two symmetry types: {0°}
and everything else. Thus, 0° receives prior probability 1/2, and every other
hypothesis receives the small prior probability 1/(2 - (N — 1)). Even if N is
naturally chosen to be 3—the three tilting angles are —9(°, 0° and 90°—the
prior probabilities are 1/4, 1/2 and 1/4, respectively.

Now let the paradigm be the one acknowledging the property of being
within 6° from horizontal, for every 6 € [0°,90°]. For each ¢ € H, {—0,6}
is a symmetry type, and this includes the case when § = (?, in which case the
symmetry type is just {0°}. Each symmetry type receives equal prior proba-
bility by the Principle of Type Uniformity, and by the Principle of Symmetry
each 6 # 0° gets half the probability of its symmetry type. (° gets all the
probability from its symmetry type, however, as it is invariant. Therefore it is,
a priori, twice as probable as any other tilting angle. If IV is chosen to be 3,
the prior probabilities for —90°, 0° and 90° are as before: 1/4, 1/2 and 1/4,
respectively.

Explanations for such simple cases of symmetry arguments can sometimes
seem to be assumptionless, but certain a priori assumptions are essential. Parad-
igm Theory explains Archimedes’ prediction by asserting that he possessed
one of the paradigms above as a conceptual framework (or some similar sort of
paradigm). He predicts that the scale will remained balanced because, roughly,
he acknowledges the angle of tilt but not its direction. Most natural paradigms
will entail priors favoring # = 0°, and | suspect no natural paradigm favors any
other.

Leibniz's Triangle

To a second historical example, I noted earlier the connection of Paradigm The-
ory to Leibniz’s Principle of Sufficient Reason (interpreted non-metaphysically),
and | stated that Paradigm Theory is a sort of generalization of the principle,
giving precise real-valued degrees to which a hypothesis has sufficient reason
to be chosen. Let us now apply Paradigm Theory to an example of Leibniz. In
a 1680s essay, he discusses the nature of an unknown triangle.

And so, if we were to imagine the case in which it is agreed that a triangle
of given circumference should exist, without there being anything in the givens
from which one could determine what kind of triangle, freely, or course, but
without a doubt. There is nothing in the givens which prevents another kind of
triangle from existing, and so, an equilateral triangle is not necessary. However,
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all that it takes for no other triangle to be chosen is the fact that in no triangle
except for the equilateral triangle is there any reason for preferring it to others.
(Ariew and Garber, 1989, p. 101.)

Here the hypothesis set is plausibly {(#,02,63)| 61 + 62 + 65 = 180°},
where each 3-tuple defines a triangle, 6; being the angle of vertex i of the
triangle. Now consider the paradigm that acknowledges the three angles of a
triangle, but does not acknowledge which vertex of the triangle gets which an-
gle; ie., Q = {{<91, 0o, 93>, <93, 01, 92>, <02, 03, 91>, <03, 0o, 91>, <91, 03, 92>,
(02,61,03)} | 61 + 02 + 03 = 180°}. This natural paradigm, regardless of the
hypothesis set’s underlying measure, results in (60°, 60°,60°) being the only
invariant hypothesis. In fact, every other of the finitely many symmetry types
is of the size continuum, and thus every hypothesis but the 60° one just men-
tioned receives infinitesimal prior probability. An explanation for why Leibniz
believed the equilateral triangle must be chosen is because he possessed the
conceptual framework that acknowledged the angles but not where they are.

Straight Line

Consider a hypothesis set H consisting of all real-valued functions consistent
with a finite set of data falling on a straight line (and let the underlying measure
be cardinality). It is uncontroversial that the straight line hypothesis is the most
justified hypothesis. Informally, | claim that any natural paradigm favors—if
it favors any function at all—the straight line function over all others, and that
this explains why in such scenarios we all feel that it is rational to choose the
straight line. For example, nothing but the straight line can be invariant if one
acknowledges any combination of the following properties: ‘is continuous’, ‘is
differentiable’, ‘has curvature x’ (for any real number «), ‘has n zeros’ (for
any natural number n), ‘has average slope of m’ (for any real number m),
‘changes sign of slope k times’ (for any natural number k). One can extend
this list very far. For specificity, if the curvature properties are acknowledged
for each &, then the straight line is the only function fitting the data with zero
curvature, and for every other value of curvature there are multiple functions
fitting the data that have that curvature; only the straight line is invariant and
Paradigm Theory gives it highest probability. The same observation holds for
the ‘changes sign of slope & times’ property. What is important is not any
particular choice of natural properties, but the informal claim that any natural
choice entails that the straight line is favored if any function is. The reader is
challenged to think of a natural paradigm that results in some other function in
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H receiving higher prior probability than the straight line.

Reference

For a consistent set of sentences, each interpretation of the language making
all the sentences true can be thought of as a hypothesis; that is, each model of
the set of sentences is a hypothesis. The question is: Which model is, a priori,
the most probable? Consider the theorems of arithmetic as our consistent set
of sentences. There is one model of arithmetic, called the “standard model,”
that is considered by most of us to be the most preferred one. That is, if a
person having no prior experience with arithmetic were to be presented with
a book containing all true sentences of arithmetic (an infinitely long book),
and this person were to attempt to determine the author’s interpretation of the
sentences, we tend to believe that the standard model should receive the greatest
prior probability as the hypothesis. Is this preference justified?

Suppose that one’s paradigm acknowledges models “fitting inside” other
models, where a model M fits inside M5 if the universe of M is a subset
(modulo any isomorphism) of that of A% and, when restricted to the universe of
M, both models agree on the truth of all sentences® Intuitively, you can find a
copy of M; inside M5 yet both satisfactorily explain the truth of each sentence
in the set. As such, M is unnecessarily complex.” Does this paradigm justify
the standard model? The standard model of arithmetic has the mathematical
property that it fits inside any model of arithmetic; it is therefore invariant for
this paradigm. We do not know of a proof that there is no other invariant (for
this paradigm) model of arithmetic, but it is strongly conjectured that there is
no other (M. C. Laskowski, private communication). If this is so, then the
standard model is the most probable one (given this paradigm).

Paradigm Theory can be used to put forth a conceptual framework-based
probabilistic theory of reference in the philosophy of language: to members of
a conceptual framework represented by paradigm @, the reference of a symbol
in a language is determined by its interpretation in the most probable model,
where the prior probabilities emanate from (Q and are possibly conditioned via
Bayes Theorem if evidence (say, hew sentences) comes to light. (See Putnam
(1980, 1981, p. 33) for some discussion on underdetermination of interpretation
and its effect on theories of reference, and Lewis (1984) for some commentary
and criticism of it.

®In logic it is said in this case that M, embeds elementarily into Mo.
"This is a sort of “complexification;” see Subsection 3.2.3.
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3.2.2 Enumerative Induction

I consider enumerative induction on two types of hypothesis set: (i) the set of
strings of the outcomes (0 or 1) of NV experiments or observations, and | denote
this set Hy; (ii) the set of possible physical probabilities p in [0, 1] of some
experiment, with the uniform underlying measure. Three types of enumerative
induction are examined: no- , frequency- , and law-inductions. No-induction
is the sort of inductive method that is completely rationalistic, ignoring the ev-
idence altogether and insisting on making the same prediction no matter what.
Frequency-induction is the sort of inductive method that converges in the limit
to the observed frequency of experimental outcomes (i.e., the ratio of the num-
ber of Os to the total number of experiments). Law-induction is the sort of
inductive method that is capable of giving high posterior probability to laws.
‘all 0s’ and ‘all 1s’ are the laws when H = Hy,and ‘p = 0’ and ‘p = 1’ are
the laws when H = [0, 1].

For reference throughout this section, Table 3.1 shows the prior probability
assignments for the paradigms used in this section on the hypothesis set H;.

No-Induction

The sort of no-induction we consider proceeds by predicting with probability
.5 that the next experimental outcome will be 0, regardless of the previous
outcomes.

H = Hpy

First we consider no-induction on the hypothesis set Hy, the set of out-
come strings for NV binary experiments. Table 3.1 shows the sixteen possible
outcome strings for four binary experiments. The first column of prior prob-
abilities is the uniform assignment, and despite its elegance and simplicity, it
does not allow learning from experience. For example, suppose one has seen
three Os so far and must guess what the next experimental outcome will be. The
reader may easily verify that P(0/000) = P(1]000) = 1/2; having seen three
0Os does not affect one’s prediction that the next will be 0. The same is true
even if one has seen one million Os in a row and no 1s. This assignment is the
one Wittgenstein proposes (1961, 5.15-5.154), and it is essentially Carnap’s
m! (Carnap, 1950) (or A = 00).

Recall that a totally symmetric paradigm is one in which every pair of hy-
potheses is symmetric. Any totally symmetric paradigm entails the uniform
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Table 3.1: Theprior probability assignments for various
paradigms over the hypothesis set H, (the set of possible
outcome strings for four experiments) are shown. Qiaw;,

is shorthand for Qi.., With Q1 as secondary paradigm.
The table does not indicate that in the 4., casesthe ‘all

0s and ‘all 1s' acquire probability 1/4 no matter the value
of N (inthiscase, N = 4); for the other paradigms thisis
not the case.

String Qs QL Qrep Qlaw QlawL
0000 | 1/16 | 1/5 1/8 1/4 1/4

0001 | 1/16 | 1/20 | 1/24 | 1/28 1/24
0010 | 1/16 | 1/20 | 1/24 | 1/28 1/24
0100 | 1/16 | 1/20 | 1/24 | 1/28 1/24
1000 | 1/16 | 1/20 | 1/24 | 1/28 1/24
0011 | 1/16 | 1/30 | 1/24 | 1/28 1/36
0101 | 1/16 | 1/30 | 1/8 | 1/28 1/36
0110 | 1/16 | 1/30 | 1/24 | 1/28 1/36
1001 | 1/16 | 1/30 | 1/24 | 1/28 1/36
1010 | 1/16 | 1/30 | 1/8 | 1/28 1/36
1100 | 1/16 | 1/30 | 1/24 | 1/28 1/36
0111 | 1/16 | 1/20 | 1/24 | 1/28 1724
1011 | 1/16 | 1/20 | 1/24 | 1/28 1/24
1101 | 1/16 | 1/20 | 1/24 | 1/28 1/24
1110 | 1/16 | 1/20 | 1/24 | 1/28 1/24
1111 | 1/16 | 1/5| 1/8 1/4 1/4
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assignment on Hy. Therefore, any totally symmetric paradigm results in no-
induction on Hy. This is true because there is just one symmetry type for a to-
tally symmetric paradigm, and so the Principle of Symmetry gives each string
the same prior probability. | have let Qs denote a generic totally symmetric
paradigm in Table 3.1.

The uniform assignment on Hyy is usually considered to be inadequate on
the grounds that the resulting inductive method is not able to learn from experi-
ence. There is a problem with this sort of criticism: it attributes the inadequacy
of a particular prior probability assignment to the inadequacy of the inductive
method to which it leads. If prior probabilities are chosen simply in order to
give the inductive method one wants, then much of the point of prior probabil-
ities is missed. Why not just skip the priors altogether and declare the desired
inductive method straightaway? In order to be explanatory, prior probabilities
must be chosen for reasons independent of the resulting inductive method. We
want to explain the lack of allure of the uniform prior on Hy without referring
to the resulting inductive method.

One very important totally symmetric paradigm is the empty one, i.e., the
paradigm that acknowledges nothing. If one considers Hy to be the hypothesis
set, and one possesses the paradigm that acknowledges no properties of the hy-
potheses at all, then one ends up believing that each outcome string is equally
likely. | believe that for Hy the paradigm that acknowledges nothing is far from
natural, and this helps to explain why no-induction is treated with disrepute. To
acknowledge nothing is to not distinguish between the ‘all 0s’ string and any
“random” string; for example, 0000000000 and 1101000110. To acknowledge
nothing is also to not acknowledge the relative frequency. More generally, any
totally symmetric paradigm, no matter how complicated the properties in the
paradigm, does not differentiate between any of the outcome strings and is sim-
ilarly unnatural. For example, the paradigm that acknowledges every outcome
string is totally symmetric, the paradigm that acknowledges every pair of out-
come strings is totally symmetric, and the paradigm that acknowledges every
property is also totally symmetric. No-induction is unjustified because we do
not possess a conceptual framework that makes no distinctions on Hy. On the
other hand, if one really does possess a conceptual framework that makes no
distinctions among the outcome strings, then no-induction is justified.

There are some ad hoc paradigms that do make distinctions but still entail
a uniform distribution over Hy. For example, let paradigm @ acknowledge
{1}, {1,2}, {1,2,3}, ..., {1,...,16}, where these numbers denote the corre-
sponding strings in Table 3.1. Each string is then invariant, and therefore can
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be distinguished from every other, yet the probability assignment is uniform by
the Principle of Type Uniformity. For another example, let the paradigm con-
sistof {1,...,8} and {1,...,16}. There are two symmetry types, {1,...,8}
and {9,...,16}, each subset can be distinguished from the other, but the re-
sulting prior probability assignment is still uniform. These sorts of paradigms
are artificial—we have not been able to fathom any natural paradigm of this
sort. The explanation for why no-induction is unjustified is, then, because we
neither possess conceptual frameworks that make no distinctions nor possess
conceptual frameworks of the unnatural sort that make distinctions but still give
a uniform distribution.

H=10,1]

Now we take up no-induction on the hypothesis set H = [0, 1], the set
of physical probabilities p of a repeatable experiment. In no-induction it is
as if one believes with probability 1 that the physical probability of the ex-
periment (say, a coin flip) is .5, and therefore one is incapable of changing
this opinion no matter the evidence. In fact this is exactly what the uniform
probability assignment over Hy is equivalent to. That is, the prior on [0, 1]
leading to no-induction gives p = .5 probability 1, and the probability density
over the continuum of other hypotheses is zero. What was an elegant, uniform
distribution on Hy has as its corresponding prior on [0, 1] an extremely inel-
egant Dirac delta prior. With [0, 1] as the hypothesis set instead of Hy, there
is the sense in which no-induction is even more unjustified, since the prior is
so clearly arbitrary. The reason for this emanates from the fact that [0, 1] is a
“less general” hypothesis set than Hy, for, informally, [0, 1] lumps all of the
outcome strings in a single complexion into a single hypothesis (recall, two
strings are in the same complexion if they have the same number of 0s and 1s);
Hyy is capable of noticing the order of experiments, [0, 1] is not. This prop-
erty of [0, 1], that it presumes exchangeability, severely constrains the sort of
inductive methods that are possible and makes frequency-induction “easier” to
achieve in the sense that any open-minded prior converges asymptotically to
the observed frequency; no-induction is correspondingly “harder” to achieve
in [0, 1].

In fact, within Paradigm Theory no-induction on [0,1] is impossible to
achieve for the simple reason that paradigms always result in open-minded
priors. The reason we believe no-induction is unjustified on [0,1] is because no
paradigm leads to no-induction.
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Frequency-Induction

If an experiment is repeated many times, and thus far 70% of the time the
outcome has been 0, then in very many inductive scenarios most of us would
infer that there is a roughly 70% chance that the next experiment will result
in 0. This is frequency-induction, and is one of the most basic ways in which
we learn from experience, but is this method justifiable? Laplace argued that
such an inference is justified on the basis of his Rule of Succession. It states
that out of n + 1 experiments, if O occurs r times out of the first n, then the
probability that 0 will occur in the next experiment is ;’jr; As n — oo, this
very quickly approaches ”; and when r = n, it very quickly approaches 1.
Derivations of this rule depend (of course) on the prior probability distribution;
see Zabell (1989) for a variety of historical proofs of the rule. In this section
we demonstrate how Paradigm Theory naturally leads to the Rule of Succession
when H = Hy and H = [0, 1].

H = Hy

The second column of probabilities in Table 3.1, headed “Qy,,” shows the
probability assignment on H, needed to lead to Laplace’s Rule of Succession®
Notice, in contrast to @, that for this column P(0/000) = (1/5)/(1/5 +
1/20) = 4/5, and so P(1/000) = 1/5; it learns from experience. Laplace’s
derivation was via a uniform prior on the hypothesis set H = [0,1] (with
uniform underlying prior), but on Hy something else is required. Johnson’s
Combination Postulate and Permutability Postulate (Johnson, 1924, pp. 178-
189) together give the needed assignment. The Combination Postulate—which
states that it is a priori no more likely that 0 occurs i times than j times in
n experiments—assigns equal probability to each complexion, and the Per-
mutability Postulate—which states that the order of the experiments does not
matter—distributes the probability uniformly within each complexion. Car-
nap’s logical theory with m* (Carnap, 1950, p. 563) does the same by assigning
equal probability to each structure-description (analogous to the complexions),
and distributing the probability uniformly to the state-descriptions (analogous
to the individual outcome strings) within each structure-description (see the
earlier discussion of the “Basic Theory”).

In order for Paradigm Theory to give this prior probability assignment it
suffices to find a paradigm whose induced symmetry types are the complex-

8A discussion on the difference between Q. and Q. can be found in Carnap (1989).
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ions. If a paradigm satisfies this, the Principle of Type Uniformity assigns
each complexion the same prior probability, and the Principle of Symmetry
uniformly distributes the probability among the outcome strings within each
complexion. In other words, if one’s conceptual framework distinguishes the
complexions, then one engages in frequency-induction via the Rule of Suc-
cession. Explanatorily, the Rule of Succession is justified because we possess
paradigms that distinguish the complexions.

For distinguishing the complexions it is not sufficient to simply acknowl-
edge the complexions; if the paradigm consists of just the complexions, then
there are three symmetry types in Hy as in Table 3.1: {0000, 1111}, {0001,
0010, 0100, 1000, 1110, 1101, 1011, 0111}, and the “middle” complexion.
There are very natural paradigms that do induce symmetry types equal to the
complexions. One such paradigm is employed in the following theorem whose
proof may be found in the appendix to this chapter.

Theorem 4 Let @, (‘L for ‘Laplace’) be the paradigm containing each com-
plexion and the set of all sequences with more Os than 1s. The probability
assignment of @7, on Hy via Paradigm Theory isidentical to that of Johnson,
and so (), resultsin Laplace’s Rule of Succession. A

Note that @)y, is quite natural. It is the paradigm that acknowledges the com-
plexions, and in addition acknowledges the difference between having more 0s
than 1s and not more Os than 1s. An explanation for the intuitive appeal of the
Rule of Succession is that we often acknowledge exactly those properties in
Q1,, and from this the Rule of Succession follows.

Since there are only finitely many inductive methods that may result given
H y via Paradigm Theory, the theory is not capable of handling a continuum of
frequency-inductive methods as in Johnson and Carnap’s A-continuum, which
says if » of n outcomes have been 1 in a binary experiment, the probability of
the next outcome being a 1 is ’"::f. I have not attempted to determine the class
of all A such that there exists a paradigm that entails the A-rule, but it seems
that the only two natural sorts of paradigms that lead to an inductive method in
the A-continuum with H = Hy are totally symmetric paradigms and those that
have the complexions as the symmetry types. The first corresponds to A = oo,
and the second corresponds to A = 2. Reichenbach’s Straight Rule (where,
after seeing r of n outcomes of 1 in a binary experiment, the probability that
the next will be 1 is r/n), or A = 0, does not, therefore, seem to be justifiable
within Paradigm Theory.
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Laplace’s Rule of Succession needs the assumption on Hy that, a priori,
it is no more likely that 1 is the outcome ¢ times than j times in n experiments.
Call a repetition the event where two consecutive experiments are either both
1 or both 0; two strings are in the same repetition set if they have the same
number of repetitions. Why, for example, should we not modify Johnson’s
Combination Postulate (or Principle of Indifference on the complexions) to say
that, a priori, it is no more likely that a repetition occurs ¢ times than j times
in n experiments? The prior probability assignment resulting from this does
not lead to Laplace’s Rule of Succession, but instead to the “Repetition” Rule
of Succession. ‘RFE P’ denotes the assignment of equal probabilities to each
repetition set, with the probability uniformly distributed among the strings in
each repetition set; this is shown for H; in Table 3.1 under the heading Q).
If one has seen r repetitions of 1 thus far with n experiments, the probabil-
ity the outcome of the next experiment will be the same as the last outcome,
via REP, is 25, The proof is derivable from Laplace’s Rule of Succession
once one notices that the number of ways of getting r repetitions in a length
n binary sequence is 2C7~!; the proof is omitted. This result can be naturally
accommodated within Paradigm Theory.

Theorem 5 Let Q),., be the paradigm that acknowledges the number of rep-
etitions in a sequence as well as acknowledging the sequences with less than
half the total possible number of repetitions. The probability assignment of
Qrep isidentical to that of REP, and S0 @, results in the Repetition Rule of
Succession. A

Whereas all of the previously mentioned paradigms on Hy entail prior proba-
bility assignments that are de Finetti exchangeable, ()., does not. It is Markov
exchangeable, however: where strings with both the same initial outcome and
the same number of repetitions have identical prior probability. A conceptual
framework that acknowledges both the number of repetitions and which (0 or
1) has the greater number of repetitions results in the Repetition Rule of Suc-
cession. When our inductive behavior is like the Repetition Rule, it is because
we possess Q. (or something like it) as our conceptual framework.

Q1 and Q,¢, generally give very different predictions. However, they
nearly agree on the intuitively clear case where one has seen all of the experi-
ments give the same result. For example, Laplace had calculated the probabil-
ity that the sun will rise tomorrow with his Rule of Succession; “It is a bet of
1,826,214 to one that it will rise again tomorrow” (Laplace, 1820). The Repe-
tition Rule of Succession says that the odds are 1,826,213 to one that tomorrow
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will be the same as the past with respect to the sun rising or not, and since we
know it came up today, those are the odds of the sun rising tomorrow.

H=1[0,1]

Now we consider frequency-induction on the hypothesis set H = [0, 1]
with the natural uniform underlying measure. We noted earlier that [0, 1] “more
easily” leads to frequency-induction than Hy; disregarding the order of exper-
iments puts one well on the path toward frequency-induction. We should sus-
pect, then, that it should be easier to acquire frequency-inductions with [0, 1] as
the hypothesis set than Hy via Paradigm Theory. In fact, frequency-induction
is guaranteed on [0, 1] since paradigms lead to open-minded priors which, in
turn, lead to frequency-induction. One cannot be a skeptic about frequency-
induction in [0, 1]. Frequency-induction on [0,1] is justified because every con-
ceptual framework leads to it.

For Laplace’s Rule of Succession, Laplace assigned the uniform prior prob-
ability distribution over the underlying measure, from which the Rule follows.
Here is the associated result for Paradigm Theory.

Theorem 6 Any totally symmetric paradigm entails the uniform assignment
on [0, 1]. Therefore, any totally symmetric paradigm results in Laplace's Rule
of Succession. A

If one acknowledges nothing on [0, 1], or more generally one makes no dis-
tinctions, Paradigm Theory collapses to a sort of Principle of Indifference (see
Subsection 3.2.1) and one engages in frequency-induction via Laplace’s Rule
of Succession. Laplace’s Rule of Succession is justified because when pre-
sented with hypothesis set [0, 1] we possess a conceptual framework that does
not distinguish between any hypotheses.

L aw-Induction

Frequency-induction allows instance confirmation, the ability to place a prob-
ability on the outcome of the very next experiment. C. D. Broad (1918) chal-
lenged whether frequency-induction, Laplace’s Rule of Succession in particu-
lar, is ever an adequate description of learning. The premises that lead to the
Rule of Succession also entail that if there will be N experiments total and
one has conducted n so far, all of which are found to be 1 (i.e., r = n), then
the probability that all outcomes will be 1is (n + 1)/(N + 1). If N is large
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compared to n, (n + 1)/(N + 1) is small; and this is the origin of Broad’s
complaint. In real situations N, if not infinite, is very large. Yet we regularly
acquire high degree of belief in the general law that all outcomes will be 1 with
only a handful of experiments (small n). For example, we all conclude that all
crows are black on the basis of only a small (say 100) sample of black crows.
If, by ‘crow,” we mean those alive now, then N is the total number of living
crows, which is in the millions. In this case, after seeing 100 black crows,
or even thousands, the probability via the Rule of Succession premises of the
law ‘all crows are black’ is miniscule. The probability that all crows are black
becomes high only as n approaches N—only after we have examined nearly
every crow! Therefore, the premises assumed for the Rule of Succession can-
not be adequate to describe some of our inductive methods.

Carnap (1950, pp. 571-572) makes some attempts to argue that instance
confirmation is sufficient for science, but it is certain that we (even scientists)
do in fact acquire high probability in universal generalizations, and the question
is whether (and why) we are justified in doing so.

Jeffreys (1955) takes Broad’s charge very seriously. “The answer is obvi-
ous. The uniform assessment of initial probability says that before we have
any observations there are odds of N — 1 to 2 against any general law holding.
This expresses a violent prejudice against a general law in a large class” (ibid.,
p. 278). He suggests that the prior probability that a general law holds be a
constant > 0, independent of N. This allows learning of general laws. For
example, fix a probability of .1 that a general law holds, .05 for the ‘all 0s’
law, .05 for the “all 1s’ law, the probability uniformly distributed over the rest.
After seeing just five black crows the probability of the “all 0s’ law is .64, and
after seeing ten black crows the probability becomes .98; and this is largely
independent of the total number of crows V.

The problem with this sort of explanation, which is the sort a Personalistic
Bayesian is capable of giving, is that there seems to be no principled reason for
why the general laws should receive the probability assignments they do; why
not .06 each instead of .05, or why not .4 each? Paradigm Theory determines
exact inductive methods capable of giving high posterior probability to laws,
and it does so with very natural paradigms.

H=Hy

Beginning with H as the hypothesis set, suppose one acknowledges only
two properties: being a general law and not being a general law. With this



208 CHAPTER 3

comprising the paradigm @);,., the induced symmetry types are the same as the
acknowledged properties. Paradigm Theory gives probability .5 to a general
law holding—.25 to “all 0s’, .25 to “all ones’—and .5 uniformly distributed to
the rest; see the “Q;q.” column in Table 3.1. Largely independent of the total
number of crows, after seeing just one black crow the probability that all crows
are black is .5. After seeing 5 and 10 black crows the probability becomes
.94 and .998, respectively—near certainty that all crows are black after just a
handful of observations. | record this in the following theorem whose proof
may be found in the appendix to this chapter.

Theorem 7 If there will be N experimentsand 1 < n < N have been con-
ducted so far, all which resulted in 1, then the probability that all N experi-
ments will result in 1, with respect to the paradigm Q,,., on the hypothesis set
Hy, isapproximately )

2 A

14 2n-1

One is open to the confirmation of universal generalizations if one acknowl-
edges being a law and acknowledges no other properties. Of course, the the-
orem holds for any paradigm that induces the same symmetry types as Qg -
For example, suppose that a paradigm Q..ns: acknowledges the constituents,
from Hintikka (1966), where a constituent is one possible way the world can
be in the following sense: either all things are 0, some things are 0 and some
are 1, or all things are 1. The induced symmetry types are the same as those
induced by Qj4.-

Similar results to Theorem 7 follow from any paradigm that (i) has {‘all
0s’,“all 1s’} as a symmetry type (or each is alone a symmetry type), and (ii)
there is some natural number k such that for all N the total number of sym-
metry types is k. Qqw and Qconse are special cases of this, with k = 2. Each
paradigm satisfying (i) and (ii) entails an inductive method that is capable of
giving high posterior probability to universal generalizations. This is because
the two laws each receive the probability 1/(2k) (or 1/k if each is invariant)
no matter how large is the number of “crows in the world” N.

There is a problem with paradigms satisfying (i) and (ii). Paradigms sat-
isfying (i) and (ii) are not able to engage in frequency-induction when some
but not all experiments have resulted in 1. This is because frequency-induction
on Hy requires that one distinguish among the N + 1 complexions, and this
grows with N, and so (ii) does not hold. Specifically considering ()., and
Qconst, the most natural paradigms satisfying (i) and (ii), when some but not
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all experiments have resulted in 1 the Q4. and Qcons: assignment does not
learn at all. This is because the probabilities are uniformly distributed over
the outcome strings between the ‘all 0s” and “all 1s’ strings, just like when the
paradigm is Q) from earlier.

To “fix” this problem it is necessary to employ a secondary paradigm. We
concentrate only on fixing Q4. for the remainder of this subsection, but the
same goes for Q.. as well. What we need is a secondary paradigm on the set
of strings between ‘all 0s” and ‘all 1s’ that distinguishes the complexions, i.e.,
has them as symmetry types. Let the secondary paradigm be the one acknowl-
edging the complexions and the property of having more 0s than 1s, which is
like the earlier Q)1 and let the hypothesis set be Hy — {*all 0s’,‘all 1s’} instead
of Hy. The resulting inductive behavior is like Laplace’s Rule of Succession
for strings that are neither “all zeros’ nor ‘all ones’, and similar to that of (},.,
described in Theorem 7 for the ‘all 0s’ and ‘all 1s’ strings. We denote this
paradigm and secondary paradigm duo by (4., , and one can see the resulting
prior probability on H, in Table 3.1. The proof of part (a) in the following
theorem emanates, through de Finetti’s Representation Theorem, from part (a)
of Theorem 9; (b) is proved as in Theorem 4.

Theorem 8 (4., assigns prior probabilities to Hy (n < N) such that if 1
occurs r times out of n total, then (a) if » = n > 0 the probability that all
outcomes will be 1 is approximately Zi}s and (b) if 0 < r < n the probability
that the next outcome will be a 1 isZtL (i.e, the inductive method is like that

n+2
of Qr). A

After seeing 5 and 10 black crows, the probability that all crows are black is
approximately .75 and .85, respectively.

How natural is the primary/secondary paradigm pair Qq.,,? It acknowl-
edges being a law (or in Q.ons’S case, acknowledges the constituents), ac-
knowledges the complexions, and acknowledges having more 0s than 1s. But
it also believes that the laws (or constituents) are more important (or “more
serious” parts of the ontology) than the latter two properties. “Primarily, the
members of our paradigm acknowledge laws; we acknowledge whether or not
all things are 0, and whether or not all things are 1. Only secondarily do we
acknowledge the number of Os and 1s and whether there is a greater number of
0Os than 1s.” Having such a conceptual framework would explain why one’s in-
ductive behavior allows both frequency-induction and law-induction. Note that
if Q1 were to be primary and @, secondarily applied to each symmetry type
induced by @, then the result would be no different than @y, alone. The same
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is true if we take as primary paradigm the union of both these paradigms. Thus,
if being a law is to be acknowledged independently of the other two properties
at all, it must be via relegating the other two properties to secondary status.

The above results on universal generalization are related to one inductive
method in Hintikka’s two-dimensional continuum (Hintikka, 1966). Q.
(and Qconst,) corresponds closely to Hintikka’s logical theory with v = 0
(ibid., p. 128), except that Hintikka (primarily) assigns probability 1/3 to each
constituent: 1/3 to “all 0s’, 1/3 to “all 1s’, and 1/3 to the set of strings in be-
tween. In Qquw (@nd Qeonse) “all 0s” and “all 1s” are members of the same sym-
metry type, and so the probabilities were, respectively, 1/4, 1/4, 1/2. Then
(secondarily) Hintikka divides the probability of a constituent evenly among
the structure-descriptions, which are analogous to our complexions. Finally,
the probability of a structure-description is evenly divided among the state-
descriptions, which are analogous to our outcome strings. @q.,,, then, ac-
knowledges the same properties as does Hintikka’s “a = 0”-logical theory,
and in the same order.

It is possible for Paradigm Theory to get exactly Hintikka’s o = 0 as-
signment, but the only paradigms | have found that can do this are artificial.
For example, a paradigm that does the job is the one that acknowledges ‘all
0s’ and the pairs {‘all 1s’, o} such that o is a non-law string. ‘all 0s’ and
‘all 1s’ are now separate symmetry types, and the non-law strings in between
comprise the third. Each thus receives prior probability 1/3 as in Hintikka’s
“a = 0”-Logical Theory. This paradigm is indeed artificial, and | do not be-
lieve Paradigm Theory can give any natural justification for the o = 0 inductive
method.

With @4, in hand we can appreciate more fully something Paradigm
Theory can accomplish with secondary paradigms: a principled defense and
natural generalization of Hintikka’s “a. = 0”-logical theory. Well, not exactly,
since as just mentioned the nearest Paradigm Theory can naturally getto o = 0
IS With Qjaw, (OF Qeonst, ). Ignoring this, Paradigm Theory gives us a princi-
pled reason for why one should engage in law-induction of the o = 0 sort:
because one holds Q4. (0r Qconst) as the conceptual framework, and @)y, sec-
ondarily. Paradigm Theory also allows different notions of what it is to be a
law, and allows different properties to replace that of being a law. The @« = 0
tactic can be applied now in any way one pleases.

H =10,1]
We have seen in Subsection 3.2.2 that [0, 1] as the hypothesis set makes frequency-
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induction easier to obtain than when the hypothesis set is Hy. Informally, one
must expend energy when given Hy so as to treat the complexions as the primi-
tive objects upon which probabilities are assigned, whereas this work is already
done when given [0, 1] instead. To do this job on Hy for law-induction we re-
quired secondary paradigms in order to have frequency-induction as well, but
it should be no surprise that on [0, 1] having both comes more easily.

As in the previous subsubsection we begin with the paradigm that acknowl-
edges being a law and not. We call it by the same name, (),.,, although this
is strictly a different paradigm than the old one since it is now over a differ-
ent hypothesis set. There are two symmetry types, {0,1} and (0,1). Thus,
p = 0and p = 1 each receives probability .25, and the remaining .5 is spread
uniformly over (0,1). This is a universal-generalization (UG) open-minded
prior probability distribution, where not only is the prior probability density
always positive, but the p = 0 and p = 1 hypotheses are given positive prob-
ability; this entails an inductive method capable of learning laws. It is also
open-minded, and so is an example of frequency-induction as well; we do not
need secondary paradigms here to get this. In fact, because the prior is uniform
between the two endpoints the inductive behavior follows Laplace’s Rule of
Succession when the evidence consists of some 0s and some 1s. The following
theorem records this; the proof of (a) is in the appendix to this chapter, and (b)
is derived directly from Laplace’s derivation of the Rule of Succession.

Theorem 9 Q;4,, 0N [0, 1] entailsthe prior probability distribution such that if
1 occurs r times out of n total, then (a) if r = n > 0 the probability that p = 1

is Zjé and (b) if 0 < r < n the probability that the next outcome will be a 1
is f:é A

If one holds [0,1] as the hypothesis set and acknowledges being a law
and nothing else, one is both able to give high probability to laws and con-
verge to the relative frequency. Turned around, we should engage in law- and
frequency-induction (of the sort of the previous theorem) because our concep-
tual framework acknowledges the property of being a law. One need make
no primitive assumption concerning personal probabilities as in Personalistic
Bayesianism, one need only the extremely simple and natural .., .

Similar results to Theorem 9 can be stated for any paradigm such that the
two laws appear in symmetry types that are finite (the laws are distinguished, at
least weakly). For any such paradigm the two laws are learnable because they
acquire positive prior probability, and frequency-induction proceeds (asymp-
totically, at least) because the prior is open-minded. In an informal sense, “any”
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natural paradigm acknowledging the laws results in both law- and frequency-
induction.

3.2.3 Simplicity-Favoring

Occam’s Razor says that one should not postulate unnecessary entities, and
this is roughly the sort of simplicity to which | refer (although any notion of
simplicity that has the same formal structure as that described below does as
well). Paradigm Theory is able to provide a novel justification for simplic-
ity: when the paradigm acknowledges simplicity, it is “ usually” the case that
simpler hypotheses are less arbitrary and therefore receive higher prior prob-
ability. This explanation for the preferability of simpler hypotheses does not
assume that we must favor simpler hypotheses in the paradigm (something the
paradigm does not have the power to do anyway). The paradigm need only
acknowledge which hypotheses are simpler than which others? In a sentence,
Paradigm Theory gives us the following explanation for why simpler hypothe-
ses are preferred: simpler hypotheses are less arbitrary.

For any hypothesis there are usually multiple ways in which it may be
“complexified”—i.e., unnecessary entities added—to obtain new hypotheses.
Each complexification itself may usually be complexified in multiple ways,
and so may each of its complexifications, and so on. A complexification tree
is induced by this complexification structure, starting from a given hypothesis
as the root, its complexifications as the children, their complexifications as the
grandchildren, etc.1°

Recall from Subsection 3.1.2 that certain paradigms are representable as
graphs. Consider the following two special cases of trees whose associated
paradigms result in the root being the lone maximally defensible element; the
proof is found in the appendix to this chapter. A tree is full if every leaf is at
the same depth in the tree.

Theorem 10 The paradigm associated with any full tree or finite-depth binary
tree places the root as the lone maximally defensible element. But not every
paradigm associated with a tree does so, and these two cases do not exhaust
the treesthat do so. A

®In fact, it suffices to acknowledge the two-element subsets for which one element is simpler
than the other; after all, paradigms as defined for the purposes of this chapter do not allow
relations.

191 am ignoring the possibility that two hypotheses may “complexify” to the same hypothesis,
in which case the structure is not a tree.
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If a hypothesis set H consists of h, all of its complexifications and all of their
complexifications and so on, and the paradigm on H is the complexification
tree with root h—i.e., the paradigm acknowledges the pairs of hypotheses for
which one is a complexification of the other—then the paradigm puts h alone
at the top of the hierarchy if the tree is full or finite binary!® Informally,
“most” natural notions of hypothesis and complexification imply complexifi-
cation trees that are full. Such paradigms naturally accommodate Occam’s
Razor; acknowledging simplicity results in setting the lone most defensible el-
ement to what Occam’s Razor chooses for many natural (at least finite binary
and full) complexification trees. The hypothesis that posits the least unneces-
sary entities is, in these cases, the lone most defensible hypothesis, and thus
acquires the greatest prior probability (via Theorem 3).

Full Complexification Trees

Let @y, be the paradigm represented by the full tree below.

25%

3% 3% 3% 3% 3% 3% 3% 3%

There are four symmetry types (one for each level), so each receives proba-
bility 1/4. The approximate probability for each hypothesis is shown in the
figure. Only the Basic Theory is needed here—i.e., the Principles of Type Uni-
formity and Symmetry—the Principle of Defensibility does not apply. If there
are m such trees, the m roots each receive probability ﬁ, the 2m children
each receive % the 4m grandchildren each receive ﬁ and the 8m leaves

MwWe are assuming that the paradigm acknowledges only those pairs of hypotheses such that
one is an “immediate” complexification of the other, i.e., there being no intermediate complex-
ification in between. Without this assumption the complexification trees would not be trees at
all, and the resulting graphs would be difficult to illustrate. However, the results in this section
do not depend on this. If the paradigm acknowledges every pair such that one is simpler than
the other, then all of the analogous observations are still true.
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each receive ﬁ The following theorem generalizes this example. Recall that
the depth of the root of a tree is zero.

Theorem 11 Suppose the paradigm’s associated graph consists of m full b-
ary (b > 2) trees of depth n, and that hypothesis h is at depth ¢ in one of them.
Then P(h) = m AN
This tells us that the prior probability of a hypothesis drops exponentially the
more one complexifies it, i.e., the greater 7 becomes. For example, consider
base 10 numbers as in the hypothesis set H = {2;2.0,..., 2.9;2.00,...,
2.09;...;2.90,...2.99}, and suppose the paradigm is the one corresponding
to the complexification tree. Here we have a 10-ary tree of depth two; 2 is
the root, the two-significant-digit hypotheses are at depth one, and the three-
significant-digit hypotheses are at depth two. P(2) = 1/3, the probability of
a hypothesis at depth one is 1/30, and the probability of a hypothesis at depth
two is 1/300.

When there are multiple trees, the roots may be interpreted as the “seri-
ous” hypotheses, and the complexifications the “ridiculous” ones. Theorem 11
tells us that when one acknowledges simplicity and the resulting paradigm is
represented by multiple b-ary trees of identical depth, one favors the serious
hypotheses over all others. This is a pleasing explanation for why prior proba-
bilities tend to accrue to the simplest hypotheses, but it results in each of these
hypotheses being equally probable. A conceptual framework may be more
complicated, acknowledging properties capable of distinguishing between the
different complexification trees. In particular, a secondary paradigm may be
applied to the set of roots, with the understanding that the properties in the
secondary paradigm are acknowledged secondarily to simplicity.

Asymmetrical Complexification Trees

We saw in Theorem 10 that any—even an asymmetrical—finite binary tree
results in the root being the lone most defensible element. The Principle of
Defensibility tends to apply non-trivially when trees are asymmetrical, unlike
when trees are full where it makes no difference. The next example shows an
asymmetrical tree where Paradigm Theory “outperforms” the Basic Theory. To
demonstrate the last sentence of Theorem 10, that “full’ and “finite binary’ do
not exhaust the trees that result in a lone most defensible root, we have chosen
the tree to be non-binary. We leave it as an exercise to find the probabilities for
a similar asymmetrical binary tree.
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Let Hosymm = {a,...,p}, and Qusymm be as pictured.

With semicolons between the equivalence types, the invariance levels are A
= {4, k, I, m;n, o, p}, AL = {f g;h,i}, A2 = {d,e}, A®> = {b,c} and
A* = {a}. Paradigm Theory assigns the probabilities as follows: P(n) =
P(o) = P(p) = 7/231 = 3%. P(j) = ... = P(m) = 1/44 ~ 2%.
P(f) = ... = P(i) = 9/154 =~ 6%. P(d) = P(e) = 45/616 ~ 7%.
P(b) = P(c) = 135/1232 ~ 11%. P(a) = 135/616 ~ 22%. Notice how
the Principle of Defensibility is critical to achieve this assignment. The Basic
Theory alone agrees with this assignment on the leaves, but on the others it
assigns each a probability of 1/11 ~ 9% instead. The Basic Theory does not

notice the structure of the invariant hypotheses and so gives them each the same
probability.

This example brings out the importance of the Principle of Defensibility.
The Basic Theory can be viewed as a natural generalization of Carnap’s ni*-
logical theory. Except for cases where the tree is full, the Basic Theory is
inadequate, ignoring all the structure that we know is there. The Basic Theory’s
weakness is, as discussed in Subsection 3.1.3, that it is capable of seeing only
two degrees of detail. The Principle of Defensibility simply says that among the
invariant hypotheses there are, from the point of view of the paradigm already
before you (i.e., no secondary paradigm is needed), those that are more and
less defensible—notice this. It is this principle that allows Paradigm Theory to
break the bonds of a simple generalization of Carnap’s m*-logical theory and
secure a full explanation and justification for simplicity-favoring.
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Discussion

I am in no way elucidating the difficult question of What is simplicity? or What
counts as fewer entities?; if ‘grue’ is considered simpler than ‘green’, then it
may well end up with greater prior probability. In this subsection we have
discussed why simpler hypotheses, supposing we agree on what this means,
should be favored. When one acknowledges—not favors—simplicity in the
paradigm and the paradigm can be represented as a (full or finite binary, among
others) tree, the simpler hypotheses receive higher prior probability. This oc-
curs not because they are simpler, but because they are less arbitrary.

Let me address what could be a criticism of this explanation of the justifi-
cation of simplicity-favoring. This explanation depends on the resulting graph
associated with the paradigm being a tree, with the simpler hypotheses near
the root. This occurs because, so | asserted, there are usually multiple ways of
complexifying any given hypothesis; and these complexifications are a hypoth-
esis’ daughters in the tree. What if this is not true? For example, what if one
is presented with a hypothesis set consisting of one simple hypothesis and just
one of its complexifications? Acknowledging simplicity here does not entail
simplicity-favoring; each hypothesis is equally probable. | claim that holding
such a hypothesis set is uncommon and unnatural. Most of the time, if we con-
sider a complexification of a hypothesis and notice that it is a complexification,
then we also realize that there are other complexifications as well. Choosing to
leave the others out of the hypothesis set and allowing only the one to remain is
ad hoc. Worse than this example, suppose for each hypothesis there are multi-
ple simplifications rather than multiple complexifications for each hypothesis?
If this is so, Paradigm Theory ends up favoring more complex hypotheses in-
stead. While certainly one can concoct hypothesis sets where acknowledging
simplicity results in a simplification tree instead of a complexification tree, |
do not believe there to be very many (if any) natural examples. And if such
a hypothesis set is presented to one acknowledging simplicity, the most com-
plex hypothesis is indeed the most favorable. These observations are not un-
expected: unusual conceptual frameworks may well entail unusual inductive
behavior.

For the sake of contrast it is helpful to look at the reasons | have given in
this section for favoring simpler hypotheses compared to those of other theo-
rists: (i) they are more susceptible to falsification (Popper, 1959), (ii) they are
more susceptible to confirmation (Quine, 1963), (iii) they are practically easier
to apply (Russell, 1918; Pearson, 1992; Mach, 1976), (iv) they have greater a
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priori likelihood of being true (Jeffreys, 1948), (v) they have been found in the
past to be more successful (Reichenbach, 1938), (vi) following the rule ‘pick
the simplest hypothesis’ leads with high probability to true hypotheses (Ke-
meny, 1953), (vii) they are more informative (Sober, 1975), (viii) they are more
stable (Turney, 1990), and (ix) they have higher estimated predictive accuracy
(Forster and Sober (1994)). Paradigm Theory’s reason for favoring simpler
hypotheses is that we acknowledge simplicity and, since for each hypothesis
there tends to be multiple complexifications (and not multiple simplifications),
simpler hypotheses are less arbitrary.

3.2.4 Curve-Fitting

In curve-fitting the problem is to determine the best curve given the data points.
The phenomenon that needs to be explained is that a curve that is a member of
an n parameter family, or model 2 is typically favored over curves that require
n + 1 parameters, even when the latter fits the data better than the former.
I derive within Paradigm Theory a class of information criteria dictating the
degree to which a simpler curve (say, a linear one) is favored over a more
complex one.

In curve-fitting generally, the data are presumed to be inaccurate, and no
hypothesis can be excluded a priori. | concentrate only on the hypothesis set
of polynomials, and consider only those up to some finite degree. For definite-
ness | presume that each dimension is bounded to a finite range, and that the
underlying measure is uniform in each M’ — M (where M’ is a model with
one more dimension than M). The first of these conditions on the hypothesis
set is perhaps the only questionable one. The parameter bounds may be set
arbitrarily high, however; so high that it is difficult to complain that the bound
is too restrictive.

Suppose we have models M, and M, My with parameter ag and M, with
parameters ag and aq, where the parameters range over the reals within some
bound and the models are such that for some value of ¢;, M; makes the same
predictions as M. In cases such as this Jeffreys (1948) (see also Howson,
1987, pp. 210-211] proposes that My and My, — M, each receive prior proba-
bility 1/2. We shall denote M, and M; — M, as, respectively, Sy and Sy (“S”
for symmetry type). Paradigm Theory gives a principled defense for Jeffreys’
prior probability assignment: if the conceptual framework acknowledges the

2D not confuse this notion of model with that discussed in Subsection 3.2.1. There is no
relation.
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two models, then there are two symmetry types—AM and My, — My—each
receiving prior probability 1/2 via the Principle of Type Uniformity, and the
probability density is uniform over each symmetry type via the Principle of
Symmetry.13

How the prior probability density compares in & and S7 depends on the
choice of underlying measure. Let us first suppose that the measure is the Eu-
clidean one, where length is always smaller than area, area always smaller than
volume, etc. Because M is one dimension smaller than M, the prior probabil-
ity density on .Sy is infinitely greater than that on S;. Thus, any specific curve
in S7 receives prior probability density that is vanishingly small compared to
the prior probability of a curve in &. More generally, consider My, My, .. .,
M;, where each model is the superset of the previous one resulting from adding
one parameter, ranging over the reals within some bound, to allow polynomi-
als of one higher degree. Each subset My and My 1 — M for0 < k <lisa
symmetry type—denoted, respectively, by S and Sy for 0 < k& < [—and re-
ceives prior probability 1/(I 4 1). With the Euclidean underlying measure, the
probability density over the symmetry types decreases infinitely as the num-
ber of extra parameters is increased. Generally, then, curves that are members
of models with fewer parameters are a priori favored because we possess a
conceptual framework that acknowledges the models (and nothing else).

The Euclidean underlying measure is very strong, resulting in simpler cur-
ves having greater posterior probability density no matter the data. Since each
curve in Sy has a prior probability density that is infinitely greater than each
in Sy for & > 0, this effectively means that one restricts oneself to the poly-
nomials of least degree. Perhaps less radical underlying measures should be
used, ones that agree that higher degrees have greater underlying measure (in-
tuitively, more polynomials), but not infinitely greater (intuitively, not infinitely
more polynomials). Suppose, instead, that the underlying measure is s in .,
and m times greater in each successive degree of greater dimension; i.e., S,
has as underlying measure sm® for some positive real number m. One may
find it convenient to act as if the hypothesis set is finite, and that there are (the
truncation of) sm” curves in Sj,. Then one can say that a curve in S}, has prior
probability equal to so and so, rather than probability density equal to so and so.
At any rate, the important supposition behind the discussion below is that the
underlying measure is m times greater as the degree is increased, not whether
the hypothesis set is finite or not. Under these conditions, individual curves

BBecause My is a subset of M, elements inside My cannot be interchanged with those
outside without affecting the paradigm. This is true regardless of the measure of the two regions.
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have probability as stated in the following theorem.

Theorem 12 Let the hypothesis set H, ; ,,, be as just described above, i.e., the
set of polynomials such that (i) each has degree less than or equal to [, and (ii)
M, — M, has a uniform underlying measure equal to s within some finite
range. Let Q041 be the paradigm that acknowledges the models over Hj ; .
If curve hisin S, for some 0 < k < [, then its prior probability density is
m. A

The symmetry types Sy each receive prior probability 1/(I + 1) by the Prin-
ciple of Type Uniformity. A hypothesis in S, must share its probability with
a measure of sm* hypotheses, and by the Principle of Symmetry the theorem
follows. If one imagines that H; , ,,, is finite, then a curve A in S, receives prior
probability equal to m (where | z] stands for the truncation of x).

One can see from the m % term that curves requiring a greater number of
parameters receive exponentially lower prior probability density. Acknowledge
the natural models. .. exponentially favor polynomials of lower degree. This
observation holds regardless of the value of [ and s. As for m, larger values
mean that curves requiring a greater number of parameters are more disfavored.

There are a class of curve-fitting techniques called “information criteria”
which prescribe picking the model that has the largest value for log I, — vk,
where k is the number of parameters of the model, log is the natural logarithm,
Ly, is the likelihood (P(e|h)) of the maximum likely hypothesis in the model of
k*™ dimension M, and v depends on the specific information criterion. [See
Smith and Spiegelhalter (1980, pp. 218) for many of the information criteria
(my ~ is their m/2) and references to the original papers defending them; see
also Aitkin (1991).] Once this model is determined, the maximum likely hy-
pothesis in it is chosen, even though it may well not be the maximum likely
hypothesis in the entire hypothesis set. Paradigm Theory natural leads to a
class of information criteria emanating from the supposition that the paradigm
IS Qmoder @nd the underlying measure of Sy is m times greater than that of
Sk.

Our task is now to find the curve, or hypothesis, with the greatest posterior
probability density given that models M through M are acknowledged in the
paradigm (i.e., Qmnoder 1S the paradigm). For simplicity, | will for the moment
treat H, ; ,, as if itis finite, with (the truncation of) sm® curves in Sj,. We want
to find % such that it maximizes, via Bayes’ Theorem, P(e|h)P(h)/P(e) (e
represents the data); that is, we wish to find A~ with maximum posterior proba-
bility. It suffices to maximize the natural logarithm of the posterior probability,
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or
log P(e|h) + log P(h) — log P(e).

P(e) is the same for every hypothesis, and we may ignore it. Theorem 12
informs us of the P(h) term, which is the prior probability of A given Q,.odei,
and we have

log P(e|h) + log| ]

(I 4 1)smk

if 1 is in Sg. This manipulates easily to
log P(elh) — (logm)k — log(l 4+ 1) — log s.

l and s are the same for each hypothesis, and so they may also be ignored. This
allows [, the maximum degree of polynomials allowed in the hypothesis set, to
be set arbitrarily high. When the hypothesis set is treated as finite, s can be set
arbitrarily high, thereby allowing the set to approximate an infinite one. Thus,
the hypothesis with the maximal posterior probability is the one that maximizes

log P(e|h) — (log m)k.

This may be restated in the information criterion form by saying that one should
choose the model that has the largest value for

log Ly, — (logm)k,

and then choose the maximum likely hypothesis in that model. | have just
proven the following theorem, which | state for records sake, and retranslate
into its corresponding infinite hypothesis set form.

Theorem 13 Let the hypothesis set be H , ,,, and the paradigm be Q,,,0qci; 1€t
the prior probability distribution be determined by Paradigm Theory. The hy-
pothesis with the greatest posterior probability density is determined by choos-
ing the model with the largest value for log I, — (log m)k and then picking the
maximum likely hypothesis in that model. A

Notice that log m is filling the role of the ~y in the information criteria equation.
As m increases, goodness of fit is sacrificed more to the simplicity of the curves
requiring fewer parameters since the number of parameters & gets weighed
more heavily.
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Consider some particular values of m. m < 1 means that the underlying
measure of Sy is less than that of Sy; that there are, informally, fewer poly-
nomials of the next higher degree. This is very unnatural, and the correspond-
ing information criterion unnaturally favors more complex curves over simpler
ones. m = 1 implies that moving to higher dimensions does not increase the
underlying measure at all. In this case, the second term in the information
criterion equation becomes zero, collapsing to the Maximum Likelihood Prin-
ciple. When moving up in degree and dimension, it is only natural to suppose
that there are, informally, more polynomials of that degree. With this in mind,
it seems plausible that one chooses m > 1. m = 2 implies that moving to
the next higher dimension doubles the underlying measure, which intuitively
means that the number of hypotheses in S is twice as much as in Si. The
value of v for m = 2 is v = log m = .69. Smith and Spiegelhalter (1980, pp.
219) observe that when v < .5 more complex models still tend to be favored,
and this does not fit our curve-fitting behavior and intuition; it is pleasing that
one of the first natural values of m behaves well. (My -~ is Smith and Spiegel-
halters” m /2. Their m is not the same as mine.) When m = e, the resulting in-
formation criterion is precisely Akaike’s Information Criterion. This amounts
to a sort of answer to Forster and Sobers’ (1994, p. 25) charge, “But we do
not see how a Bayesian can justify assigning priors in accordance with this
scheme,” where by this they mean that they do not see how a prior probability
distribution can be given over the curves such that the resulting information
criterion has v = 1. Paradigm Theory’s answer is that if one acknowledges the
natural models, and one assigns underlying measures to degrees in such a way
that the next higher degree has e times the underlying measure of the lower
degree, then one curve-fits according to Akaike’s Information Criterion. When
m = 3,y =~ 1.10, and the resulting inductive method favors simpler curves just
slightly more than in Akaike’s. Finally, as m — oo, the underlying measure
on M7 — My becomes larger and larger compared to that of M, and all curves
requiring more than the least allowable number of dimensions acquire vanish-
ingly small prior probability density; i.e., it approaches the situation in Jeffreys’
prior discussed above. (There is also a type of Bayesian Information Criterion,
called a “global” one (Smith and Spiegelhalter, 1980), where v = (logn)/2
and n is the number of data (Schwarz, 1978).)

The question that needs to be answered when choosing a value for m is,
“How many times larger is the underlying measure of the next higher degree?,”
or intuitively, “How many times more polynomials of the next higher degree
are to be considered?” Values for m below 2 seem to postulate too few polyno-
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mials of higher degree, and values above, say, 10 seem to postulate too many.
The corresponding range for ~ is .69 to 2.30, which is roughly the range of
values for v emanating from the information criteria (Smith and Spiegelhal-
ter, 1980). For these “non-extreme” choices of m, curves requiring fewer pa-
rameters quickly acquire maximal posterior probability so long as their fit is
moderately good.

Paradigm Theory’s explanation for curve-fitting comes down to the follow-
ing: We favor (and ought to favor) lines over parabolas because we acknowl-
edge lines and parabolas. The reasonable supposition that the hypothesis set
includes more curves of degree & + 1 than & is also required for this explana-
tion.

Paradigm Theory’s class of information criteria avoids at least one diffi-
culty with the Bayesian Information Criteria. The Personalistic Bayesian does
not seem to have a principled reason for supposing that the prior probabilities
of My, M, — My, etc., are equal (or are any particular values). Why not give
My much more or less prior probability than the others? Or perhaps just a little
more or less? In Paradigm Theory the models induce M, My — M, etc., as the
symmetry types, and the Principle of Type Uniformity sets the priors of each
equal.

Another advantage to Paradigm Theory approach is that the dependence on
the models is explicitly built in through the paradigm. Any choice of subsets is
an allowable model choice for Paradigm Theory.

3.25 Bertrand’'s Paradox

Suppose a long straw is thrown randomly onto the ground where a circle is
drawn. Given that the straw intersects the circle, what is the probability that
the resulting chord is longer than the side of an inscribed equilateral triangle
(call this event B). This is Bertrand’s question (Bertrand, 1889, pp. 4-5). The
Principle of Indifference leads to very different answers depending on how one
defines the hypothesis set H.

Hy If the hypothesis set is the set of distances between the center of the chord
and the center of the circle, then the uniform distribution gives P(B) =
1/2.

H, If the hypothesis set is the set of positions of the center of the chord, then
the uniform distribution gives P(B) = 1/4.

H, If the hypothesis set is the set of points where the chord intersects the circle,
then the uniform distribution gives P(B) = 1/3.
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Kneale (1949, pp. 184-188) argues that the solution presents itself once the
actual physical method of determining the chord is stated, and a critique can be
found in Mellor (1971, pp. 136-146). Jaynes (1973) presents a solution which
I discuss more below. Marinoff (1994) catalogues a variety of solutions in a
recent article. | approach Bertrand’s Paradox in two fashions.

Generalized Invariance Theory

In the first Paradigm Theory treatment of Bertrand’s Paradox | take the hypoth-
esis set to be the set of all possible prior probability distributions over the points
in the interior of the circle—each prior probability distribution just isa hypoth-
esis. To alleviate confusion, when a hypothesis set is a set of prior probability
distributions over some other hypothesis set, I call it a prior set; | denote the
elements of this set by p rather than i, and denote the set H,,.

| wish to determine a prior probability assignment on H,. What “should”
the paradigm be? Jaynes (1973) argues that the problem statement can often
hold information that can be used to determine a unique distribution. In the case
of Bertrand’s Problem, Jaynes argues that because the statement of the problem
does not mention the angle, size, or position of the circle, the solution must
be invariant under rotations, scale transformations, and translations. Jaynes
shows that there is only one such solution (in fact, translational invariance alone
determines the solution), and it corresponds to the H, case above, with P(B) =
1/2: the probability density in polar coordinates is

P(r,0) = ;, 0<r<R 0<6<2r

2m Rr

where R is the radius of the circle. The theory sanctioning this sort of determi-
nation of priors | call the Invariance Theory (see Changizi and Barber, 1998).
I will interpret the information contained in the problem statement more
weakly. Instead of picking the prior distribution that has the properties of ro-
tation, scale, and translational invariance as Jaynes prescribes, suppose one
merely acknowledges the invariance properties. That is, the paradigm is com-
prised of the subsets of prior probability distributions that are rotation, scale,
and translation invariant, respectively. For every non-empty logical combina-
tion of the three properties besides their mutual intersection there are contin-
uum many hypotheses. Supposing that each subset of the prior set correspond-
ing to a logical combination of the three properties has a different measure,
Paradigm Theory induces five symmetry types: TN RNS, -TNRNS, RN—S,
—RNS and ~RN-.S (three logical combinations are empty), where 7', Rand S
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denote the set of translation-, rotation- and scale-invariant priors, respectively.
Each receives prior probability 1/5, and since 7N RN S = {51} and the
other symmetry types are infinite, P(ﬁ) = 1/5 and every other prior re-
ceives negligible prior probability; 1/(27Rr) is the clear choice. In as much
as the properties of this paradigm are objective, being implicitly suggested by
the problem, this solution is objectivel*

This “trick” of using Paradigm Theory parasitically on the Invariance The-
ory can be employed nearly whenever the latter theory determines a unique
invariant distribution; and in all but some contrived cases the unique distribu-
tion is maximally probable. Some contrived cases may have it that, say, in
the prior set p; is the unique prior that is scale and rotation invariant (where |
suppose now that these are the only two properties in the paradigm), but that
there is exactly one other prior p» that is neither scale nor rotation invariant
(and there are infinitely many priors for the other two logical combinations).
Here there are at most four symmetry types, {p1 }, {p2}, RN —=Sand -RNS.
Each of these two priors receives prior probability 1/4, and so p is no longer
the maximally probable prior.

Now, as a matter of fact, the invariance properties people tend to be in-
terested in, along with the prior sets that are typically considered, have it that
there are infinitely many priors that are not invariant under any of the invari-
ance properties. And, if the Invariance Theory manages to uniquely determine
a prior, there are almost always going to be multiple priors falling in every
logical combination of the invariance properties except their mutual intersec-
tion. If this is true, then Paradigm Theory’s induced symmetry types have the
unique prior as the only prior alone in a symmetry type, i.e., it is the only in-
variant prior in Paradigm Theory’s definition as well. Given that this is so, by
Theorem 2 this prior has the greatest prior probability.

Paradigm Theory need not, as in the treatment of Bertrand’s Problem above,
give infinitely higher prior probability to the unique invariant prior than the oth-
ers, however. Suppose, for example, that the Invariance Theory “works” in that
there is exactly one prior gy that is both scale and rotation invariant, but that
there are exactly two priors p; and p, that are scale invariant and not rotation
invariant, exactly three priors p3, p4 and ps that are rotation and not scale in-
variant, and infinitely many priors that are neither (again, where only rotation
and scale invariance are the properties in the paradigm). There are now four

1%And the solution seems to be correct, supposing the frequentist decides such things, for
Jaynes claims to have repeated the experiment and verified that P(B) ~ 1/2, although see
Marinoff’s comments on this (Marinoff, 1994, pp. 7-8).
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symmetry types, each receiving prior probability 1/4. The probability of the
unique invariant prior is 1/4, that of each of the pair is 1/8, and that of each
of the triplet is 1/12. The point | mean to convey is that Paradigm Theory not
only agrees with the Invariance Theory on a very wide variety of cases, but it
tells us the degree to which the Invariance Theory determines any particular
prior. In this sense Paradigm Theory brings more refinement to the Invariance
Theory. In the cases where Paradigm Theory does not agree with the Invariance
Theory, as in the “contrived” example above, there is a principled reason for
coming down on the side of Paradigm Theory if the invariance properties are
just acknowledged and not favored. Also, not only can Paradigm Theory be ap-
plied when the Invariance Theory works, it can be applied when the Invariance
Theory fails to determine a unique prior; in this sense, Paradigm Theory allows
not only a refinement, but a sort of generalization of the Invariance Theory.

H isthe Sample Space

The second way of naturally approaching Bertrand’s Paradox within Paradigm
Theory takes the hypothesis set to be the set of possible outcomes of a straw
toss. In determining the hypothesis set more precisely, one informal guide is
that one choose the “most general” hypothesis set. This policy immediately
excludes Hj (see the beginning of this subsection) since it does not uniquely
identify each chord in the circle. H; and H, are each maximally general and
are just different parametrizations of the same set. | choose H as, in my opin-
ion, the more natural parametrization, with the underlying measure being the
obvious Euclidean area.

What “should” the paradigm be? The problem has a clear rotational sym-
metry and it would seem very natural to acknowledge the distance between the
center of the chord and the center of the circle; this set of distances just is H)
and we will be “packing in” Hj into the paradigm. Rather than acknowledg-
ing all of the distances, suppose that one acknowledges n of them (n equally
spaced concentric rings within the circle); we will see what the probability dis-
tribution looks like as n approaches infinity. Each ring has a different area, and
so each is its own symmetry type. Therefore each has a probability of 1/n. The
probability density is

_1/n 1/n n

PU0) = = G~ @i nage | € R DR/,

where, i = 1,...,n, 4; is the area of the i** concentric ring from the center.
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As n gets large, iR/n ~ r, S0 i ~ rn/R. Thus

P(r6) = @rn/R— 1)rRZ  (rn— R/2)27R

and since n is large, rn — R/2 =~ rn, giving

1
2w Rr

which is exactly what Jaynes concludes. Acknowledge how far chords are
from the center of the circle and accept one of the more natural parametriza-
tions. .. get the “right” prior probability density function.

If instead of acknowledging the distance from the center of the circle one
acknowledges the property of being within a certain radius, then the sets in the
paradigm are nested and the resulting symmetry types are the same as before,
regardless of the underlying measure.

P(r,0) =

3.3 *“Solution” toriddle and theory of innateness

The intuition underlying Paradigm Theory is that more unique is better, or ar-
bitrariness is bad, and this is related to the idea that names should not matter,
which is just a notion of symmetry. The more ways there are to change a hy-
pothesis’ name without changing the structure of the inductive scenario (i.e.,
without changing the paradigm), the more hypotheses there are that are just
like that hypothesis (i.e., it is less unique), which means that there is less “suf-
ficient reason” to choose it. The principles of Paradigm Theory link with this
intuition. The Principle of Type Uniformity and Principle of Symmetry give
more unique hypotheses greater prior probability, and the Principle of Defen-
sibility entails that among the more unique hypotheses, those that are more
unique should receive greater prior probability. Recall (from Subsection 3.1.3)
that these are the links of the principles to the “more unique is better” motto—
the principles do not actually say anything about the uniqueness of hypotheses,
but are motivated for completely different, compelling reasons of their own.
Nevertheless, it is a convenient one-liner to say that Paradigm Theory favors
more unique hypotheses, and not just qualitatively, but in a precise quantitative
fashion. In this sense the theory is a quantitative formalization of Leibniz’s
Principle of Sufficient Reason, interpreted nonmetaphysically only.

The favoring of more unique hypotheses, despite its crudeness, is sur-
prisingly powerful, for it is a natural, radical generalization of both Carnap’s
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m™*-logical theory and (through the use of secondary paradigms) Hintikka’s
“a = 0”-logical theory, arguably the most natural and pleasing inductive meth-
ods from each continuum. Besides these achievements, Paradigm Theory gives
explanations for a large variety of inductive phenomena:

e it “correctly” collapses to the Classical Theory’s Principle of Indifference when no dis-
tinctions are made among the hypotheses,

e it suggests a conceptual framework-based solution to the problem of the underdetermi-
nation of interpretation for language,

e it explains why no-inductions are rarely considered rational,
o itexplains why frequency-inductions and law-inductions are usually considered rational,

e it gives a foundation for Occam’s Razor by putting forth the notion that simpler hy-
potheses are favored because one acknowledges simplicity, and simpler hypotheses are
(usually) less arbitrary,

e it accommodates curve-fitting by supposing only that one acknowledges the usual mod-
els—constants, lines, parabolas, etc.,

e it allows a sort of generalization of the Invariance Theory for choosing unique prior
probability distributions, and this is used to solve Bertrand’s Paradox,

e and it accounts for Bertrand’s Paradox in another fashion by acknowledging the distance
from the center of the circle.

In the first section of this chapter | laid out the goals of a theory of logical
induction, and the related goals of a theory of innateness. How does Paradigm
Theory fare in regard to these goals?

How Paradigm Theory “solves’ theriddle of induction

Let us briefly recall our basic aim for a logical theory of induction. Ultimately,
we would like to reduce all oughts in induction and inference—you ought to
choose the simplest hypothesis, you should believe the next fish caught will
be a bass, it is wrong to draw a parabola through three collinear points, and
so on—to just a small handful of basic, axiomatic, or primitive oughts. The
hope is that all oughts we find in induction can be derived from these primitive
oughts. We would then know, given just a set of hypotheses and the evidence,
exactly what degrees of confidence we should have in each hypothesis. If we
had this, we would have a solution to the riddle of induction.
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Alas, as discussed at the start of this chapter, this is impossible; there is
no solution to the riddle of induction. There are, instead, multiple inductive
methods, and although some may well be irrational or wrong, it is not the case
that there is a single right inductive method. This was because any inductive
method makes what is, in effect, an assumption about the world, an assump-
tion which is left hanging without defense or justification for why it should be
believed.

If we are to have a theory of logical induction, we must lower the bar. We
would still, however, like the theory to consist of a small handful of primitive
oughts. But we are going to have to resign ourselves to the persistence of a
leftover variable of some kind, such that different settings of the variable lead
to different inductive methods. A theory of logical induction would, at best,
allow statements of the form

If the variable is X, then the primitive oughts entail that one should proceed with
inductive method M.

But it would defeat the whole purpose of our theory if this variable stood for
variable a priori beliefs about the world, because the theory would then only
be able to say that if you started out believing X, then after seeing the evidence
you should believe Y. We want to know why you should have started out
believing X in the first place. How did you get those beliefs in ignorance about
the world?

And this was the problem with the Bayesian approach. The Bayesian ap-
proach was good in that it declares a primitive ought: one should use Bayes’
Theorem to update probabilities in light of the evidence. And to this extent,
Paradigm Theory also utilizes Bayes’ Theorem. But the Bayesian approach
leaves prior probabilities left over as a free-for-the-picking variable, and priors
are just claims about the world.

With this in mind, we required that the variable in any successful theory
of logical induction not stand for beliefs or claims about the world. Because
any choice of the variable leads, via the primitive principles of ought, to an
inductive method, any choice of variable ends up entailing a claim about the
world. But that must be distinguished from the variable itself being a claim
about the world. We required that the variable have some meaningful, non-
inductive interpretation, so that it would be meaningful to say that an inductive
agent entered the world with a setting of the variable but nevertheless without
any a priori beliefs about the world. We would then say that the agent, being
rational, should follow the primitive principles of ought and thereby end up
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with what are claims about the world. But the claims about the world were
not inherent to the variable, they only come from joining the variable with the
principles of ought.

In this chapter | introduced a kind of variable called a “paradigm,” which
is central to Paradigm Theory. Paradigms are not about the world. Instead,
they are conceptualizations of the world, and more exactly, conceptualizations
of the space of hypotheses. Paradigms say which hypotheses are deemed to be
similar to one another, and which are not. More precisely, a paradigm is the
set of properties of hypotheses the inductive agent acknowledges. The set of
properties of hypotheses acknowledged does not comprise a claim about the
world, nor does it possess any ‘ought’s. It is just a way of looking at the set
of hypotheses, and no more than that. Paradigms, then, are non-inductive and
have a meaningful interpretation. This is the kind of variable we wanted in a
theory of logical induction.

But we also needed principles capable of taking us from the variable—
the paradigm in Paradigm Theory—to an inductive method. Paradigm Theory
achieves this via three primitive principles of ought, along with the Bayesian
principle of evidence (Bayes’ Theorem). The three principles concern non-
arbitrariness in the assignment of prior probabilities, and given a paradigm the
principles entail a unique prior probability distribution. The Bayesian principle
of evidence finishes the job by stating how one ought to modify prior proba-
bilities to posterior probabilities as evidence accumulates. In sum, Paradigm
Theory allows statements like this:

If, before knowing anything about the world, you conceptualize the space of
hypotheses in a fashion described by paradigm Q, then via the three primitive
principles of prior probability determination you should have certain prior proba-
bilities Pg (k) on those hypotheses. And, furthermore, when evidence is brought
to bear on the logical probabilities of the hypotheses, one should obtain posterior
probabilities by using Bayes’ Theorem.

The most important thing to notice about this is that the statement begins with
the inductive agent not making any claim about the world. The statement does
not simply say that if you have certain beliefs you ought to have certain others.
It requires only that the completely-ignorant-about-the-world inductive agent
enter the world with a way of looking at it. Without any preconceptions about
the world (although he has preconceptions about the properties of hypotheses),
the theory nevertheless tells the agent how he ought to proceed with induction.
The theory thereby reduces all inductive oughts to a few primitive principles of
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ought, and these primitive oughts are the only inductive primitives one needs
for a theory of induction. At base, to justifiably follow an inductive method isto
have a paradigm and to follow certain abstract principles of non-arbitrariness
and principles of evidence.

Some readers might say that this is all well and good, but does it really get
us anywhere? We are still stuck with paradigms, and there is no way to justify
why an inductive agent has the paradigm he has. We have simply pushed the
indeterminacy of inductive methods downward, to prior probabilities, and then
further downward to paradigms. We still have not answered the question of
which inductive method we should use, because we have not given any reason
to pick any one paradigm over another. That is, suppose that—poof—a rational,
intelligent agent suddenly enters a universe. We still do not know what he
should do in regards to learning, and so Paradigm Theory is useless for him.

The response to this kind of criticism is that it is essentially taking Paradigm
Theory to task for not being a solution to the riddle of induction. To see this,
note that the criticism can be restated as, “If Paradigm Theory is so great, why
isn’t it telling us what one should believe given just the hypothesis set and the
evidence?” But this is just to ask why Paradigm Theory does not solve the
riddle of induction. The answer, of course, is that there is no solution to the
riddle of induction; i.e., there is no single way that one ought to take a set of
hypotheses and evidence and output posterior probabilities in the hypotheses.
This kind of criticism has forgotten to lower the bar on what we should be
looking for in a theory of logical probability. At best, we can only expect of a
theory of logical probability that it reduce inductive oughts to a small number
of primitive ones, and to some variable that is not about the world. We cannot
expect to have no variable left over.

It should be recognized that it was not prima facie obvious, to me at least,
that it would even be possible to obtain this lowered-bar theory of logical in-
duction. Prima facie, it seemed possible that there would be no way, even
in principle, to reduce inductive oughts to a few primitive oughts and some
meaningful, non-inductive variable. Paradigm Theory is an existence proof: a
lowered-bar theory of logical probability exists. | have presented no argument
that no other theory of logical probability could not also satisfy these require-
ments | have imposed; there probably exist other such theories, perhaps others
with superiorities over Paradigm Theory.
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How Paradigm Theory servesas a theory of innateness

Paradigm Theory provides a kind of best-we-can-hope-for solution to the rid-
dle of induction. But I had also stated at the start of this chapter that we were
simultaneously looking for a theory that would serve as a theory of innateness,
and | had put forth requirements we demanded of such a theory. The require-
ments were that we be able to model rational intelligent agents as following
certain fixed learning principles, and that any innate differences in their resul-
tant inductive method would be due to some setting of a variable with a weak,
non-inductive, meaningful interpretation. Under the working assumption that
the brain is rational, the theory would apply to the brain as well. The the-
ory of innateness would provide a way of economically explaining why differ-
ent agents—or different kinds of brain—innately engage in different inductive
methods. We would not have to commit ourselves to a belief that the principles
of learning may be innately chosen willy nilly; there is a single set of learning
principles that anyone ought to follow. We would also not be committed to a
view that brains enter the world with a priori beliefs about it, a view that seems
a little preposterous. Instead, brains would only have to innately be equipped
with some other kind of difference, although what that difference might be will
depend on the kind of theory of innateness that is developed.

Recall that the Bayesian framework is a nice step forward in this regard,
and has accordingly been taken up in psychology, neuroscience, computer and
the decision sciences to study learning and interactions with an uncertain world.
All innate differences in inductive methods will be due not to innate differences
in how evidence is to be used to modify the degrees of confidence in hypothe-
ses. All innate differences stem from innate differences in prior probabilities,
and here lies the problem with the Bayesian framework as a theory of innate-
ness: prior probabilities are a priori beliefs about the world, and thus they are
not non-inductive, as we require for a theory of innateness.

The Bayesian framework should not, however, be abandoned: it gets the
evidence principle right. What we would like is to dig deeper into prior prob-
abilities and find principles of prior probability determination that any agent
should follow, so that from some non-inductive innate variable comes prior
probabilities via these principles. And this is where Paradigm Theory en-
ters. Objects called “paradigms” were introduced which were interpreted as
conceptual frameworks, or ways of conceptualizing the space of hypotheses.
Paradigms were not about the world. Paradigm Theory introduced principles
of prior probability determination saying how, given a paradigm, one ought to
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assign prior probabilities. Paradigm Theory, then, appears to satisfy the re-
quirements of a theory of innateness.

But, someone might criticize, we are still left with innate paradigms, or
innate ways of conceptualizing the set of hypotheses, or innate ways of lumping
some hypotheses together as similar or of the same type. Is this any better than
innate prior probabilities? Perhaps it is strange to hypothesize that brains have
a priori beliefs about the world, but is it not also strange to hypothesize that
brains have a priori ways of carving up the space of hypotheses?

As a response, let me first admit that it is, prima facie, a bit strange. How-
ever, one has to recognize that if a brain engages in an inductive method, then
it must have entered the world with some innate structure that is sufficient to
entail the inductive method. Such innate “structure” will either be learning al-
gorithms of some kind unique to that kind of brain, or perhaps the Bayesian
evidence principle along with prior probabilities unique to that kind of brain,
or perhaps the Bayesian evidence principle and principles of prior probability
determination along with a paradigm unique to that kind of brain, etc. It may
seem prima facie odd to believe that any of these kinds of “structures” could
be innate. One reason for this first reaction to innate structures is that there
is, | believe, a tendency to revert to thinking of brains as blank slate, universal
learning machines: brains enter the world completely unstructured, and shape
themselves by employing universal learning algorithms to figure out the world.
But as we have discussed, there is no universal learning algorithm, and so there
cannot be brains that enter the world without innate learning-oriented struc-
tures. We are, then, stuck with innate learning-oriented structure, no matter
how strange that might seem. Thus, the fact that innate paradigms strike us as
strange is not, alone, an argument that Paradigm Theory is supposing some-
thing outlandish.

But, one may ask, are paradigms any less outlandish than prior probabili-
ties? What have we gained by moving from innate structure in the form of prior
probabilities to innate structure in the form of paradigms? We have gained in
two ways. First, we have isolated further principles of rationality that induc-
tive agents ought to follow; namely, the non-arbitrariness principles of prior
probability determination (the Principles of Type Uniformity, Symmetry and
Defensibility). Second, paradigms are a much weaker innate structure, being
only about the kinds of hypotheses there are, rather than about the degree of
confidence in the hypotheses.

Note that Paradigm Theory as a theory of innateness is not necessarily com-
mitted to actual innate paradigms in the head, whatever that might mean. It is
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commonplace for researchers to hypothesize that different kinds of organisms
have what are, in effect, different innate prior probabilities, but such researchers
do not commit themselves to any view of what mechanisms may instantiate
this. Prior probabilities are primarily a theoretical construct, and allow us to un-
derstand brains and learning agents within the Bayesian framework. Similarly,
Paradigm Theory is not committed to any particular mechanism for implement-
ing innate paradigms. Rather, paradigms are a theoretical construct, allowing
us to describe and explain the behaviors of inductive agents and brains in an
economical fashion.

Paradigm Theory is a theory of innateness satisfying the requirements we
set forth, but there is no reason to believe there are not others also satisfying
the requirements, perhaps better theories in many ways.

Appendix to chapter: Some proofs

This section consists of some proofs referred to in this chapter.

Here are some definitions. 6(h) = « (h is~vy-Q-invariant in H) if and only
if h € A7, §(h) is the ordinal number indicating the invariance level of h. Say
that ¢ is a Q7-symmetry type in H if and only if ¢ is a Q M HY-symmetry type
in H". Let k,, be the cardinality of H™ (which is also the number of singleton
Q" -symmetry types), let s, be the number of non-singleton @Q*-symmetry
types, and let e(h) be the cardinality of the Q-equivalence type of h. Notice
that k,+1 = card(1(Q™, H")) (‘card(A)’ denotes the cardinality of set A).
We denote 1$1+ by r; and call it the singleton symmetry type ratio at level i.
The followmg theorem states some of the basic properties of Paradigm Theory.

Theorem 14 The following are true concerning Paradigm Theory.
1. P(H""Y) =r,P(H") (P(H®) = 1).
2. PH" ) =rory -1y
3. P(A"™) = (1 —r,)P(H™).

4. P(h) = 20 p(HM).

e(h)Ks(hy+1

5. P(h) = ot

e(h)ks(ny+1"
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Proof. Proving 1, there are s, + k11 Q™-Symmetry types, and «, 1 of them
are singletons which “move up” to the n + 1*" level. Since each Q"-symmetry
type gets the same probability, H"+! gets the fraction

Rn+41
Sp + Rn+1

of the probability of H™. 2 is proved by solving the recurrence in 1. 3 follows
from 1 by recalling that P(A") = P(H™) — P(H™*!). To prove 4, notice that
the probability of a hypothesis A is

p(Aé(h))
ssmye(h)”

Substituting P(A%") with the formula for it from 3 and some algebraic ma-
nipulation gives the result. Finally, 5 follows from 2 and 4. A

P(AY)

Si

Proof of Theorem 3. To prove 1, it suffices to show that for all 4,
P By Theorem 14,

Si+1

<

and

P(AH—I) _ Si+1 P(Hi—i-l) _ Si+1 Ki+1 P(Hz)
Si+1 + Kit2 Si+1 T Kit+2 8 + Kit1

By substitution we get

P(Aﬂ_l) . P(AZ) Ri4+1

Sit+1 Si  Si+1 T Kit2
It therefore suffices to show that

1< KRi+1

Sit1 + Kiga
and this is true because the denominator is the total number of Q! symmetry

types, which must be less than or equal to the numerator, which is the total
number of hypotheses in H*+1. 2 follows easily from 1. A
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It is not the case that less defensible equivalence types always have less
probability. It is also not the case that more defensible hypotheses never have
lower probability than less defensible hypotheses. A more defensible hypoth-
esis hy can have less probability than a less defensible hypothesis #, if the
equivalence type of hy is large enough compared to the equivalence type of /.
The following theorem states these facts.

Theorem 15 The following are true about Paradigm Theory.

1. Thereareequivalence types d; less defensible than d, such that P(d;) =
P(dy).

2. There are hypotheses /; not more defensible than h, such that P(hy) £
P(hy).

Proof. To prove 1, consider a paradigm represented by a two-leaf binary tree.
The root comprises one equivalence type, and the pair of leaves is the other.
Each equivalence type is also a symmetry type here, and so each gets probabil-
ity 1/2.

Proving 2, consider the tree on H; from Section 3.1.2. The reader may
verify that h and ¢ receive probability % but e, f, and g receive probability
4l 1A
1518 18
Proof of Theorem 4. When n is even there are 2n complexions and Laplace’s
method gives each a probability of 1/2n. For each complexion there is a sym-
metrical one with respect to 7, with which it may be permuted (without chang-
ing Q1.), so there are n symmetry types, each receiving via @)y, a probability of
1/n. Each symmetry type contains exactly two complexions of equal size, and
so each complexion gets a probability assigned of 1/2n. (The non-complexion
set in 1, does not come into play when n is even.)

When n is odd there are 2n — 1 complexions and Laplace’s method gives
each a probability of 1/(2n—1). Now there are an odd number of complexions,
and the “middle” one is not symmetrical with any other complexion. Further-
more, because @, contains the set of all sequences with more Os than 1s, and
this set is asymmetrical, none of the complexions are symmetrical with any
others. Thus, each complexion is a symmetry type, and each complexion re-
ceives a probability of 1/(2n — 1). A

Proof of Theorem 7. There are 2V — 2 sequences that are not predicted by the
‘all 1s” or “all 0s’ laws, and these must share the .5 prior probability assignment.
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There are 2V —"—1 sequences of length NV with the first » experiments resulting
in 1 but not all the remaining N — n experiments resulting in 1; the total prior
probability assigned to these strings is therefore

12V
1= 95798 9

The probability that after seeing n 1s there will be a counterexample is

q
25+q

With some algebra, the probability that after seeing n 1s the remaining will all

belis
1 oN _9

22N (2—n +2-1) =2’
which, for any moderately sized N becomes, with some algebra, approximately

2n71
14 2n-1 o
Proof of (a) in Theorem 9. We want the probability that p = 1 given that we
have seen n 1s and no 0s (n > 0); i.e., P(p = 1|1"), where 1™ denotes the
string with n 1s. By Bayes’ Theorem
P(p=11") =
P(p=1)PQ1"p=1) .
P(p=1)P(1"p=1)+ P(p € (0,1))P(1*|p € (0,1)) + P(p = 0)P(1"|p = 0)
The only term that is not immediately obvious is P(1"|p € (0, 1)), which is
i p™dp = 1/(n 4 1). Thus we have

25(1)

25(1) + 527 +.25(0)°

and with a little manipulation this becomes Z—E A

Proof Sketch of Theorem 10. 1 is simple and 2 is proved by induction on the
depth of the binary tree. 1 and 2 do not exhaust the types of trees that result in
the root being the lone maximally defensible element; see the H, ymm/Qasymm
example in Section 3.2.3 for a non-binary non-full tree that puts the root alone
at the top. Informally, most trees put the root at the top. We have made no
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attempt to characterize the class of trees that put the root at the top. See the
following tree for 3.

A

Proof of Theorem 11. There are n + 1 symmetry types (one for each level),
each receiving probability 1/(n + 1). The symmetry type at depth i has ¥ ele-
ments. A
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Chapter 4

Conseguences of a Finite Brain

Do the ultimate limits on what it is possible to compute have a role to play
in explaining our world? Can the ultimate limits on computers tell us any-
thing about ourselves? Can recursion theory, the most theoretical discipline of
computer science, be applied to the brain? One major point of this chapter is to
suggest that the answers are “Yes”: Studying the limits of computation can give
one a handle on principles governing any sufficiently intelligent agent, whether
the agent is meaty or metal. If you are a finite machine, as we are, then there
are certain necessary consequences. Any brain will have certain similarities.
The similarity that | concentrate on is the phenomenon called vagueness, and |
show why any finite-brained agent will have to deal with vagueness.

As a student, one of my interests was to understand the ultimate limits of
thought, learning, understanding and intelligence. My interest was not really
about brains, per se; my interest concerned the ultimate limits of any thinking
machine. Now, it is primarily brains that think, learn, understand and have
intelligence, and so one might expect that studying neuroscience might help
one to discover these limits of thought. Not so, at least not with the state of
neuroscience today. The reasons are that

(a) brains are not well-understood,
(b) brain activity is not easily describable, and
(c) brains are not susceptible to proving theorems about them and their limits.

And even if someday (a), (b) and (c) are averted with a mature neuroscience, it
may be that

239
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(d) the brain, being just one of presumably infinitely many possible kinds of
thinking machine, barely scratches the surface as to what the ultimate
limits are.

This reasoning led me to learn computer science, and, more specifically,
logic, theoretical computer science, complexity theory and recursion theory.
Why? Because

(@) computers are well-understood,

(b) their activities are nicely describable, and

(c) computers are susceptible to proving theorems about them and their limits.
Furthermore,

(d) in theoretical computer science one may study what is arguably the class
of all thinking machines, not just one specific kind of thinking machine.

Understanding theoretical computer science and logic not only illuminates
the limits of machines, | believe it can tell us interesting things about one par-
ticular machine: the brain. A computer is, alas, not a brain. The fine details of
how the brain works will probably not be illuminated merely by understand-
ing computers and their limitations; those interested in the fine details need to
study real brains in addition to computers. But | have never been interested in
fine details—I care only about general, foundational principles—and this goes
for the brain as well. Given the plausible notion that the brain is a kind of com-
puter, understanding computers and their limits may provide us with insights
into the brain. That is, using computers as a model of the brain may have a
payoff.

There is a danger that one might take me to mean that “using computers to
model the brain may have a payoff.” Now, this is uncontroversially true; com-
putational models in neuroscience and psychology are widespread. Generally,
the idea is to concoct a program that captures relevant aspects of the system of
interest. But this is not what | mean. When | say that the brain is to be mod-
eled as a computer, | do not mean that | have devised some particular kind of
program that seems to capture this or that aspect of the brain or behavior. In-
stead, | mean that the brain is to be treated as a computational device—whether
a neural network machine, a random access architecture, or other—and is thus
subject to the same computational limits as computers.
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This, too, is almost entirely uncontroversial: nearly everyone considers the
brain a computing machine. (Although Penrose (1994) is one counterexam-
ple.) What has not been given sufficient attention, however, is that the brain-
as-computer hypothesis—all by itself and without reference to any more de-
tailed hypothesis about the program it computes or what its specific limitations
are—has certain empirical implications. Rational, computer-brained agents—
although they may be radically different in behavior, personality, intelligence,
likes, and so on—are going to have certain similarities. These similarities are
things true of any rational computationally bound agent; they are “behavioral
invariants” for such machines.

Our limitations

Consider the informal plots in Figure 4.1. Each plot has human “activities,”
or behaviors, along the x axis. Along the y axis in each plot is the human
“ability”; f(z) is the degree of ability humans possess in doing activity x. For
example, perhaps we are interested in the activity « of running, in which case
f(x) represents the human ability to run so and so fast. Or, consider the activity
z of holding items in working memory. Humans have the ability to hold around
seven (plus or minus two) items in working memory, and f(x) represents this
ability.

The top horizontal line in each graph represents the line at which greater
ability become logically impossible. Graph A is what | will call the “usual
conception,” where our human abilities always fall short of the logical limits
of what is possible. For example, having a working memory space of seven is
presumably not explained by reference to any logical limits on what is possible.
The explanation for it is likely to be brain-specific and historical in nature.
Graph B, on the other hand, depicts an activity (the arrow) for which the limits
of logical possibility are the active constraint in explaining the human ability
in that activity.

For example, consider the activity x of determining truths of Peano Arith-
metic. First, what is “Peano Arithmetic”? For now, you just need to know that
it is a short list of obviously true sentences of arithmetic, from which one may
derive infinitely many other truths of arithmetic (but not all the truths of arith-
metic). And, note that “arithmetic” just refers to what you might think it does:
mathematical sentences concerning addition and multiplication on the natural
numbers 0,1,2.... Thus, | am asking you to consider the activity of deter-
mining whether or not a sentence in arithmetic follows from Peano’s axioms of
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Ability

Usual conception

Activity

Ability

Activity

Figure 4.1: Ability to do a given activity. The top horizontal line in each plot demarcates
the boundary between logical possibility and, above the line, logical impossibility. The usual
conception is to view our ability as falling short of the line of logical impossibility. That is,
the explanation for our ability being what it is usually refersto hosts of contingent physical or
biological details about us. On the other conception, perhaps there are abilities of ours (the
arrow) that are, in some sense, as good as they possibly can be, where “ possibly” refers to
logical possibility. The explanation for our ability (or inability) being what it is refers entirely
(or almost entirely) to the limits of what islogically possible.
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arithmetic. It turns out that we humans are not perfect at this; we are not perfect
determiners of which sentences follow from Peano’s axioms and which do not.
This is not the kind of thing that anyone has actually experimentally tested,
mind you, but no savant has come forth able to, without error, tell whether or
not an arithmetic sentence follows from Peano’s axioms. We humans seem to
have a limited ability in this regard.

Another place we have a similar inability concerns the problem of deter-
mining whether or not some program is going to halt on some given input.
That is, | hand you some software for your computer, and | give you a copy of
the programming instructions, or code, underlying the software. | then give you
something to input into the program. Two things can possibly happen. First,
the program could take the input, grind it through some instructions and so on,
and eventually terminate. This is what we almost always want our software to
do: to eventually stop running without us having to reboot the system to force
it to stop. The other possible result of placing the input into the program is that
the program may never stop running; it is said to never halt. It just keeps car-
rying out more and more computations, going on and on and on without end.
This is when one must definitely resort to rebooting the computer, or breaking
out of the program somehow. Your task, with the program code in one hand
and the input in the other, is to determine whether the program will or will not
halt when that input is entered. This problem is called the halting problem, and
people are known to be notoriously bad at solving it. Again, it is not as if there
have been psychological experiments in this regard (not that | know of); it is
just known within computer science circles, for example, that we are all prone
to error in solving this problem.

One possible source of our limitations: logic itself

What is the source of our limited abilities in determining the truths of Peano
arithmetic and in determining whether a program halts on some given input?
It is thought that our limited abilities in these activities are explained by the
undecidability of the problems. In particular, the set of truths of Peano Arith-
metic is undecidable, as is the set of pairs of programs and inputs for which the
program halts on the input. What do we mean by “undecidability”? We say
that a set is undecidable if there is no computer program that exists, even in
principle, that can take elements as input and always correctly output whether
or not the element is a member of the set. If one did have such a program, the
program would be said to decide the set; and the set would be decidable since
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there exists at least one program that can decide it. (We will talk more about
this later.) Thus, when we say that the set of truths of Peano arithmetic is un-
decidable, we mean that there is no program that can be run on a computer that
will take as input a sentence of arithmetic and output whether or not it is true.
And when we say that the halting set—i.e., the set of pairs of programs and
inputs for which the program halts on that input—is undecidable, we mean that
there is no program ( that can be implemented on a computer that will take a
program code P along with an input z together as input (i.e., the pair (P, z) is
the input to the program () and output YES if program P halts on input z, and
outputs NO if program P does not halt on input x.

What does the undecidability of these problems have to do with our limited
ability in solving them? Since they are undecidable, no computing machine
can solve them perfectly. And since we are just computing machines, we,
too, cannot solve them perfectly. This argument depends on something called
Church’s Thesis, which states that if something is intuitively computable—i.e.,
if it seems in some sense as if one is able to compute it—then it is computable,
in principle, by today’s computers. In other words, it says that there is no
other notion of computing something that we have not already captured in our
understanding of computers. (We’ll be discussing this at more depth at the
appropriate time later.) With Church’s Thesis in hand, it is argued that we can
compute nothing a computer cannot also compute, and since a computer has
limited ability with the Peano arithmetic and Halting problems, so must we.

Such an explanation, if true, utilizes in an essential way the logical limits of
what is possible for finite agents (by which | will mean for now computationally
bound agents, although | shall mean something more precise in Section 4.2.3),
and thus f(x) in the plot from earlier would be depicted as reaching the top
horizontal line.

Vagueness and logical limits

Vagueness—the phenomenon that, roughly, natural language words have bor-
derline regions (see Section 4.1)—is a phenomenon, not an activity, but phe-
nomena and activities are sometimes related. The activity of human running is
associated with the phenomenon that humans run only so and so fast. The ac-
tivity of remembering via working memory is associated with the phenomenon
that humans can only hold seven items. The activity of determining truths
of Peano Arithmetic is associated with the phenomenon that humans are in-
capable of acting as perfect Peano Arithemetic truth-determiners. And the
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activity of discovering if a program halts on a given input is associated with
the phenomenon that humans are not very good halting-determiners, or “bug-
checkers.”

In this vein, the phenomenon of vagueness will be seen to be associated
with two certain logical limits on the ability of finite, sufficiently powerful,
rational agents:

1. their inability to determine whether or not a program halts on a given input, and

2. their inability to generally acquire algorithms—programs that eventually halt on every
input—for their concepts.

Thus, in explaining vagueness in this chapter, | will be arguing for a picture of
explanations of human behavior as in graph B of Figure 4.1, where vagueness is
connected with an activity for which the human ability is bound by the ultimate
limits on what is possible; mathematics shapes us. We will see that vagueness
is not due to any particularly human weakness, but due to a weakness that
any computationally bound agent possesses; even HAL from 2001: A Space
Odyssey and Data from Star Trek will probably experience vagueness?!

4.1 Vagueness, the phenomenon

One of the main points of this chapter is to show why one particular, very
important, all-pervasive, long-known, and not well-understood phenomenon is
explained primarily by the fact that the human brain is finite. That phenomenon
is vagueness. Vagueness applies to predicates of natural language. A predicate
is a word that applies to a subset of the set of all possible objects or events. For
example, the predicate ‘dog’ applies to all possible dogs, the predicate ‘bald’
applies to all possible bald heads, and the predicate ‘eat’ applies to all possible
occasions of eating. Nouns, adjectives and verbs are predicates, but many other
kinds of words are not predicates, such as logical connectives like ‘and’, ‘or’,
and ‘therefore’, or other “function” words (as they are called in linguistics)
such as ‘after’, ‘each’, “in’, *‘must’, ‘he’, ‘is’, ‘the’, ‘too’, and ‘what’.

A predicate is vague if it has borderline cases. Yul Brynner (the lead in The
King and 1) is definitely bald, |1 am (at the time of this writing) definitely not,

Very early ideas of mine along the lines presented here appeared in Changizi (1995). A
paper on my theory was presented at the 1998 vagueness conference in Bled, Slovenia (Changizi,
1999a), and at the 1998 Irish Conference on Formal Methods (Changizi, 1999b). The latter
concentrates on logics and semantics of vagueness motivated by my theory of vagueness. The
main ideas were published in Changizi (1999c).
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and there are many people who seem to be neither. These people are in the
“borderline region” of the predicate ‘bald’, and this phenomenon is central to
vagueness. Nearly every predicate in natural language is vague. From ‘person’
and ‘coercion’ in ethics, ‘object’” and ‘red” in physical science, ‘dog’ and ‘male’
in biology, to ‘chair’ and ‘plaid’ in interior decorating; vagueness is the rule
not the exception. Pick any natural language predicate you like, and you will
almost surely be able to concoct a case—perhaps an imaginary case—where
it is unclear to you whether or not the case falls under the predicate. Take the
predicate ‘book’, for example. The object from which you are reading this is
definitely a book, your light source is definitely not a book. Is a pamphlet a
book? If you dipped this book in acid and burned off all the ink, would it still
be a book? If I write this book in tiny script on the back of a turtle, is the
turtle’s back a book? We have no idea how to answer such questions. The fact
that such questions appear to have no determinate answer is roughly what we
mean when we say that ‘book’ is vague.

And, by ‘vague’ we do not include conundrums such as whether redness
is or is not bald; the word ‘bald’ does not apply within the domain of colors,
and so some might say that neither ‘bald’ nor ‘not bald” “nicely applies” to
redness. If ‘bald’ is vague—and it is—it is not because of the colors that it
is vague. In cases of vagueness, the inability to nicely apply the word and its
negation is not due to the word not applying to objects in that domain. ‘bald’
is vague because there are heads which do not nicely fall under ‘bald’ or ‘not
bald’, even though there are lots of other heads which do fall nicely under one
or the other of ‘bald’ or ‘not bald’.

For the uninitiated, why should we care about vagueness? There are a
number of reasons.

Most importantly for my interests here, the fact that natural language is
vague needs to be explained. Why are natural language users unable to draw
a single sharp line between definitely bald and definitely not bald? Why do
natural language users seem to find cases that are borderline bald? Why cannot
natural language users determine the boundaries of the borderline region? Is it
possible to have a non-vague language? If so, under what conditions?

The most central phenomenon of vagueness is the borderline region, where
for a vague predicate P there are objects which are not clearly classifiable as
either P or ‘not P’. This borderline region phenomenon seems to stab at the
very heart of the idea that our concepts divide the world into two parts: those
objects to which the predicate applies—the predicate’s extension—and those
objects to which the predicate does not apply—the complement of the pred-
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icate’s extension. Although some would like to argue that the true meanings
of P and ‘not P’ are as in classical two-valued logic where the extension of
‘not P’ is the complement of the extension of P (such a semantics is called
determinate), the concepts as we actually use them do not seemto be like this,
lest there be no phenomenon of vagueness at all. What are our concepts like,
if they are not as in classical logic? If we are not carving up the world a la
classical logic, how do we carve up the world?

A third reason the study of vagueness is important is related to the previous
one, but now the concern is one of logic rather than the question of what is a
concept. The issue is that classical two-valued logic seems to be at stake, for
classical two-valued logic says (i) that the meaning of a predicate is a precise
set and (ii) that the meaning of the negation of the predicate is the complement
of that precise set. Prima facie, (i) and (ii) do not seem to be consistent with
the existence of the phenomenon of vagueness. This threatens the usefulness
of over seventy years of technical work in classical logic. What is the proper
model of our interpretations and use of natural language predicates? And what
is the logic of our inferences if we are not “classical logic machines”? Given
that we humans are the paradigm example of rationality, it would serve us well
to understand the logic we engage in for the purposes of (a) better understand-
ing what is rationality and (b) building artificial machines that can mimic the
intelligence and humanity of our inferences and utterances—how better to do
this than to first understand how we do this?

Now that we care about vagueness, it is necessary to become clearer about
what exactly the phenomenon of vagueness is? What is it that is in need of ex-
planation? Some names of phenomena comprising the phenomenon of vague-
ness are ‘borderline region’, ‘higher-order vagueness’, ‘sorites paradox’, ‘ine-
liminability’, and ‘essentialness’; the first two are central. All things equal, a
theory that satisfies more of the phenomena is more favorable. But what are
these phenomena? It is dangerous to attempt to precisely and formally define
them since we have no clear pre-theoretic agreement on what exactly are the
data, and any such definition is likely to be theory-laden to some extent. Ac-
cordingly | want to remain open-minded. | will give the rough idea for each
phenomenon with the understanding that | am in no way defining what it is
exactly. The best | hope for is an independently motivated theory that results
in certain plausible phenomena that seem to match closely with the rough def-
initions of those named above. On to the phenomena.
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What isthe borderlineregion?

The borderline region phenomenon is roughly the phenomenon that for a vague
predicate P we find ourselves with objects for which P neither clearly applies
nor clearly does not apply; these objects are in the borderline region. Or, an
object is borderline if it does not fit neatly into just one category. Alternatively,
an object is borderline P if when we are given the choice “Which is it, P
or not, and not both?” we do not know quite how to respond, and our non-
response is seemingly not because we simply do not know, but because it seems
fantastic to suppose there is exactly one correct response; this is partially what
distinguishes vagueness from other sorts of unknowabilities. | say “seemingly”
above because otherwise | exclude the possibility of an epistemic determinist
theory of vagueness being correct, i.e., a theory where every object either falls
into the extension of the predicate or the complement of the extension, and
vagueness is due to our problems in seeing the boundary. The borderline region
is also connected with the phenomenon that we are incapable of drawing a
single sharp line distinguishing things P from things not P, and more than this,
it is that any line drawn would seem ad hoc, arbitrary and wrong. Sometimes
the borderline region is defined more epistemically as that region for which
knowledge concerning membership in P is unattainable. The phenomenon is
probably best communicated by example: wolves are borderline dog, violet is
borderline blue, and so on.

What is higher-order vagueness?

Higher-order vagueness, second-order vagueness in particular, is the phenom-
enon that we find ourselves incapable of determining boundaries of the bor-
derline region. Alternatively, imagine pulling hairs out of the head of a man
who is definitely not bald. Second-order vagueness is exemplified by the fact
that we do not find ourselves pulling out a single hair for which we are able
to determine that the man suddenly becomes borderline bald. We find objects,
or states of this man’s head, which are borderline borderline bald. More ex-
plicitly epistemically, knowledge of the boundaries—if there are any—of the
borderline region is unattainable. Higher-order vagueness, more generally, is
the phenomenon that we find ourselves incapable of determining any semanti-
cally distinct boundaries at all between definitely bald and definitely not bald.
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The*no boundaries’ dogma

On these first, most central, two phenomena of vagueness—the borderline re-
gion and higher-order vagueness—what needs to be explained is not necessar-
ily the real existence of a borderline region and higher-order vagueness, but
rather why there seems to be a borderline region and higher-order borderline
regions. The borderline region could be defined as the region which is se-
mantically distinct from the definite regions, but a less theory-laden and more
scientific approach would be to say that any adequate theory of vagueness must
explain why there is a region which seemsto be semantically distinct; this still
leaves it open as to whether there is semantic indeterminacy. Also, sometimes
(very often, in fact) higher-order vagueness is taken to be the phenomenon that
there is no sharp semantic boundary between the definite regions and the bor-
derline region, and even more radically it is sometimes taken that there are no
semantic lines at all to be drawn, no matter how small the semantic difference
or how impossible it is to see the lines. To have any lines posited by one’s the-
ory is, so it is reiterated, “not to take vagueness seriously.” This seems straight-
forwardly bad science. There are our experiences of vagueness, and there are
our theories about them; only the former can possibly count as data. Theo-
ries may well explain the data by positing that there is a semantically distinct
borderline region, or that there are no sharp semantic lines, and perhaps such
theories can in the end be victorious over epistemic theories like Sorensen’s
(1988), Williamson’s (1994), a version of Koons (1994) and mine. What one
cannot do is criticize epistemic theories on the basis that they do not posit a se-
mantically distinct borderline region, or that they do posit sharp lines, for to do
so is effectively to criticize epistemic theories for not being non-epistemic the-
ories. In fact, if we are to be biased by our metaphysical prejudices, we have
a long history of success in the drawing-sharp-lines business (e.g., classical
logic) and should therefore be biased toward the existence of sharp lines.

Not only are epistemic theories unfairly criticized, so are many-valued the-
ories (truth-valuational or probabilistic). | have never understood the criticism
of fuzzy logic, for example, that it does not adequately handle higher-order
vagueness. The charge is that there is a sharp, and let me suppose knowable,
line between ‘a is P’ having truth value 0, where « is definitely not P, and
having truth value > 0 (and < 1), where «a is borderline P. This is criticized
as being fantastic just as is a semantics with a sharp line between ‘a is P’ hav-
ing truth value 0 and having, say, indeterminate truth value. Furthermore, it
is argued, fuzzy logic is full of sharp lines everywhere, and this is just crazy.
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Edgington (1992), who proposes a probabilistic theory, nicely states the feeling
I have always had on this when she writes,

A twofold classification into the true and the false is inadequate where things
hover on the edge of this great divide. A threefold classification is little improve-
ment, | agree, with things hovering on the edge of the still-substantial divide
between the true and the indeterminate. But in a manyfold classification, the
difference between close degrees of truth, including the difference between clear
truth and its near neighbors, is (almost always) insignificant, and a good theory
must preserve this fact—must not deliver significantly different verdicts for in-
significantly different cases. It does not matter if things still hover on the edges
of inconsequential divides. (Edgington, 1993, p. 198.)

The motto “no boundaries” has become a dogma when theories postulating
inconsequential divides are dismissed out of hand.

Why does so much of the vagueness community strongly believe that there
are no sharp lines? | understand the intuition of there being no semantic lines
of any kind drawn since we “feel” like there are no such lines. But we also
feel a lot of ways counter to our current physics, say, but we can explain why
we feel that way, and we allow ourselves to conclude that it is just a feeling.
For example, we do not feel like we are spinning around as the Earth rotates,
but we know now that we are, and we can explain why we feel the way we do.
What is it about vagueness that so many—indeed most—in the field are so bent
on not only explaining the feeling, but making it a real part of the semantics?

And itis not even the case that the “no boundaries” dogma has proved fruit-
ful. 1 do not believe there is even one extant theory satisfying the “no bound-
aries” constraint that is remotely adequate as a description, much less an expla-
nation. One wonders whether the dogma is really just a skeptical “no possible
theory of vagueness” dogma, given that the “no boundaries” constraint seems
simply impossible to satisfy in a coherent fashion. Horgan (1994) goes so far as
arguing that one should accept the incoherence of the “no boundaries” motto—
that the incoherence is not vicious. Not all “no boundaries” theorists are so
ready to take this route of Horgan; they hold out hope, presumably, for some
theory satisfying their constraint. For example, Sainsbury (1990) proposes an
attempted such theory that Edgington (1993) shows does have boundaries.

The sorites paradox

Moving on, there is a third phenomenon linked to vagueness: the sorites para-
dox. Its standard form is exemplified by the following two-premise argument
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and conclusion: (i) 1 grain of sand cannot make a heap, (ii) for all n, if n grains
of sand cannot make a heap, then n + 1 grains of sand cannot make a heap, (iii)
there are no heaps of sand. (i) is obviously true? (ii) is very compelling, since
to deny it means that there is some n such that n grains of sand cannot make a
heap but n + 1 grains can make a heap—that there is a to-the-grain distinction
between being a heap and not—and this seems fantastic. (i) and (ii), though,
imply (iii), which is obviously false. The sorites paradox is part of the phe-
nomenon of vagueness in that it may be built using any vague predicate; and it
may not be built with non-vague predicates.

There are two related constraints on a theory of vagueness. The first is that
it locate the fault in the sorites argument, and do so without having to make
fantastic claims. | do not mean to imply that the classical negation of the in-
duction step cannot possibly be the solution to the sorites paradox. Epistemic,
determinist theories do exactly this, but it is incumbent upon the theory to say
why it is not so fantastic; for example, that we cannot ever determine or know
the boundary, and this is why the suggestion that there is a boundary seems
incredible. The second constraint is that a theory’s post-theoretic notion of the
phenomenon of vagueness should be such that a sorites argument built around
a predicate displaying the phenomenon is paradoxical; i.e., denying the induc-
tion step must seem paradoxical. If the argument loses its paradoxical aspect,
then the phenomenon claimed to be vagueness has a lesser claim to vagueness.
For example, if we cannot ever determine or know the boundary but still be-
lieve quite reasonably that there is one, then there is nothing paradoxical in
the sorites argument since the induction step can be (classically) denied readily
without intuitive difficulties.

Ineliminability and essentialness

The final two phenomena are less central to vagueness.

The first of these is ineliminability: it is often felt that vagueness is not
something we can simply eliminate from natural language. For example, it
is sometimes said that any attempt to eliminate vagueness through precisi-
fication (i.e., making predicates precise) would, at best, radically undermine
the meanings of natural language concepts. Also, restricting oneself to some
delimited context is also thought to be unhelpful in eliminating vagueness—

2 Although some have sought to save us from paradox by denying the base case. Unger (1979)
and Wheeler (1979) deny that there are non-heaps by denying that there is a concept heapness
at all.
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vagueness occurs within contexts. The Undecidability Theory—i.e., my theory
of vagueness—explains and accommodates a variety of ways in which vague-
ness is ineliminable (Subsection 4.3.5). | am less confident about this phe-
nomenon being a necessary constraint on a theory of vagueness, and accord-
ingly 1 do not criticize other theories on the basis that they do not explain or
accommodate ineliminability. | do think that some degree of ineliminability
must be addressed, however, lest we be left to wonder why we have not cured
ourselves of vagueness.

Or atheory may alleviate this worry just mentioned by giving a good reason
for why we should not want to “cure ourselves” of vagueness. This is the final
phenomenon of vagueness: its seemingly essential nature, in the sense that it
is often felt that even if we could eliminate vagueness, we would not want to
because it fills an important and essential role for us. Perhaps it quickens our
communication, or makes our utterances more informative, or gives us more
power to correctly carve up the world, etc. There need not be any such reason,
but if a theory has no reason, then it ought to say why vagueness is ineliminable
lest, as mentioned above, we wonder why we have not cured ourselves long
ago.

In addition to our shared pretheoretic notions which serve as our guide to
saying roughly what is vagueness, we have stronger shared intuitions concern-
ing what predicates are vague. If a theory says that a vague predicate is not
vague, or that a non-vague predicate is vague, then this counts against the the-
ory.

Explanatoriness

The phenomena from the previous subsections need to be explained, not just
modeled. That is, a logic devised just to accommodate these phenomena is
not sufficient to have the status of an explanatory theory of vagueness. | want
to know why there is vagueness, not just how to describe it. In this section |
mention a handful of accounts of vagueness that are not explanatory.

Take many-valued theories such as multiple valued logic—fuzzy logic (Zad-
eh, 1965) in particular—and probabilistic degrees such as Edgington’s (1992).
Multiple valued logics allow sentences to have truth values besides simply true
and false, or 1 and 0. They allow truth values in between true and false, e.g.,
a truth value of 1/2, say. For vague predicates R there will be objects ¢ falling
in the borderline region of R, and the sentence ‘c is R’ accordingly has truth
value in between 0 and 1. Probabilistic models of vagueness, on the other
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hand, accommodate vagueness by saying that the probability that ‘c is R’ is
true is somewhere in between 0 and 1. Probabilistic degrees have superiori-
ties over many-valued logics with respect to modeling natural language (Edg-
ington, 1992), many-valued logics whose deficiencies are well catalogued [for
starters see Williamson (1994, Chapter 4), and Chierchia and McConnell-Ginet
(1990, pp. 389 ff.)]. One problem with many-valued descriptions of vagueness
is that it is not clear that they describe vagueness. To be sure, many-values
are a good description in many cases: many vague properties come in degrees,
like baldness or redness. But even some non-vague mathematical concepts
have been shown to come in degrees to subjects, like ‘even’ (Armstrong et al.,
1983), so degrees are not uniquely connected with vagueness. My principal
problem with many-valued theories is that even if we agree that they provide
a satisfactory model, or description, of natural language semantics—and allow
useful applications in computer science and engineering—they do not make for
an explanation for vagueness. Many-valued theories are silent on explanatory
guestions, and, in fairness, description and not explanation is their aim. They
do not tell us why natural language is vague, and they do not even tell us why
natural language predicates tend to come in degrees.

Consider briefly supervaluations (see Fine (1975) and Kamp (1975); see
also Williamson (1994) for some history), which is the model of vagueness
wherein, roughly, a sentence ‘c is R’ is “super-true,” or definitely true, if it
comes out true on every precisification of the borderline region of R, “super-
false” if it comes out false on every precisification, and borderline, or indeter-
minate, truth value otherwise. Despite its problems concerning whether it is
an adequate description of higher-order vagueness and more generally natural
language, my problem is that | want to know why the non-linguistic facts do
not determine a single precise extension for natural language predicates. What
is it about us or the world that makes meanings incomplete? As in many-valued
theories, description is the main task, not explanation; supervaluation aims to
be a logic of vagueness, not a reason for why vagueness exists.

Sorensen (1988, pp. 199-216) puts forth an epistemic, determinist account
in which vagueness is due to ignorance of the sharp line separating the positive
and negative extension, but his theory is not aimed at explanation. Vagueness
is, he argues, identical to a phenomenon he calls blurriness. Let MV, ..., Nigo
be mystery natural numbers, and consider the mystery sentences ‘NN, is even’
for every ¢ from 1 to 100. Now say that an integer is miny if and only if it is less
than or equal to the number of true mystery sentences. ‘miny’ is blurry. 0 is
definitely miny. 1 is almost certainly miny (i.e., its probability of being miny,
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presuming some natural assumptions, is 1 — (.5)!%° = 1), 101 is certainly not
miny, and somewhere in between things are difficult to say. Sorensen pushes
the idea that vague predicates possess the phenomena they do for the same
reasons ‘miny’ possesses the phenomenon of blurriness; i.e., he pushes the idea
that vagueness is blurriness. Even if | were to agree that blurriness is a perfect
description of the phenomenon of vagueness, | still would want to understand
why natural language predicates are blurry, i.e., why predicates are built as if
from mystery numbers, and so on.

My point in this subsection is not to seriously entertain these theories on
which | have touched, but to emphasize that much of the work on vagueness has
concentrated on describing vagueness rather than explaining it; Hyde’s (1997)
defense of a “subvaluational” logic and Putnam’s (1983) intuitionistic solution
are two others.

4.2 Unseeable holesin our concepts

In this section | present the guts of my theory of why there is vagueness. | will
become precise about what is a “finite, sufficiently powerful, rational agent”
and I will argue that any such agent will have concepts with “unseeable holes”
in them. What this all has to do with vagueness will not be discussed until Sec-
tion 4.3. | believe it is useful to separate out this “unseeable holes” thesis from
the explanation of vagueness, because, for me at least, that there are unsee-
able holes in our concepts—and also for any rational, computationally bound
agent—is just as interesting and important as that there is vagueness.

We will see that, in my view, vagueness is definitely not a good thing for
us, in the sense that it is not as if language has evolved to be vague because it
was independently useful. Vagueness is something we are stuck with because
we are rational, finite entities. If you were a computationally bound, rational
alien agent given the task of figuring out what our natural language predicates
mean, you would very probably end up with vagueness. | will explain how
vagueness could, in principle, be avoided: it would require that we either have
inaccessible meanings for our predicates, or that we radically confine our pos-
sible meanings for predicates to a very reduced set. Given that we do not want
inaccessible meanings and do want to have a rich choice of meanings for predi-
cates, vagueness is thrust upon us. Vagueness is a cost, but it is worth it because
of the benefits it brings. In this sense, vagueness is good for you, since without
vagueness you would be worse off.

My theory for why there is vagueness is simple, and in order that you not
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miss the overall point in all the details (not technical details, just details), | first
give you a quick introduction to my theory.

4.2.1 Brief introductionsto thetheory of vagueness
Very brief introduction

Here is the theory: When you or | judge whether or not a predicate P applies
to an object a, we are running a program in the head for P on input a. This
program for determining the meaning of predicate P we may call Cp. For
every one of our natural language predicates P, we have a program for it, Cp,
in the head. The job of program Cp is to output YES when input with objects
that are P, and NO when input with objects that are not P.

The central problem, though, is that we are unable to always have these
programs give an answer to every input; these programs will often take an
input, but never respond with an answer of YESor NO. Instead of responding,
the program will just keep running on and on, until eventually you must give
up on it and conclude that the object does not seem to clearly fit under either P
or ‘not P’.

The reason we are susceptible to this difficulty is that it is a general diffi-
culty for any finite-brained entity. And the reason this is true is because the
problem of determining if a program halts on every input is undecidable. Thus,
generally speaking, there will be, for each predicate P, objects x for which
your program in the head for P, Cp, does not ever halt and output YES or NO.
These objects will appear to be in the borderline region of P. In sum, we have
borderline regions because we are not computationally powerful enough—no
finite-brained agent is—to make sure our programs for our predicates always
halt. We have holes in our concepts.

The other major feature of vagueness is that it is not generally possible
to see the boundary between the definite regions and the borderline regions;
this is called higher-order vagueness. This falls out easily from the above, and
goes as follows. The borderline region for a predicate P is the set of all x
such that the program Cp(z) does not halt. How accessible is this set? For
computational agents, the answer is, “not very.” To determine that an object a
is borderline P, one must determine that Cp(a) does not halt. This, though, is
the halting problem which we discussed a little bit in the introduction to this
chapter. We mentioned there that the halting problem is undecidable, and so it
is not generally possible for computational entities to solve. In sum, then, you
will not generally be able to see the boundary of the borderline region because
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it is too hard for you to determine which things are and are not borderline P—
too hard, in fact, for any finite-brained entity. Not only, then, do we have holes
in our concepts, we have unseeable holes!

This is the explanation of vagueness, as simple as | can make it. There
are more intricacies to the story. For example, being finite-brained is not com-
pletely sufficient for the conclusion; one actually needs finite-brained and ratio-
nal. But it gets across the main idea, which is, I think, embarrassingly simple.

A lessbrief introduction

I now give a little less brief primer on my theory of vagueness. The “vagueness
is good for you” arguments will still not appear in this introduction. | will take
you to be my example natural language user.

There are three hypotheses.

(1) The first hypothesis is the Church-Bound Hypothesis, and it states that
you can compute no more and no less than what a computer can compute.

(2) The second hypothesis is the Programs-in-Head Hypothesis, and it
states that what natural language predicates extensionally mean to you is deter-
mined by programs in your head. For example, an object is a dog to you if and
only if your program in the head for ‘dog’ outputs YES when the (name of the)
object is input into the program. It is much less plausible that many scientific,
mathematical and technical predicates get their meaning to you via programs
in the head, and this difference is what prevents my theory from concluding
that such predicates, many which are not vague, are vague.

(3) The third and last hypothesis is the Any-Algorithm Hypothesis, and it
states that you allow yourself the choice of any algorithm when choosing pro-
grams in the head for determining your natural language predicate meanings.
(An algorithm is a program that halts on every input; programs sometimes do
not halt on some inputs.)

Informally and crudely, the three hypotheses are that (1) you are a com-
puter, (2) you have programs in the head determining what natural language
predicates mean to you, and (3) you allow yourself the fullest range of possible
meanings for natural language predicates.

If these three hypotheses are true, what follows? The Programs-in-Head
Hypothesis says you choose programs to determine your meanings of natural
language predicates. The Any-Algorithm Hypothesis says that the set of pro-
grams from which you are choosing is a superset of the set of all algorithms.
But here is the catch: one of the basic undecidability results implies that any
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such set of programs is undecidable. (A set is decidable if and only if there is
program that outputs YES whenever input with an object from the set and NO
whenever input with an object not in the set.) Because of the Church-Bound
Hypothesis, this undecidability is a difficulty for you: in choosing from the
set of programs you cannot always obtain algorithms. In fact, because pick-
ing algorithms is computationally more difficult than picking non-algorithms,
you will “usually” pick non-algorithms; “most” of your programs determining
the meanings of natural language predicates will not be algorithms. So, in an
attempt to acquire a meaning for ‘dog’ via a program in the head that outputs
YES when something is a dog to you and NO when something is not a dog to
you, there will be objects on which your program does not halt at all. This does
not mean that you will actually run into an infinite loop; it just means that you
will eventually give up when running the program on such inputs.

What does this have to do with vagueness? Consider the set of objects for
which the program for ‘dog’ does not halt. For any object in this set the pro-
gram will neither say YES nor NO; the object will neither be a dog to you nor
not a dog to you. My first theoretical claim is that this is the set of borderline
cases for the predicate.

What about higher-order vagueness, the phenomenon that the boundaries
of the borderline region are vague? Consider trying to determine exactly which
objects are part of the borderline region. To determine that some object is in
the borderline region of ‘dog’ requires that you determine that your program
for ‘dog’ does not halt on that object. But now we have another catch: possibly
the most well-known undecidability result is the “halting problem,” which says
that whether or not a program will halt on a given input is undecidable. This
undecidability is a difficulty for you because of the Church-Bound Hypothesis:
objects in the borderline region are generally difficult to determine as such, and
where the boundaries of the borderline region are is not generally possible for
you to determine. Imagine moving from ‘dog’ cases to borderline cases. Your
program for ‘dog’ will no longer output YES, and will, in fact, never halt; but
you will not know it will never halt. You will be unable to see the boundary. My
second theoretical claim is that this inability is the phenomenon of higher-order
vagueness. Here is a simple representation of the behavior of your program for
‘dog’, where ‘Y’ denotes YES, ‘N’ denotes NO, and ‘1’ denotes “does not
halt”.

YYYYYYTTTTTTTTTTNNNNNNN
{--‘dog’ - - }{- - borderline - - }{- - ‘notdog’ - - }
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So, the three hypotheses entail that for “most” of your natural language
predicate meanings there are objects for which your program for that predi-
cate does not halt. Add to this my two theoretical claims just mentioned and it
follows that “most” natural language predicates are vague. That is the Unde-
cidability Theory of Vagueness in a nutshell. Now to develop and defend it in
more detail. The remainder of this section presents the Undecidability Theory
and Section 4.3 discusses how it explains vagueness.

4.2.2 Theory

In this subsection | discuss the three hypotheses comprising the Undecidabil-
ity Theory of Vagueness and show how they lead to what | call the “Thesis,”
which is central to the Undecidability Theory of Vagueness’s characterization
of vagueness. Here is the Thesis, followed by an explanation of the terminol-
ogy used.

Thesis. For “most” natural language predicates P
1. your interpretation of P is determined by a program in the head that is capable of semide-
ciding but not deciding it,
2. your interpretation of ‘not P’ is determined by a program in your head that is capable of
semideciding but not deciding it, and

3. there are objects neither in your interpretation of P nor in your interpretation of ‘not P’.

I will explain the scare quotes around ‘most’ later. By a “program in the
head” | mean the method used by you to determine whether or not a given
object is in your interpretation of P. One may usefully and informally think
of the program as your intension of the predicate P. The “interpretation of P
(‘not P”) determined by a program” is the set of objects on which the program
in the head for P (‘not P”) outputs YES. A set is decidable by a program C' if
and only if for all z, C on input z outputs YES if x is in the set, and outputs
NO otherwise. A set is semidecidable by a program C' if and only if for all
x, C on input x outputs YES exactly when it is in the set; if 2 is not in the
set then C' may well not halt at all, though. Do not confuse the notion of a set
being semidecidable but not decidable by the program for it with the notion
of an underdefined or incompletely specified set. The former, which appears
in my theory, is a precise set that happens to be computationally difficult for
the program to identify nonmembers, whereas the latter is not a well-defined
set at all. Also, do not confuse a set’s being semidecidable but not decidable
by a program C' with a set’s being semidecidable but not decidable simpliciter.
The latter means the set is computationally complex (in fact, it means it is
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recursively enumerable but not recursive), but the former, which appears in my
theory, only means that the set is complex as far as the program C' is concerned;
C is unable to decide it, even though it may well be decidable.

There is a simpler, equivalent way of stating the Thesis, one | implicitly
used in the brief introduction to the theory. | had written there about a sin-
gle program in the head, call it Cp/,,,, p, doing the work for both a predicate
and its natural language negation: the interpretation of P was the set of ob-
jects on which Cp/,,,,p oUtputs YES, and the interpretation of ‘not P’ was
the set of objects on which the same program outputs NO. In the Thesis and
throughout the remainder of the section the single program is treated as two
distinct programs: one program, Cp, for P; and another, C,,,,,p, for ‘not P’.
The interpretation of P is the set of objects on which Cp outputs YES, and
the interpretation of ‘not P’ is the set of objects on which C,,,, p outputs YES.
Each of these two programs can output only a YES, if they halt at all; they
do not ever output NO. Realize that there is no difference in these approaches:
running Cp,,,, p ON an input is equivalent to simultaneously running both Cp
and C,,,, p 0N the input and seeing who halts first (if any); if Cp halts first then
Cp/nonp Would have output YES, but if C,,,, p halts first then Cp/,,,,, p Would
have output NO. In terms of a single program, the Thesis would be the fol-
lowing: for “most” natural language predicates P there are objects for which
Cp/nonp does not halt. Although this is simpler than the statement at the start
of this section, the two-programs version helps to clearly identify distinct as-
pects of the Thesis.

In the subsections that follow | indulge in a sort of fantasy. | imagine
that you are a rational, computationally bound agent who has entered into our
culture. Your task is to learn language for the first time and to determine what
our natural language predicates mean. We will see that the Thesis is very likely
to be true of any such agent. Such an agent will likely choose to have vagueness
because its costs are less than the costs of avoiding it. | will also show that it is
plausible that the Thesis does, in reality, apply to you.

As part of the fantasy | suppose that the true extensions (as opposed to
your interpretations) of natural language predicates are determinate; that is, ev-
ery object is either in the extension of the predicate or its complement. [For
defenses of a determinate semantics within the vagueness literature see Camp-
bell (1974), Cargile (1979), Sorensen (1988, 1994) and Williamson (1994).] |
use ‘extension’ to refer to the true meaning of a predicate, and ‘interpretation’
to refer to whatever you mean by the predicate. All capital letters will be used
to signify the extension of a predicate; e.g., ‘bald’ has the set BALD as its ex-
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tension, and ‘not bald’ has the complement of BALD as its extension. In trying
to figure out your interpretations for the language in the fantasy scenario, | sup-
pose that you are presented with examples, somehow, from the true extensions.
What | wish to communicate by this is that even if the true semantics of natu-
ral language predicates were determinate (via, perhaps, a semantic externalist
account), you would still very likely end up with interpretations as specified in
the Thesis (and thereby end up with vagueness). Thus, while standard classical
two-valued logic would be a correct model of natural language true semantics,
we will see that it is not a correct model of the way we actually interpret nat-
ural language predicates. On the question what really is the true semantics of
natural language predicates my theory can remain agnostic.

4.2.3 Church-bound

The Undecidability Theory of Vagueness applies only to those agents that are
computationally bound. Specifically, it applies only to those agents that are
“finite” and “sufficiently powerful.”

By afinite agent | mean an agent (i) that has a finite but possibly unbounded
memory, (ii) that has an upper bound on the speed at which it can compute, (iii)
whose primitive computations are simple (e.g., adding 1 to a number), and (iv)
who cannot (or at least does not) utilize in its computing any aspects of the
universe allowing it to achieve supertasks (i.e., to achieve infinitely many steps
in a finite period of time finite “brain”). To defend my use of the term “finite” in
this way, | informally rephrase these requirements as follows: by a finite agent |
mean an agent that is finite in (i) memory, (ii) speed, (iii) degree of complexity
of primitive computations and (iv) resourcefulness in utilizing nature to achieve
supertasks.

Without (i), an agent could have infinitely large look-up tables in the head.
Such an agent could compute any function at all by simply storing the entire
function (i.e., storing every pair (x, f(x))) in its head, so long as the function
has domain and range with cardinality no greater than the cardinality of the
look-up table. The agent could merely check his look-up table to see what
f () is. Without (ii), an agent could compute the first step of a computation in
half a second, the next in a fourth, the next in an eighth, etc., thereby computing
infinitely many steps in one second (such an agent is called a Plato Machine).
Without (iii), an agent may have primitive computations that are themselves as
mathematically computationally difficult as one pleases; of course, from such
an agent’s point of view these computations would seem utterly simple, requir-
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ing only the least amount of “thinking” to compute (see, e.g., Copeland 1998).
Finally, without (iv), itis logically possible that the laws of physics might make
it possible to compute supertasks (despite (ii)) (see Earman and Norton (1993,
1996) and Hogarth (1994)). Being a finite agent severely constrains what an
agent can compute, as | now describe.

We have an informal, pre-theoretic notion of what it is to compute some-
thing. Such an intuitive notion of a computation typically connotes that there
be only a finite number of steps involved, that the amount of memory (and
scratch paper) required also be finite, that each primitive step be relatively sim-
ple (enough to understand), and that one cannot engage in supertasks. That is,
the intuitive notion of a computation exactly corresponds to those computations
a finite agent can compute. We are inclined to say that a function f from the
natural numbers to the natural numbers is intuitively computable if, for each
natural number n, f(n) is intuitively computable.

The Turing machine formalism provides an abstract, precise notion of what
a computation is and leads to a particular set of functions on the natural hum-
bers as the set of Turing-computable functions. Any computation a modern
computer can do, a Turing machine can, in principle, do also; and vice versa.
There is the well known hypothesis that the set of functions that are intuitively
computable just is the set of Turing-computable functions; this hypothesis is
referred to as Church’'s Thesis (or the Church-Turing Thesis).

The hypothesis is not a mathematical assertion; it refers to our intuitions
and it does not make sense to ask whether it has been mathematically proven.
Nearly everyone believes in Church’s Thesis, though, as do I. One reason for
this is that no one has yet provided a convincing case of an intuitively com-
putable function that is not Turing-computable; the longer we go without such
a case being found, the higher our inductive probability goes toward one that
the sets are identical. A second, more slippery, reason nearly everyone believes
in Church’s Thesis is that half a dozen very different formalizations of compu-
tation have been concocted by different people and each leads to precisely the
same set of computable functions.

If a finite agent can compute a function on the natural numbers, then the
function must be intuitively computable. But then by Church’s Thesis that
function must be Turing-computable. Therefore, the only functions on the nat-
ural numbers a finite agent can possibly compute are those that are Turing-
computable.

But any finite agent worth considering carries out computations on objects
besides the natural numbers. What constraints are these computations under?
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Although there are objects besides natural numbers that are objects of such
computations (i.e., such an agent computes functions over objects besides the
natural numbers), we can encode all of the objects the finite agent can grasp—
including natural numbers—onto the natural numbers. Supposing each differ-
ent possible state of the finite agent’s mind is finitely describable, the set of
all such finite descriptions can be bijectively encoded onto the natural numbers
(hopefully in an intuitively computable fashion). (Such an encoding is bijec-
tive if and only if each object gets assigned to a unique natural number and
each natural number is used in the encoding.) ‘4’ may now be the code for
mental state p; which holds the information of the finite agent’s mother, ‘37’
the code for mental state p», which holds the information of a particular fist
fight the finite agent once witnessed, ‘18’ the code for mental state p which
holds the information of the feeling of love-at-first-sight the finite agent felt
upon meeting its spouse, ‘103’ the code for the mental state p, which holds the
information of the natural number 5, 1000 for the mental state p which holds
the information of the finite agent’s favorite shade of blue, etc. Intuitively, ev-
ery possible dog, every possible shade of color, every possible action, etc., is
given its own natural number. With such an encoding, all of the finite agent’s
computations may be interpreted as computations on the natural numbers, and
the finite agent’s computational power is constrained in such a way that it can
compute only the Turing-computable functions on this set of codings.

One should not find this too fantastic, given that the same sort of thing is
true about every computer. In a physical computer, as opposed to an abstract
model, there are no numbers actually input into the machine nor output from
the machine; numbers are abstract objects. Rather, an input or output is some
physical state and it encodes certain information. Each physical state is finitely
describable and can be coded onto the natural numbers. ‘4’ may be the code for
physical state p; which holds the information of a black and white picture of a
rooster, ‘37” may be the code for physical state p, which holds the information
of natural number 5, ‘18’ may be the code for physical state p; which holds
the information of the sentence “Press any key to continue,” etc. It is only
through such means that one can meaningfully say that computers are subject
to the same ultimate computational constraints as Turing machines, and it is
also only through such means that one can meaningfully say that a finite agent
is subject to the same ultimate computational constraints as Turing machines.

Worries over which coding is being employed for the finite agent are some-
times raised. For example, what if the coding makes intuitively uncomputable
problems computable by having a non-intuitively computable coding? Or, is
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there a privileged coding and, if so, what determines it? | wish to sidestep all
such issues. To whatever extent these are legitimate worries, they are worries
for anyone claiming that even computers are bound by Church’s Thesis. This
latter claim is uncontroversial, however, and so | am under no special obligation
to explain or address issues of coding with respect to finite agents.

One might complain that the universe has uncountably many possible ob-
jects, and so no bijection is possible onto the natural numbers. Supposing for
the moment that there are indeed uncountably many possible objects, | only
care about what possible objects the finite agent can hold before its mind. Since
it is finite, it can only entertain countably many possible objects. Its universe
is countable, regardless of the cardinality of the real universe. This brings in
its own trouble: if the universe is uncountable and the finite agent’s universe
countable, is not it going to have a false model of the world? The Downward
Lowenheim-Skolem Theorem can help to alleviate this worry to an extent: as
long as the finite agent notices only first-order properties of the universe, it is
possible for its model to be such that the set of all truths is the same as God’s
(whose model is the true uncountable one). Should we, however, believe that
it is confined to first-order properties? Perhaps, perhaps not; there are many
things that can be said on this issue, but | have no need to pursue them here
since nothing hinges on the agent’s model being true.

Thus, I am confining discussion to finite agents, which means that | am con-
fining discussion to agents capable of computing only the Turing-computable.

By “sufficiently powerful” I mean that the finite agent is capable of com-
puting at least the Turing-computable.

Together, “finite” and “sufficiently powerful” imply that the computational
powers of the agents | wish to discuss are bound by Church’s Thesis and only
bound by Church’s Thesis. | sometimes say “Church-bound” instead of “finite
and sufficiently powerful.” | record this as the Church-Bound Constraint.

Church-Bound Constraint: The agent can compute any function (over natu-
ral numbers coding mental states, which in turn represent objects in the world)
so long asit is Turing-computable.

Related to this constraint is the Church-Bound Hypothesis, which states
that you are under the Church-Bound Constraint. The Church-Bound Hypothe-
sis is, by assumption, true of the fantasy you. Is it true of the real you? Yes, and
here is why. It is plausible that you are finite in the four senses discussed above
(although see Penrose, 1994) and so cannot compute the Turing-uncomputable.
Furthermore, you are, in principle, able (given enough time and scratch paper)
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to compute any Turing-computable function. We know this because any of us
can easily mimic the simple actions of a Turing machine as long as we please.

4.2.4 Programsin the head

Suppose that you, in the fantasy, are exposed to enough examples of things you
have reason to believe are in the true extension of ‘bald’ (BALD) and others
that are not that you acquire an educated guess as to what BALD is. Your guess
determines some set as your “shot” at BALD, and this is your interpretation of
‘bald’. In what can such a guess consist? There are infinitely many (possible)
objects in your universe, infinitely many of them are bald and infinitely many
are not. You are not, then, able to simply guess what the extension is, for you
cannot store the extension since you are finite.

You must employ some sort of intension. You need to find some finite
description of the set that determines your interpretation of ‘bald’ and your
educated guess at BALD, and some finite description of ‘not bald’. Recalling
that these sets may be considered to be sets of natural numbers, one may won-
der whether your interpretation of ‘bald’ can be described “in your head” as,
say, a first-order sentence in the language of arithmetic (such sets are called
arithmetically definable). For example, you may interpret ‘bald’ to be the set
{n | 3a¥y R(n,z,y)}, where R(n,z,y) is some recursive formula without
guantifiers. The problem with this is that although it is indeed a finite descrip-
tion, the set is not recursively enumerable and since you are Church-bound it
is generally too difficult for you to handle. (A set is recursive if and only if it
is decidable by some program. A formula is recursive if and only if the set of
objects satisfying it is recursive. A set is recursively enumerable if and only if
it is semidecidable by some program.)

The same is true for any arithmetically definable set. . . except those that are
recursively enumerable. For a recursively enumerable set it is possible for you
to have a program in the head that says YES when and only when presented
with objects in the set (although the program may never halt at all when pre-
sented with objects not in the set), but sets any more computationally difficult
than recursively enumerable are beyond your reach. A program in your head,
then, is what you must be employing to determine your interpretation of ‘bald’
if you wish to have an interpretation that is accessible to you. Your interpreta-
tion would then be the set of objects for which the program for ‘bald’ outputs
YES, and this is recursively enumerable. This motivates the first rationality
principle.
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Principle of Program-Favoring: Wthout good reason to the contrary, you
should assume that the extension of natural language predicate P and its natu-
ral language negation ‘not P’ are capable of being correctly determined using
programs in the head.

This does seem to be a compelling principle of rationality: why choose in-
terpretations that are not generally possible for you to actually use unless you
have a good reason?

Supposing we believe that the Principle of Program-Favoring really is a
constraint on rationality, is there good reason for believing that programs will
not suffice to correctly interpret natural language predicates and their natu-
ral language negations? For example, in mathematics there is good reason
for believing that programs do not suffice for certain predicates because there
are predicates with interpretations that you know are not recursively enumer-
able. Consider the predicate ‘not a theorem of Peano Arithmetic’, for example.
You know its extension is not recursively enumerable (since its complement is
known to be recursively enumerable but not recursive). Your interpretation of
‘not a theorem of PA’ is set to its extension, regardless of the fact that you are
incapable of generally recognizing things that are not theorems of PA. “To me,
something is not a theorem of PA exactly if it does not follow from Peano’s
Axioms; | have no program for it, though.” You might acquire a program in
the head as a heuristic device aimed to approximately semidecide your inter-
pretation of ‘not a theorem of PA’, but you are not confused into conflating
your heuristic with your interpretation; you know that no such heuristic can
possibly be the extension. Thus, you as a mathematician do have predicates for
which you have good reason to believe the extension is not determinable via a
program in the head, and your interpretations are, accordingly, not determined
using programs in the head. (This is, in passing, why mathematical predicates
such as ‘not a theorem of PA’ are not vague.) Given that you can acquire good
reasons to believe programs are inadequate and can have interpretations that
are not recursively enumerable, what reason is there for you not to do the same
for natural language predicates?

The answer is that in the case of such a mathematical predicate you know
what the definition of the extension is, and so you set your interpretation ac-
cordingly. For a natural language predicate, however, you have no God’s eye
view of its extension. The extension of ‘bald’ is learned via induction; you in-
fer your interpretation of ‘bald” from seeing objects you have reason to believe
(somehow) are in BALD or its complement. You cannot easily acquire the def-
inition for BALD, and as many examples of BALDness and its complement
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you might confidently find, you still will not have access to its definition in the
way you have access to that of ‘not a theorem of PA’, for you have no luxury
of setting your interpretation to that determined by the definition written on
paper before you as you do for mathematical predicates (and this has nothing
to do with the fact that you are Church-bound). Given that you cannot have
access to BALD in the way you have access to the extension of ‘not a theorem
of PA', it is also reasonable to suppose that you cannot learn that BALD is not
recursive enumerable (supposing this were indeed true) in the way you learn
that the extension of ‘not a theorem of PA’ is not recursively enumerable. |
cannot discount the logical possibility of you, a Church-bound agent, learning
(in the fantasy) through time that no recursively enumerable interpretation of
‘bald’ seems to fit the examples of BALD and its complement, and in this way
assigning high probability to the hypothesis that BALD is not recursively enu-
merable, and therefore no program in the head is sufficient. The reasonable
hypothesis, though, seems to be that for most (if not all) natural language pred-
icates you have no good reason for believing that programs will not work. |
record this as the following hypothesis.

No-Good-Reason-for-Non-Programs Hypothesis:.  For most natural lan-
guage predicates P and their natural language negation ‘not P’ you have no
good reason to believe that programs in the head are inadequate for correctly
determining their interpretation.

The No-Good-Reason-for-Non-Programs Hypothesis together with the Prin-
ciple of Program-Favoring imply the following hypothesis.

Programs-in-Head Hypothesis. For most natural language predicates P and
their natural language negation ‘not P’, their interpretations are determined
by you using programs in the head.

You in the fantasy scenario are, then, very likely to fall under the Programs-
in-Head Hypothesis. “Very likely” because it is very likely that the No-Good-
Reason-for-Non-Programs Hypothesis is true, and given that you are ratio-
nal you will follow the Principle of Program-Favoring and thus fall under the
Programs-in-Head Hypothesis.

Does the Programs-in-Head Hypothesis apply to the real you? Here is an
intuitive reason to think so. For most natural language predicates P you are
capable of recognizing, given enough time, any cases of P and ‘not P’. E.g.,
given enough time you are capable of recognizing, for any bald-to-you person,
that he is bald to you; and, for any not-bald-to-you person, that he is not bald
to you. To suppose otherwise would imply, implausibly, that there is a person
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that is bald (not bald) to you, but you are utterly incapable of recognizing him
as such. The only way for you, who are Church-bound, to have this recognition
capability is to have programs in the head doing the work.

425 Anyalgorithm

By the Programs-in-Head Hypothesis you have for most natural language pred-
icates a program in the head as the intension determining your recursively enu-
merable interpretation of the predicate, and this interpretation is your attempt
to fit the extension of the predicate. You would like to have a single program
in the head capable of determining your interpretation of both ‘bald” and ‘not
bald’; that is, a program that not only says YES exactly when an object is in
your interpretation of ‘bald’, but says NO exactly when an object is not in your
interpretation of ‘bald’. This is just to say that you would like to have a program
to decide the interpretation of ‘bald’, not just semidecide it. Such a program
would be an algorithm since it would halt on every input, and the corresponding
recursively enumerable interpretation of ‘bald” would be recursive.

But alas, you are Church-bound, and a well-known undecidability result
says that there is no algorithm for algorithmhood; there is no general procedure
by which either you or a Turing machine can always choose programs (from
the set of all possible programs) that are algorithms. It is not, then, generally
the case that your programs in the head are algorithms, and your corresponding
interpretations for natural language predicates and their natural language nega-
tions may generally be only semidecided by the programs for them. (And in
fact things are even worse than this, for a related undecidability result says that
the corresponding interpretations are not generally even recursive; semidecide
is all that any possible program can do in these cases.) If the interpretation of
‘bald’ (“not bald’) is determined by a program in the head that semidecides but
not decides it, then supposing that ‘bald’ (‘not bald’) is one of the predicates
covered by the Programs-in-Head Hypothesis, that program cannot be what
is determining the interpretation of ‘not bald’ (‘bald’). This is because the
Programs-in-Head Hypothesis states that ‘not bald’ (‘bald’) must have a pro-
gram semideciding its interpretation, and the program for ‘bald’” (‘not bald’)
cannot possibly be that program. Thus, ‘not bald’ (‘bald’) must have its own
program in the head. | have now shown 1 and 2 of the Thesis.

How about 3 from the Thesis? It is possible for the interpretation of ‘bald’
and that of ‘not bald’ to cover every object, but by the Church-Bound Hypoth-
esis this is not generally possible for you to accomplish. If it were generally
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possible, then the two programs semideciding each interpretation could serve
as a single algorithm (run both programs simultaneously until one halts), and
you could therefore always acquire algorithms. But this is impossible. Thus, it
is not generally the case that your interpretation of ‘bald’ and that of ‘not bald’
cover every object.

Notice that none of this hinges on either interpretation being non-recursive;
what matters is the program for the interpretation semideciding but not deciding
it. Predicates with finite interpretations (arguably ‘small natural number’) are
therefore subject to the same conclusion just made concerning “bald’.

Except for the use of “most” in the statement of the Thesis, | now seem
to have shown that you are subject to the Thesis. Concerning “most,” it is
easier to acquire non-algorithms than algorithms, since in order to achieve al-
gorithmic status the program must halt on every input, whereas to achieve non-
algorithmic status there needs to be only one input on which the program does
not halt.3 This observation makes it convenient and informally true to say that
for “most” natural language predicates your corresponding programs are not
algorithms. This is really just elliptical for the proposition that you are not
generally able to acquire algorithms and that it is more difficult to acquire al-
gorithms than non-algorithms. To differentiate this use of ‘most” (or ‘usually’)
with genuine uses of it, | always put scare quotes around it.

With this it appears | have now shown you are subject to the Thesis. There
is just one remaining problem. | wrote above (second paragraph of this sub-
section) that “there is no general procedure by which either you or a Turing
machine can always choose programs (from the set of all possible programs)
that are algorithms.” The parenthetic remark merits some examination. Why
should you be required to choose from among the set of all possible programs?
Although the set of all algorithms is not recursively enumerable, there do ex-
ist proper subsets of the set of all algorithms that are recursively enumerable,
and even recursive. Could you be choosing your programs from one of these
subsets? For example, the set of primitive recursive programs is recursive, and
perhaps you are choosing from this. If so, you can be sure that every program
you choose is an algorithm, and thus that every one of your interpretations for
natural language predicates is decidable by the program responsible for it (and
is therefore recursive). The Thesis would, then, not follow after all.

3More formally and in recursion theoretic terminology, this is captured by the fact that the
set of algorithms is I3, and the set of non-algorithms X,; the relative difficulty of acquiring
algorithms versus non-algorithms is analogous to the relative difficulty of determining cases
where a program does not halt versus when it does.
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There is a good reason for the fantasy you not to confine yourself in such
a fashion. Your interpretations of natural language predicates are a result of a
learning process of some sort. You see cases you have reason to believe are in
the extension of ‘bald’ (i.e., you are guided by the true semantics somehow),
and you make an educated guess at the extension with your interpretation. A
priori, you have no reason to believe that all concepts of the world can be
correctly determined (or even adequately approximated) with algorithms from
some recursively enumerable subset of the set of algorithms. Why should you
believe that all extensions may be correctly determined with, say, primitive
recursive interpretations? This motivates the following rationality principle.

Principle of No-R.E.-Subsets-of-Algorithms.  Without good reason to the
contrary, you should not presume that there is a recursively enumerabl e subset
of the set of all algorithms such that for all natural language predicates P (or
‘not P’), algorithms from this subset supply the best interpretation for P (‘ not
P).

This is a compelling principle: why purposely choose a language with less rich
interpretations without good reason? In fact, any recursively enumerable subset
of the set of all algorithms is, in a certain real mathematical sense, infinitely less
rich than the set of all algorithms.

Supposing we believe that the Principle of No-R.E.-Subsets-of-Algorithms
is a constraint on rationality, is there good reason to believe that there are re-
cursively enumerable subsets of the set of all algorithms sufficiently rich for
natural language predicate interpretations? Although | am willing to suppose
that it may be logically possible for you to acquire high probability in such a
hypothesis (after, say, many years of searching for uses of algorithms outside of
this recursively enumerable subset and not finding one), there would not appear
to be actual evidence for such a supposition. This goes to support the following
hypothesis.

No-Good-Reason-for-R.E.-Subsets-of-Algorithms Hypothesis:.  Thereisno
good reason for you to presume that thereis a recursively enumerable subset of
the set of all algorithms such that for all natural language predicates P (‘not
P), algorithms from this subset supply the best interpretation for P (‘not P’).

One might wonder whether there is nevertheless the following good prag-
matic reason for confining algorithm choice to a recursively enumerable subset
of the set of all algorithms: by so confining oneself one does indeed avoid the
Thesis (and vagueness). The solution comes with a painful price, though. For
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all you know there are algorithms that can provide the correct interpretation.
Yes, not confining yourself to a recursively enumerable subset of the set of all
algorithms brings with it the cost of there being objects in neither the interpre-
tation of P nor the interpretation of ‘not P’. However, it is possible for the
interpretations to be only “finitely mistaken,” where by this | mean that they
are complements save for finitely many objects in neither interpretation. Con-
straining yourself to a recursively enumerable subset of the set of algorithms
only for the pragmatic reason of avoiding the Thesis runs the risk that there
are predicates, perhaps many, that are not only not correctly interpretable using
algorithms from that subset, but will be infinitely mistaken. For example, if
one constrains oneself to the set of primitive recursive functions without rea-
son to believe that no predicates should best be interpreted using non-primitive
recursive algorithms, then in all those cases where a predicate should be best
interpreted using a non-primitive recursive algorithm you are guaranteed to in-
correctly classify the objects on infinitely many occasions. Worse than this, it
may be that no primitive recursive algorithm even “comes close” to the best
algorithm for the predicate. It might be like using the set of odd numbers as an
approximation to the prime numbers.

The No-Good-Reason-for-R.E.-Subsets-of-Algorithms Hypothesis conjoin-
ed with the Principle of No-R.E.-Subsets-of-Algorithms imply the following
hypothesis.

No-R.E.-Subsets-of-Algorithms Hypothesis:  You do not confine your choice
of programsto a recursively enumerable subset of the set of all algorithms when
interpreting natural language predicates and their natural language negations.

You in the fantasy scenario are, then, very likely to fall under the No-R.E.-
Subsets-of-Algorithms Hypothesis. “Very likely” because it is very likely that
the No-Good-Reason-for-R.E.-Subsets-of-Algorithms Hypothesis is true, and
given that you are rational you will follow the Principle of No-R.E.-Subsets-of-
Algorithms and thus fall under the No-R.E.-Subsets-of-Algorithms Hypothesis.

Does the No-R.E.-Subsets-of-Algorithms Hypothesis apply to the real you?
There are reasons to think so. In fact, there is reason to think that the real you
is subject to the following hypothesis.

Any-Algorithm Hypothesis. You are free to choose from the set of all algo-
rithmswhen interpreting natural language predicates or their natural language
negations.

If the Any-Algorithm Hypothesis is true of you, then so is the No-R.E.-
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Subsets-of-Algorithms Hypothesis. This is because any set containing the set
of all algorithms is not a recursively enumerable subset of the set of all algo-
rithms.

What reasons are there to think that the Any-Algorithm Hypothesis is true
of the real you? It is difficult to tell a plausible story about how (the real) you
could have come to restrict program choice to exclude some algorithms, es-
pecially since by the Church-Bound Hypothesis you are capable of computing
any algorithm. The man on the street does not know recursion theory, and even
if he does, as | do, | cannot imagine attempting to restrict myself to, say, prim-
itive recursive intensions for every new interpretation | acquire. Nor does it
seem plausible to suppose that we humans might have evolved to exclude cer-
tain algorithms. It is, in fact, very difficult to avoid allowing yourself the choice
of any algorithm since once you allow yourself the use of ‘while' loops—i.e.,
the ability to implement programs including statements like “while such and
such is true, continue doing blah”—you are able to build, in principle, any
algorithm (presuming you can also carry out some trivial basic operations).

To avoid this conclusion you would have to ban the use of ‘while’ loops,
using only ‘for’ loops—i.e., the ability to implement programs including state-
ments like “for i becomes equal to 1 to n do blah”, or “do blah n times”—
which is very restrictive. One could argue that your ‘while’ loops are in reality
bounded since you do not (and cannot) let them run forever; thus, it is not the
case that every algorithm can be implemented. But this does not mean that
the proper representation of your program does not use a ‘while’ loop. No
real computer, after all, can actually implement unbounded ‘while’ loops, but
it would be a mistake to say they cannot run unbounded ‘while’ loops and any
algorithm.

It can be noted that the idea of animals employing ‘while’ loops has some
empirical support, namely in the Sphex ichneumoneus wasp, which has been
observed to enter into what is plausibly represented as an infinite loop. Con-
sider the following often quoted excerpt from Woolridge (1963, p. 82).

When the time comes for egg laying, the wasp Sphex builds a burrow
for the purpose and seeks out a cricket which she stings in such a way
as to paralyze but not kill it. She drags the cricket into the burrow, lays
her eggs alongside, closes the burrow, then flies away, never to return.
In due course, the eggs hatch and the wasp grubs feed off the paralyzed
cricket, which has not decayed, having been kept in the wasp equiva-
lent of deep freeze. To the human mind, such an elaborately organized
and seemingly purposeful routine conveys a convincing flavor of logic
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and thoughtfulness—until more details are examined. For example, the
Wasp’s routine is to bring the paralyzed cricket to the burrow, leave it on
the threshold, go inside to see that all is well, emerge, and then drag the
cricket in. If the cricket is moved a few inches away while the wasp is
inside making her preliminary inspection, the wasp, on emerging from
the burrow, will bring the cricket back to the threshold, but not inside,
and will then repeat the preparatory procedure of entering the burrow
to see that everything is all right. If again the cricket is removed a few
inches while the wasp is inside, once again she will move the cricket up
to the threshold and re-enter the burrow for a final check. The wasp never
thinks of pulling the cricket straight in. On one occasion this procedure
was repeated forty times, always with the same result.

I am not suggesting that you are possibly subject to such infinite loops. | am
only suggesting that ‘while’ loops are plausibly part of your computational
grammar. In fact, one might say that the wasp has a “concept” of ‘readied
burrow’ which is determined by the following program:

WHILE burrow not ready do
IF burrow clear & cricket not moved when I emerge
THEN burrow is ready;

As an example showing that you regularly engage in ‘while’ loops (or an equiv-
alent) as well, in order to determine if the bath temperature is good, you may
well keep increasing the hot until it is comfortable or too hot; if the latter then
you keep decreasing until comfortable; and so on. That is, you implement the
following program:

WHILE temperature not comfortable do
IF temperature too cold
THEN increase hot water;
ELSE decrease hot water;

‘while’ loops seem to be an integral part of your (and my) computational gram-
mar. And if this is true, the Any-Algorithm Hypothesis is sure to apply to the
real you. Thus, the No-R.E.-Subsets-of-Algorithms Hypothesis also applies to
the real you.

What does the No-R.E.-Subsets-of-Algorithms Hypothesis tell us? There
is a set of all possible programs you can attain (and this is recursively enumer-
able since you are bound by Church’s Thesis). This set is not a subset of the set
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of all algorithms, as the No-R.E.-Subsets-of-Algorithms Hypothesis requires.
This means you are not generally capable of choosing algorithms. In particular,
if the Any-Algorithm Hypothesis is true, then since the set of all algorithms is
undecidable, you are not generally capable of choosing algorithms. We saw
above that the Church-Bound Hypothesis and the Programs-in-Head Hypothe-
sis “almost” imply the Thesis. What was missing was some reason to believe
that the set of algorithms from which you determine your interpretations is
not recursively enumerable. The No-R.E.-Subsets-of-Algorithms Hypothesis
finishes the argument, and these three hypotheses together entail the Thesis.

426 Thess

In this subsection | bring together the previous three subsections. Here is the
Thesis again.

For “most” natural language predicates P

1. your interpretation of P is determined by a program in your head that is capable of
semideciding but not deciding it,

2. your interpretation of ‘not P’ is determined by another program in your head that is
capable of semideciding but not deciding it, and

3. there are objects neither in your interpretation of P nor in your interpretation of ‘not P’.

There are two ways of arguing toward the Thesis. The first is via the fantasy
scenario and is largely but not entirely prescriptive, concluding that the Thesis,
and thus vagueness, follows largely but not entirely from rationality consider-
ations alone (and the Church-Bound Constraint). The second is via the real
you scenario and is descriptive, concluding that the Thesis follows from hy-
potheses that are true about us. The first would be rather worthless without the
second, because a theory that claims that vagueness would exist in the fantasy
scenario but says nothing about the real us would be incomplete at best, since
it is us who experience vagueness, not some idealized, rational fantasy agents.
The second, however, is made more interesting by the first. The Thesis, and
thus vagueness, does not follow from some human irrationality or quirk, but is,
on the contrary, something to which nearly any rational, sufficiently powerful,
finite agent will converge.

| finish this section by (i) cataloguing the premises of both the prescrip-
tive (fantasy you) and the descriptive (real you) argument, (ii) reminding us
that the premises of the prescriptive argument entail those of the descriptive
argument, and (iii) summarizing how the Thesis follows from the descriptive
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argument (and thus by (ii) also from the prescriptive argument). Below are the
two arguments.

Descriptive Argument (Real you) Prescriptive Argument (Fantasy you)
Church-Bound Hypothesis. Church-Bound Constraint.
Programs-in-Head Hypothesis. Principle of Program-Favoring.

No-Good-Reason-for-Non-Programs Hypothesis.

No-R.E.-Subsets-of-Algorithms Hypothesis. Principle of No-R.E.-Subsets-of-Algorithms.
No-Good-Reason-for-R.E.-Subsets-of-Alg Hyp

The prescriptive argument says that any rational (Principles of Program-
Favoring and No-R.E.-Subsets-of-Algorithms), Church-bound (Church-Bound
Constraint) agent is subject to the Thesis so long as (a) he has no good reason
to believe that the extensions of most natural language predicates are not recur-
sively enumerable (No-Good-Reason-for-Non-Programs Hypothesis), and (b)
he has no good reason to presume that there is a recursively enumerable subset
of the set of all algorithms that suffices for adequate interpretations of natural
language predicates (No-Good-Reason-for-R.E.-Subsets-of-Algorithms Hyp-
othesis). Because (a) and (b) are very difficult to imagine being false, the Thesis
follows “largely” from the Church-Bound Constraint and the two principles of
rationality. Supposing (a) and (b) are true, the Thesis (and thus vagueness) is
good for you, fantasy and real.

The descriptive argument says that (a)) we humans are Church-bound (Chur-
ch-Bound Hypothesis), (3) for most natural language predicates and their nat-
ural language negations we use programs in the head to determine our inter-
pretations of them (Programs-in-Head Hypothesis), and () any algorithm may
possibly be used by us as a determiner of the interpretations of natural lan-
guage predicates or their natural language negations (Any-Algorithm Hypoth-
esis), and thus we do not confine ourselves to a recursively enumerable subset
of the set of all algorithms for interpreting natural language predicates or their
natural language negations (No-R.E.-Subsets-of-Algorithms Hypothesis).

The prescriptive premises (for the fantasy scenario) imply the descriptive
premises in the following sense. If you satisfy the Church-Bound Constraint
then the Church-Bound Hypothesis is true. If you follow the Principle of
Program-Favoring and the No-Good-Reason-for-Non-Programs Hypothesis is
true, then the Programs-in-Head Hypothesis is true; the converse is not true. If
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you follow the Principle of No-R.E-Subsets-of-Algorithms and the No-Good-
Reason-for-R.E.-Subsets-of-Algorithms Hypothesis is true, then the No-R.E.-
Subsets-of-Algorithms Hypothesis is true; the converse is not true.

The descriptive premises entail the Thesis as follows. The Programs-in-
Head Hypothesis states that you use programs in the head to determine most of
your interpretations of natural language predicates and their natural language
negations. Most of your interpretations are therefore semidecidable by the pro-
grams responsible for them. The No-R.E.-Subsets-of-Algorithms Hypothesis
states that the set of programs at your disposal for natural language predicate
interpretations is not a recursively enumerable subset of the set of all algo-
rithms. This entails that the set of algorithms from which you can possibly
choose is not recursively enumerable. The Church-Bound Hypothesis states
that you can only compute the Turing-computable, and thus you cannot gener-
ally choose programs for your interpretations of natural language that are algo-
rithms (even if your interpretations are recursive, or even finite). For “most” of
your interpretations of natural language predicates P (or ‘not P’) your program
for it will be able to semidecide but not decide it. Since “most” predicates can
only semidecide their interpretation, this means that for “most” predicates there
must be one program for P, and another program for ‘not P’, and each can only
semidecide the interpretation for which it is responsible. We have so far con-
cluded that “most” natural language predicates satisfy 1 and 2 of the Thesis.
Your interpretations of P and ‘not P’ cannot cover every object, because if
they could be then it would be possible to take the two programs and use them
as one algorithm to simultaneously decide the interpretations, and this would
contradict the impossibility of generally acquiring algorithms. Thus, “most”
of the time your interpretations of predicates and their natural language nega-
tions do not cover all objects; there are objects in neither interpretation. We
now have that “most” predicates satisfy 1, 2 and 3; the Thesis follows from the
three hypotheses.

It is important to note that the Thesis is an important claim about natural
language whether or not one believes that the Thesis has anything to do with
vagueness. If it is true, then, informally, our concepts have “unseeable holes”
in them. As for vagueness, my theory’s characterization of vagueness is that a
predicate is vague if and only if it satisfies 1, 2 and 3 from the Thesis; the truth
of the Thesis implies that “most” natural language predicates are indeed vague,
as we know they are.
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4.3 From theory to vagueness

In this section | demonstrate how the Undecidability Theory of Vagueness ex-
plains vagueness. Recall that the theory’s characterization of vagueness from
Subsection 4.2.6 is as follows: Predicate P is vague to you if and only if

1. your interpretation of P is determined by a program in your head that is capable of
semideciding but not deciding it,

2. your interpretation of ‘not P’ is determined by a program in your head that is capable of
semideciding but not deciding it, and

3. there are objects in neither your interpretation of P nor your interpretation of ‘not P’.

The Thesis stated that “most” natural language predicates satisfy 1, 2 and 3,
i.e., “most” natural language predicates are vague. In terms of a single program
Cp/nonp that outputs YES whenever an object is P and outputs NO whenever
an object is ‘not P’, the characterization is that a predicate P is vague to you
if and only if there are objects on which your program Cp,,,, p does not halt.
The corresponding Thesis is that “most” natural language predicates have a
region of objects for which the program does not halt. In what follows the
Thesis is assumed to be true.

Please notice that in my theory's characterization of vagueness, vague
predicates are not in any way required to be computationally complex. | have
a great deal of difficulty with people thinking that my theory somehow equates
non-recursiveness with vagueness. The only appeal to non-recursiveness has
been to the non-recursiveness of the set of algorithms and the halting set (the
set of all pairs of programs and inputs such that the program halts on that in-
put), not to the non-recursiveness of natural language predicate interpretations.
The interpretations of vague predicates may well be recursive, and even finite,
and vagueness is unscathed. And even if a predicate’s interpretation is not re-
cursive, the vagueness comes not from this but, as we will see, from the facts
that the interpretations do not cover all objects and that the programs are not
algorithms.

4.3.1 Borderlineregion

Your interpretations of P and ‘not P’ do not cover all objects; there are objects
¢ such that the natural language sentences ‘c is P’ and ‘c is not P’ are both
false. These objects comprise the borderline region. This fits well with the
datum of a borderline region: that there are objects which do not seem to fit
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neatly into just one category. The development in Section 4.2 served in part to
show that (i) any rational, Church-bound agent in the fantasy is very likely to
have a borderline region for “most” natural language predicates, and (ii) you do,
in fact, have such a borderline region for “most” natural language predicates.
In epistemic theories of vagueness the borderline region is characterized
differently than merely “not fitting neatly into just one category.” Rather, for
epistemicists the borderline region is comprised of those objects for which
knowledge of membership is unattainable, where “membership” refers to mem-
bership in the true extension. The Undecidability Theory explains this sort of
borderline region as well. Suppose that BALD is the true extension of ‘bald’.
You are not generally capable of acquiring a program in the head that decides
BALD, even if BALD is decidable, because you are not generally capable of
acquiring algorithms. Your interpretation of ‘bald’ is semidecidable but not
generally decidable by the program responsible for it, and even if you are so
lucky to correctly interpret it (i.e., your interpretation is equal to the extension
BALD), if you want to be able to respond to queries about ‘not bald” you must
acquire a second program in the head, and this program will not generally cor-
rectly interpret ‘not bald’ (i.e., the ‘not bald’ program will not semidecide the
complement of BALD). Your interpretations of ‘bald” and ‘not bald’ do not
cover every object, and the programs for each only semidecide them. There are
therefore objects for which you are incapable of determining or even knowing,
using your programs in your head, whether or not it is a member of BALD.

4.3.2 Higher-order vagueness

Although you cannot draw a sharp line between ‘bald” and ‘not bald’, can you
draw a sharp line between ‘bald” and ‘borderline bald’? There is, in fact, a
sharp line here posited by my theory, but are you generally capable of drawing
it? No. The two programs in the head for baldness (one for ‘bald’ and one for
‘not bald’) are not powerful enough to determine the lines. To see this intu-
itively, imagine starting in the ‘bald’ region and moving toward the borderline
bald region. While in the ‘bald’ region your program for ‘bald’ halts and says
YES and the program for ‘not bald’ never halts. When you move into the bor-
derline region the program for ‘not bald’ still does not halt, but the program
for ‘bald’ suddenly now never halts as well. You are not, though, generally
able to know that the program for ‘bald’ will never halt—you cannot gener-
ally know when you have crossed the line. This seems to be consistent with
our observations of higher-order vagueness, and it solves the problem without
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having to postulate semantically distinct higher-order borderline regions. This
latter aspect is good since it puts a stop to the regress of higher and higher order
semantically distinct borderline regions, all which amount to nothing if when
one is finished there is still a knowable sharp line between the definite region
and the non-definite region.

Can this phenomenon really be the phenomenon of higher-order vague-
ness? In my theory what does it “feel like” to not be capable of determining
the boundaries of the borderline region? Well it feels like whatever it feels like
to attempt to decide a set using a program that only semidecides it. One might
try to make the following criticism: Let us take the set of even numbers and
supply you with a program that only says YES exactly when a number is even,
and is otherwise silent. Do the evens now seem vague through the lens of this
program? There are a number of problems with such a criticism as stated. First,
it is not enough that the program simply says YES when an input is even and
is silent otherwise. When we say that the program semidecides but does not
decide the set of evens we mean that if the program is silent we are not sure
whether it will at any moment converge and say YES. The program’s silence is
not translatable to NO. Second, it is difficult to judge our intuitions with a pred-
icate like ‘even’ for which we already have a program in the head for deciding
it. We should imagine instead that it is some new predicate P for which we
have no intuitions. The third problem is that even with these fixes the question
the critic needs to ask is not whether P-ness seems vague, but whether P-ness
seems to have whatever feel higher-order vagueness has. This is because P is
not vague according to my theory since it does not satisfy part 2 of the char-
acterization of vagueness (i.e., we are not given a program for semideciding
‘not P’). On this modified question it is unclear that we have any compelling
intuitions that the answer is NO. When using the given program to attempt to
decide the extension of P, you will be incapable of seeing where exactly the
boundary is, and therefore you will be unable to classify many objects. These
objects plausibly are just like the borderline borderline objects (i.e., second-
order borderline objects).

Another critic may ask the following: Let us suppose that you have two
programs that only semidecide their respective interpretations, and let us also
suppose that the interpretations do not cover every object. If these programs
are for some predicate P and ‘not P’ then is P-ness necessarily vague? For
example, let us take the predicate ‘theorem of arithmetic’, whose extension is
not even recursively enumerable. You are surely capable of determining some
theorems and some non-theorems, and you must therefore utilize a program



CONSEQUENCES OF A FINITE BRAIN 279

in the head for ‘theorem’ and another for ‘not theorem’. But surely ‘theorem’
is not now vague! There is a difference between this case and vague natural
language predicates. You as a mathematician are conscious that you are not
actually deciding theoremhood with your programs. You understand that they
are only heuristics, and it is possible that each might even occasionally be in-
correct, e.g., saying that a theorem is not a theorem. That is, your programs
for theoremhood do not determine what you mean by ‘theorem’. You mean by
‘theorem of arithmetic’ whatever follows from its definition. 1 and 2 from the
characterization of vagueness are not satisfied.

4.3.3 The sorites paradox

Finally we arrive at the sorites paradox, which I give here in the following
form: (i) O hairs is bald, (ii) for all n, if n hairs is bald, so is n + 1, (iii)
therefore you are bald no matter how many hairs you have. Notice that | have
stated the argument in natural language; many researchers on vagueness state
the paradox in some logical language, which is strange since the paradox is one
in natural language. Presenting it in a logical language inevitably makes certain
biased presumptions; for example that ‘not’ is to be translated to the classical
negation ‘—’.

What is usually dangerous about rejecting premise (ii) is that it implies
there is an ng such that ng hairs is bald but ng + 1 hairs is not; i.e., it usually
leads to there being no borderline region. This is bad because borderline re-
gions surely exist. In my theory’s case, though, what happens? A sorites series
moves along a “path” that is most gradual from P to ‘not P’; it must therefore
cross the borderline region lest it not be “most gradual.” Imagine starting in the
‘bald’ region and moving toward the borderline region. Eventually there will
be a number ng such that ng hairs is bald but it is not case that ng + 1 is bald,
and you cannot in general determine where this occurs. However, this in no
way prevents ng + 1 from being borderline bald, i.e., being neither bald nor not
bald. Eventually the denial of (ii) will occur—and you will not know when—
but it does not imply the lack of a borderline region. The sorites paradox is thus
prevented without losing vagueness.

434 Essentialness

There is a widespread feeling (since Wittgenstein, it seems) that vagueness is
an essential part of natural language. That is, even if it were eliminable (see
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Subsection 4.3.5 to see why it is not), we would not want to eliminate it since
it serves an essential role.

My Undecidability Theory of Vagueness has its own explanation. Recall
from Section 4.2 that the Undecidability Theory in largely prescriptive dress
rested upon one constraint, two weak (weak relative to the three hypotheses
in the descriptive argument) hypotheses, and two principles of rationality. The
constraint was the Church-Bound Constraint, which states that | am concen-
trating only on agents that are bound by Church’s Thesis and able to compute
any computable function. The first of the two weak hypotheses is the No-Good-
Reason-for-Non-Programs Hypothesis which says that we have no good reason
to believe that programs are not sufficient to describe the world. The second
of the two weak hypotheses is the No-Good-Reason-to-Exclude-Algorithms
Hypothesis which says that we have no good reason to believe that some al-
gorithms may not be useful in describing the world. Supposing the truth of
these two weak hypotheses the truth of the two principles of rationality suf-
fices to secure the Two-Programs Thesis and the resulting vagueness (as seen
in Subsections 4.3.1 and 4.3.2). Principles of rationality claim that one ought
to do something, where there is some implication that not doing that something
would be very bad, whatever that might mean. The essentialness of vague-
ness is bound up with the rationality principles: vagueness is essential because
the only way to avoid it is through irrationality, which would be bad. Avoid
badness. .. get vagueness. Let us examine the two principles of rationality in
turn.

The Principle of Program-Favoring says that without good reason to the
contrary, you should assume that the extension of natural language predicate
P and its natural language negation ‘not P’ are capable of being correctly
determined using programs in the head. Recall that this helps lead to the Two-
Programs Thesis and thus vagueness because ‘not P’ is required to be semide-
cidable by the program for it as well as P, and it is this dual requirement that is
difficult to satisfy. How “essential” is this rationality principle; i.e., how “bad”
would it be to act in non-accordance with it? You could, after all, avoid the
vagueness of ‘bald’ if you were only willing to live with just one program in
the head—the one for ‘bald’, say. However, this benefit would come at great
cost since you would be generally able to identify bald things but not generally
things that are not bald. Is seeing the other half of a concept really that essen-
tial? Alternatively, is not being able to see the other half of a concept so bad?
Yes, it is so bad; | take this to be obvious. The utility gained by bringing in the
program for ‘not bald’ is that it helps you see the “other half” of the concept.
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Since it cannot do this job perfectly, vagueness is the result. [Or in “single pro-
gram” form (see the discussion near the start of Subsection 4.2.5), as soon as
you allow your single program to say NO and make your interpretation of ‘not
P’ be the set of objects on which the program says NO rather than simply the
complement of the interpretation of P, vagueness is the result since you cannot
put in the NOs perfectly.]

Now let us look at the second principle of rationality, the Principle of Any-
Algorithm, which says that without good reason to the contrary, you should not
presume that there are particular algorithms such that for all natural language
predicates P (or ‘not P’) the algorithm does not supply the best interpretation
for P (‘not P’). You could avoid the vagueness of ‘bald’ if you were will-
ing to confine your choice of programs to some recursive subset of the set of
algorithms. | spent a little time near the end of Subsection 4.2.5 defending
why it is bad not to act in accordance with this principle, and | largely refer
you to that discussion. The short of it is that violating the Principle of Any-
Algorithm would be very costly since you would thereby confine yourself to
much less rich interpretations for natural language predicates and you would
not be as capable—possibly even incapable—of adequately classifying an in
principle, classifiable world. Vagueness is essential, in addition to the earlier
reason, because it is essential that we be capable of classifying our world.

4.3.5 Ineliminability

Vagueness is not to be easily circumvented, or so it is usually thought, and my
theory of vagueness leads to several ways in which it may be said that vague-
ness is ineliminable. One major notion of ineliminability emanates from the
fact that there is nothing particular to us humans assumed in the theory; ideal
computing devices such as HAL from 2001 Space Odyssey and Data from Sar
Trek are subject to vagueness as well. Greater powers of discrimination and
computation cannot overcome the dilemma of a borderline region and higher-
order vagueness. Why, though, is vagueness ineliminable for them?

Let us consider whether the borderline region may be completely elimi-
nated. Once the two programs exist for, say, baldness, perhaps it is possible to
find a single new algorithm for baldness that divvies up the universe into YES
and NO in such a way that anything that is definitely bald (with respect to the
two programs) falls into YES, and anything that is definitely not bald falls into
NO (i.e., it respects the definite cases). This algorithm would act by classifying
each member of the borderline region as either bald or not, and would serve
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Definitely P Definitely not P

Borderline
region

Figure 4.2: A successful precisification would recursively cut through the borderline region
as shown by the dotted line, leaving the definite regions untouched. This is, however, not
generally possible.

to redefine baldness so as to be non-vague all the while preserving the defi-
nite cases (see Figure 4.2). The algorithm would amount to a precisification of
baldness. But if it were generally possible to precisify the borderline region and
obtain an algorithm for a precisification of baldness, then it would have been
generally possible to find such an algorithm in the first place (i.e., pick two
programs and then precisify them), contradicting the non-recursiveness of the
set of algorithms. Therefore it is not generally possible to eliminate the border-
line region, and I call this sort of ineliminability non-precisifiability. [If, under
supervaluationism, (super)truth is meant to be determined by running through
all precisifications and checking to see if the sentence is true in each, then (su-
pentruth of natural language utterances is not generally possible to determine
since it is not generally possible to precisify at all.]

May you carefully restrict yourself to certain well-defined contexts, and
within these contexts might vagueness be eliminated? We usually do not think
so. For example, we do not seem to find ourselves able to identify a group of
people (say, infants) such that baldness is no longer vague amongst that group.
My theory explains this sort of ineliminability. What you would like to find is a
subset of the universe of objects such that there is no longer a borderline region
for baldness; you would like to eliminate vagueness by restricting the context
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Restricted |context

Definitely P Definitely not P

Borderline
region

Figure 4.3; A successful restriction would consist of a recursive subset (a context) consisting
of no borderline region as shown by the dotted box. Thisis, however, not generally possible.

to one where there is no borderline region (see Figure 4.3). Not just any subset
(or context) will do—you need to be able to recognize (via a program in the
head) when something is or is not in that subset, and this implies that you need
an algorithm. But now you are back to the same old problem yet again: you
cannot generally acquire algorithms. Your contexts are not generally decidable
by the programs for them. You may then acquire a context which does not
include any of the borderline region but be presented with objects for which
you are incapable of knowing whether it is in the context. The objects may in
actuality not be in the context, but you may then judge them to be borderline
cases and thereby see vagueness. One might respond in two ways here. First,
perhaps you only judge an object to be part of the context if the program for
the context actually says YES that it is part of the context; if this were so then
a single program only semideciding the context is sufficient. The difficulty
with this response is that you may well be asked about some object whether it
is part of the context and what its categorization is with respect to the vague
predicate, and you cannot just refuse to answer. A second response is that we
have no reason to believe that contexts require an Any-Algorithm hypothesis;
perhaps the allowable programs for contexts are confined to a recursive subset
of the set of algorithms. The difficulty with this is that contexts very often are
natural language concepts; e.g., attractiveness among bald people, or quickness
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among cats. Therefore, (a) the arguments from Section 4.2.5 toward allowing
any algorithm apply here, and therefore (b) the context itself is vague. Even if
you manage to secure a context that is decided by the program for it, because
you cannot generally determine where the borderlines are it is not generally
possible for you to be assured that the context does not include some of the
borderline region. It is not, then, generally possible for you to restrict yourself
to a context wherein the borderline region is eliminated, and | call this sort of
ineliminability non-restrictability.

I have discussed two sorts of ineliminabilities concerning the borderline
phenomenon. Higher-order vagueness is also ineliminable. To begin with,
it is not generally possible to correct the two programs so that they decide
their respect interpretations. If it were possible, the program determining the
interpretation of P could have been “corrected” to an algorithm in the first
place, and there would be no need for a second program in the head at all. But
it is not possible to generally acquire an algorithm, and thus it is not possible
to so correct the programs.

Although the two programs for baldness cannot determine the boundaries
of the borderline region, it is possible for the borderline region to be recursive
and thus it is in principle possible for you to have an algorithm deciding it.
If you had such an algorithm there would be no more higher-order vagueness
since you could determine the boundaries of the borderline region. However, it
is not generally possible to find the algorithm. For one, it is not generally pos-
sible to pick an algorithm rather than a non-algorithm for the job of attempting
to decided the borderline region. And two, you cannot be sure, even given that
you have an oracle handing you any desired algorithm, whether what it is de-
ciding is the borderline region since you cannot generally know what things are
in the borderline region.

4.3.6 Degreesof vagueness

The previous section concludes the sections on the phenomena of vagueness.
I want to discuss “degrees of membership” in this section. Membership seem-
ing to come in degrees is not a phenomenon unique to vagueness; non-vague
predicates such as ‘even’ have been shown (Armstrong et al., 1983) to come
in degrees to subjects. Also, consider the set HALT of ordered pairs of pro-
grams C and inputs z such that the program halts on that input. In a natural
sense we are inclined to say that (C, z1) is more H ALT-like than (Cs, x2) if
C4 (x1) halts after fewer steps than does Cs(z2). Such judgements may depend
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on a number of factors, such as typicality, probability, degree of difficulty in
determining membership, and so on.

Prior to noticing such examples of precise sets that nevertheless display to
us a phenomenon of degrees, one might be worried about the fact that since in
my theory concepts are pairs of precise sets, the phenomenon of seeming de-
grees of membership might be precluded. If single precise sets are not inconsis-
tent with the phenomenon, then it seems there is no prima facie inconsistency to
two pragmatically related precise sets displaying the phenomenon—i.e., vague
predicates within my theory—and it seems there is no particular responsibility
for me to explain seeming degrees of membership. | do not know the explana-
tion for degrees, and I do not care; | defer to whatever is the best theory.

4.3.7 Summing up

I have argued that it is very likely to be in a Church-bound agent’s (i.e., fi-
nite and sufficiently powerful) best interest to have accessible (i.e., interpreted
via programs in the head), maximally accurate (i.e., any algorithm a possible
meaning determiner) interpretations of natural language predicates. | have also
argued that such an agent having such interpretations experiences vagueness.
Vagueness, then, is in such an agent’s best interest. If we, too, are Church-
bound, then vagueness is very likely good for us; the only possible ways for us
to avoid vagueness are either to lose the accessibility of our natural language
meanings or to confine our meanings to an “infinitely less rich” choice, each
very likely to be more costly than the costs of vagueness.

4.4 Discussion

The Undecidability Theory of Vagueness is now out on the table. We have
seen how it is motivated in Section 4.2 and how it explains the phenomena
linked to vagueness in Section 4.3. There are number of issues to be discussed
concerning it that | take up in this section.

Nonstandard concepts

Section 4.2 concluded with the Two-Programs Thesis, which says that “most”
of your interpretations of natural language predicates P and ‘not P’ are semide-
cidable but not decidable by the programs for them ((i) and (ii)), and are not
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complements ((iii)). This is a stunning conclusion irrespective of the vague-
ness to which we saw in Section 4.3 it leads. ‘not P’ cannot (“usually”) be
translated into logic as ‘=P’ as it is usually thought. Rather, ‘not P’ should be
represented as a distinct predicate of its own, non P, the dual to P. nonP has
no logical connection to P (other than non-overlap), although, informally, they
should be thought of as rough approximations of the complement of the other.

My theory leads to a nonstandard notion of what is a concept, where by
‘concept’ | mean your or my concept, extensionally construed. There is no sin-
gle set of objects which fall under a given concept; the interpretation of ‘bald’ is
not the concept baldness, and neither is the interpretation of ‘non-bald’. Rather,
a concept is comprised of two sets with only a pragmatic relation; the concept
baldness is comprised of the interpretation of ‘bald’ and that of ‘non-bald’.
Your concept, or your semantics of, P-ness is the ordered pair (A,nonA),
where A and non A are the interpretations of P and ‘not P’, respectively. If
a single two-sided coin represents the usual view of a concept—i.e., ‘bald’
on one side and ‘—bald’ on the other—my theory leads to a ‘two single-sided
coins’ view of what is a concept: you have access to only one side of each
coin, and the coins are independent of one another (although they are disjoint,
and are likely to be rough approximations of the complement of the other’s
interpretation).

There is an intuitive sense in which this notion of a concept is incoherent.
By incoherent | do not just mean that it is non-classical; there are certainly
many other non-classical notions of what it is to be a concept which are not
incoherent in the way that | mean. For example, in fuzzy logic a concept is a
fuzzy set, and in some connectionist models of mind a concept is a vector of the
weights of the connections. In each of these cases there is a single intuitively
natural object representing a concept—a single fuzzy set and a single weights
vector. In my case though the single object representing a concept is an ordered
pair of sets and this complex object is entirely unnatural. Rather, my notion of
a concept consists of two intuitively natural objects, namely sets, unnaturally
paired together. Whether one should share this intuition of incoherence is not
particularly crucial, but to the extent that there is incoherence it helps to explain
one of the aspects typically thought to pertain to vagueness. Since Frege (1970)
(see also Dummett (1975) and Wright (1975)) there has been the thought that
vague predicates are incoherent, and we can see from where the feeling of
incoherence springs. This “incoherent” notion of a concept is, according to
my theory, an essential part of language for any rational, sufficiently powerful,
finite agent. Our concepts are essentially incoherent, and this is just the sort of
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intuitive feeling people have had about vagueness since Wittgenstein.

The notion of “your concept” just discussed is really “your concept compe-
tently employed.” In your actual performance you will sometimes incorrectly
conclude, for example, that an object is borderline since you cannot afford to
let your programs run forever. There are thus three levels of concepts that may
be distinguished. First, there is the (fantasy) level of true concepts “out there
in the world.” | have been presuming they are determinate. Second, there is
the level of your concepts “in the head” determined by the pair of programs
for P and ‘not P’, respectively. Third, there is the level of your concepts as
you actually perform using them; these will be, at best, approximations of the
second-level concepts.

Associated with these distinctions is the following criticism. One might
complain that my explanation of vagueness is too abstract to possibly be cor-
rect. The theory depends crucially on the notion that we run programs in our
head that do not halt on some inputs. This, one could charge, cannot be the ex-
planation for vagueness since our programs never actually do diverge forever.
The critic can even admit that perhaps the methods in the head are indeed best
represented as non-algorithmic programs in the head, but deny that this can be
the explanation for vagueness since the programs are never actually allowed to
run forever.

It is true that programs in your head certainly do simply give up after some
point; you don’t run into infinite loops. When presented with something in
the borderline region, where both programs diverge, after some period of intro-
spection you will inductively conclude that the object is borderline. You could
have been too hasty, for on the very next step it could be that one program
would have halted. All this is no difficulty for my theory. In fact | need it
for my theory, for it is just these difficulties the actual agent runs into in deal-
ing with his programs in the head that accounts for his inability to determine
the boundaries of the borderline region, or higher-order vagueness. It is this
third level mentioned above whose non-identity with the second level helps to
explain higher-order vagueness.

Univer sality of vagueness

I now touch on three issues related to the universality of vagueness.

The first concerns whether all natural language predicates are vague. By
the Thesis and the characterization of vagueness, “most” of your natural lan-
guage predicates are vague. “most,” however, does not mean all, and accord-
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ing to my theory there may be some non-vague predicates. But are not all
natural language (nonrelational) predicates vague? It is not clear that the an-
swer to this question is ‘Yes’. For example, Sorensen (1988, p. 201) cites
“flat’, “‘clean’ and ‘empty’ as example non-vague predicates. These predicates
are often applied in “restricted domains of discourse; not all bumps, dirt, and
contents are relevant” (ibid.), but if | am asked if, strictly speaking, some sur-
face is flat, I am sure that my answer is either YES or NO (i.e., not neither).
“Strictly speaking,” surfaces are either flat or not, whereas for ‘heap’ there is
no such “strictly speaking” analog. | also believe ‘mortal’ and ‘everlasting’,
for example, to be non-vague. There are explanations consistent with my the-
ory for why non-vague predicates are rare at best. The first emanates from
the observation made in Subsection 4.2.5 that the set of algorithms is much
more difficult than its complement, and this is what motivated the scare quotes
around ‘most’ in the first place. The second explanation helps to explain why
there are few to no non-vague “complex” natural language predicates. By com-
plex predicates | informally mean those predicates like ‘dog’, ‘bald’, ‘people’,
‘chair’, etc., that depend on a number of more “primitive” predicates like ‘red’,
‘circular’, etc., for their application. Most of our every day predicates—the
ones we use to carve up the world—are complex. In order for one of these
predicates to be non-vague, every more primitive concept it employs must be
non-vague—although see Sorensen (1988, pp. 228-229) for some nice and un-
usual counterexamples—and this is probably never the case, given that “most”
(primitive) concepts are, according to my theory, vague.

The second universality issue is that given that some predicates might be
non-vague, we do not find in our experiences cases where, say, ‘dog’ is vague
but “cat’ is not; similar sorts of predicates should either both be vague or nei-
ther. The observation just mentioned concerning complex versus primitive
concepts explains this datum. Similar predicates make use of similar more
primitive concepts, and thus inherit the vagueness (or lack thereof) of the more
primitive concepts.

On the third issue of universality, the Thesis is about your interpretations,
stating that “most” of the time your natural language predicates are vague. The
Thesis obviously also applies to any of us individually. One datum of vague-
ness seems to be that we don’t find ourselves disagreeing about the vagueness
of predicates. What reason have we to believe, in my theory’s sights, that you
and | have the same vague predicates? Why should your “most” and my “most”
coincide? The answer to this query is as follows: If you believe ‘bald’ is vague
and | believe it is non-vague, then it is not the case that we have the same
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concept of baldness save that one is vague and the other not. Your concept of
baldness consists of two interpretations which do not cover every object. My
concept of baldness, on the other hand, consists of just a single classical inter-
pretation; | have no “hole” in my concept. We disagree about more than just
baldness’s vagueness since our concepts are genuinely different. Therefore, in
order to explain why we all agree on which predicates are vague, it suffices to
explain why we all tend to have the same concepts for predicates. Explaining
this, however, is not something my theory is subject to any more than any other
theory; any adequate account of our shared concepts suffices to explain why
we agree about the vagueness of predicates.

Non-vague metalanguage

I do not equate precision and non-vagueness; you can be precise and vague
since vague concepts in my theory are, after all, two precise sets of a partic-
ular sort. For convenience here is the Undecidability Theory of Vagueness’s
characterization of vagueness again: Predicate P is vague if and only if

1. your interpretation of P is determined by a program in your head that is capable of
semideciding but not deciding it,

2. your interpretation of ‘not P’ is determined by a program in your head that is capable of
semideciding but not deciding it, and

3. your interpretation of P is not the complement of your interpretation of ‘not P’.

The metalanguage used to state the characterization is precise. Furthermore it
is non-vague. Do not be confused into thinking my use of “your head” in the
metalanguage brings in vagueness; it is no more vague within my model than
is “the computer | am typing this on,” and we may suppose that it is implicitly
“your head right now” to allay worries about the identity of your head through
time. Predicates are possibly vague, names (or individual constants) are not;
or, at least, they are different issues.

Non-vague metalanguage does not necessarily imply that the characteriza-
tion of vagueness, and thus ‘vague’, is non-vague, although it does imply that it
is precise. Is ‘vague’ vague according to my theory? This question can be read
in two ways: (a) is your concept of vagueness vague?, and (b) is the concept
emanating from my theory’s characterization vague. Let me answer (b) first.
The concept of vagueness emanating from the characterization is the set of all
predicates P satisfying the characterization; i.e., it is just a set. The extension
of ‘vague’ is that set, and the extension of ‘not vague’ is the complement of
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that set. Part (iii) of the characterization is thus violated and so the concept of
vagueness is not vague.

What about question (a)? Although the true extension of ‘vague’ is not
vague, might your concept of it possibly be vague? According to the charac-
terization, ‘vague’ is vague to you if and only if

1. your interpretation of ‘vague’ is determined by a program in your head that is capable of
semideciding but not deciding it,

2. your interpretation of ‘not vague’ is determined by a program in your head that is capable
of semideciding but not deciding it, and

3. your interpretation of ‘vague’ is not the complement of your interpretation of ‘not vague’.

The characterization is not just a characterization—it is also the explanation
for why some predicates are vague. It says that vague P seems vague to you
because your programs in the head for P and ‘not P’ semidecide but do not
decide their respective interpretations and these interpretations are not com-
plements. When you are presented with P and are asked whether it is vague,
my theory’s claim is that you do some introspection—running both programs
on various inputs—and see if things “feel” like whatever things feel like when
(i), (ii) and (iii) of the characterization obtain. Therefore, your interpretation
of “vague’ according to my account might seem to be the same as the true ex-
tension. The problem with this suggestion is that it is not generally possible
for you to successfully do such introspection. Your interpretations might be
complements yet you not be able to know this, or not be complements and you
not be able to know this. Also, your programs might not decide their interpre-
tations but you may not be capable of verifying this, or vice versa. Thus, it is
doubtful that your interpretation of ‘vague’ actually is the true extension. The
guestion of whether ‘vague’ is vague to you is still open, and it comes down to
a factual matter. As far as my characterization goes, your concept of vagueness
may be vague or not.

Sorensen (1985) has argued that ‘vague’ is vague. His argument tactic
is to show that one can build a sorites argument using ‘vague’. He proposes
the disjunctive predicates ‘n-small’ for each natural number n, each which
applies to those natural numbers that are either small or less than n. The sorites
argument is as follows:

(1) “1-small’ is vague.
(2) For all n, if ‘n-small’ is vague, then ‘n + 1-small’ is vague.
(3) “One-hillion-small’ is vague.
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‘1-small’ is obviously vague, so (1) is true. (2) seems compelling, but (1) and
(2) imply (3) which, supposing that our interpretation of ‘small’ is such that
one billion is definitely and clearly not small, is false since it is now equivalent
to the non-vague predicate ‘less than one billion.” “vague’ is vague because “it
is unclear as to where along the sequence the predicates with borderline cases
end and the ones without borderline cases begin” (Sorensen, 1985, p. 155).

Such unclarity, or even unknowability, of the line is not sufficient for vague-
ness. The sorites argument for ‘vague’ is not paradoxical, since it is not fan-
tastic to deny the induction step; such a denial means asserting that there is
an n such that ‘n-small” is vague but ‘n + 1-small’ is not. Is this difficult to
believe? | do not see why. For ‘bald’, on the other hand, the proposition that
n hairs is bald but » + 1 hairs is not strains credulity, and we are accordingly
unhappy to deny the induction step. It strains credulity because we feel, right
or wrong, that there are borderline cases of baldness. Is there any such intu-
ition for vague predicates? Are there cases of predicates we find are borderline
vague? | do not know of any such examples; any natural language predicates |
have encountered either have borderline cases or do not. (See also Deas (1989)
for one who agrees.)

‘vague’ is not vague, then; or at least if it is vague it is not so merely by
being able to be put it into what seems to be a sorites series. A sorites series is
only genuine when it is paradoxical, and it is only paradoxical when the denial
of the induction step seems counter-intuitive. Since the denial of the induction
step for the sorites series above is not counter-intuitive, this suggests that any
sorites series with ‘vague’ will also not be paradoxical. In fact, since there are
no clear cases of borderline vague predicates, there is not even any prima facie
reason to believe ‘vague’ is vague.

Hyde (1994) utilizes Sorensen’s argument for the vagueness of ‘vague’ to
argue, in turn, that higher-order vagueness is a pseudo-problem. If ‘vague’ is
vague and vagueness is defined as the phenomenon that there are borderline
cases, then since the existential ‘there are’ is not vague ‘borderline case’ must
be vague because otherwise ‘vague’ would not be vague. l.e., if ‘vague’ is
vague then ‘borderline case’ is vague. But higher-order vagueness is the phe-
nomenon that there are borderline cases of borderline cases—it is that “border-
line case’ is vague—and this is already built into the original concept of vague-
ness. Higher-order vagueness comes for free from the vagueness of ‘vague’,
and thus one need not tell any special story concerning higher-order vague-
ness. Hyde’s argument fails without the vagueness of ‘vague’, though, and
with reason now to deny the vagueness of ‘vague’, there is reason to believe
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that higher-order vagueness is a genuine problem needing possibly a separate
explanation. (See also Tye (1994) for other criticisms of Hyde’s argument.)

What kind of theory isthis?

Where does the Undecidability Theory of Vagueness fit in amongst the spec-
trum of theories of vagueness?

(1) Itis an epistemic theory. Vagueness exists in part because of your inad-
equacies: you are finite. Furthermore, no semantic indeterminacy concerning
the true concepts is required. In this sense it is a full-fledged epistemic theory.
(2) However, despite the consistency with a determinist account of true seman-
tics, my theory has an indeterminist aspect in that the semantics for the natural
language user’s concept P-ness consists of two distinct interpretations, one for
P and another for ‘not P’. The borderline region is semantically distinct from
the definite regions. The account of natural language semantics for your con-
cepts is, then, indeterminist. If one holds that (true) meaning is competent use
(of a community even), then the semantics at this level is the true semantics,
and one would have to hold semantic indeterminism. (3) Finally, the underly-
ing logic of your concepts is determinist in that P and ‘not P’ become P and
nonP, each which gets its own determinist classical interpretation.

How does the Undecidability Theory compare to other explanatory theories
of vagueness? Is there anything about the Undecidability Theory that is favor-
able? I think so: its paucity of assumptions. It rests on the three weak descrip-
tive hypotheses from Section 4.2: the Church-Bound, Programs-in-Head, and
Any-Algorithm Hypotheses. Each is, independent of vagueness, quite plausi-
ble. The Church-Bound Hypothesis (see Subsection 4.2.3) says that you are
finite, bound by Church’s Thesis, and capable of, in principle, computing any
Turing-computable function. The Programs-in-Head Hypothesis (see Subsec-
tion 4.2.4) says that your interpretation of a predicate is determined by a pro-
gram in your head for it. That is, natural language predicates are not like ‘the-
orem of Peano Arithmetic’ for which your interpretation is set to that given by
its (not recursively enumerable) arithmetic definition, not the set determined by
whatever program you might use as a heuristic for responding to queries about
it. The Any-Algorithm Hypothesis (see Subsection 4.2.5) says that you allow
yourself the use of any algorithm for your interpretations of natural language
predicates. We saw that if you allow yourself ‘while’ loops in the building of
programs, then it is difficult to reject this hypothesis. Each is compelling, and
vagueness follows. Alternative theories of vagueness must either deny one of
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these, or argue that the phenomenon my theory explains is not vagueness.



294 CHAPTER 4



Bibliography

Abeles M (1991) Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge University
Press, Cambridge.

Adams AM and Gathercole SE (2000) Limitations in working memory: Implications for lan-
guage development. Int. J. Lang. Comm. Dis. 35: 95-116.

Adams DR (1986) Canine Anatomy. The lowa State University Press, Ames.
Agur AMR and Lee MJ (1991) Grant's Atlas of Anatomy. Williams and Wilkins, Baltimore.

Aitkin M (1991) Posterior Bayes factors. Journal of the Royal Statistical Society, B 53:111—
142.

Allman JM (1999) Evolving Brains. Scientific American Library, New York.

Allott R (1992) The motor theory of language: Origin and function. In Wind J, Bichakjian BH,
Nocentini A and Chiarelli B (eds.) Language Origin: A Multidisciplinary Approach.
Kluwer, Dordrecht.

Alpert CJ, Hu TC, Huang JH, Kahng AB and Karger D (1995) Prim-Dijkstra Tradeoffs for
Improved Performance-Driven Global Routing. |EEE Trans. on CAD 14: 890-896.

Altmann S (1965) Sociobiology of rhesus monkeys. 11: Stochastics of social communication.
J. Theor. Biol. 8: 490-522.

Anderson BL (1999) Stereoscopic surface perception. Neuron 24: 919-928.
Anson BJ (1966) Morris Human Anatomy. McGraw-Hill, New York.

Anstis S (1989) Kinetic edges become displaced, segregated, and invisible. In Lam DM-K and
Gilbert CD, Neural Mechanisms of Visual Perception, Portfolio, The Woodlands, TX,
pp. 247-260.

Arend LE and Goldstein R (1990) Lightness and brightness over spatial illumination gradients.
J. Opt. Soc. Am. A7: 1929-1936.

Arend LE and Reeves A (1986) Simultaneous color constancy. J. Opt. Soc. Am. A 3: 1743-
1751.

Arend LE, Reeves A, Schirillo J and Goldstein R (1991) Simultaneous color constancy: papers
with diverse Munsell values. J. Opt. Soc. Am. A 8: 661-672.

Arend LE and Spehar B (1993) Lightness, brightness, and brightness contrast: 1. Illumination
variation. Perc. and Psychophys. 54: 446-456.

295



296 BIBLIOGRAPHY

Ariew R and Garber D (1989) G. W. Leibniz. Philosophical Essays. Hackett Publishing Com-
pany, Indianapolis.

Armstrong SL, Gleitman LR, and Gleitman H (1983) What some concepts might not be. Cog-
nition 13:263-308.

Ashdown RR and Done S (1984) Color Atlas of Veterinary Anatomy: The Ruminants. Univer-
sity Park Press, Baltimore.

Baerends GP (1976) The functional organization of behaviour. Anim. Behav. 24: 726-738.
Baldo MVC and Klein SA (1995) Extrapolation or attention shift? Nature 378: 565-566.
Barnes RD (1963) Invertebrate zoology. W. B. Saunders, Philadelphia

Bast TH, Christensen K, Cummins H, Geist FD, Hartman CG, Hines M, Howell AB, Huber E,
Kuntz A, Leonard SL, Lineback P, Marshall JA, Miller GS Jr, Miller RA, Schultz AH,
Stewart TD, Straus WL Jr, Sullivan WE and Wislocki GB (1933) The Anatomy of the
Rhesus Monkey. Williams and Wilkins, Baltimore.

Bastock M and Blest AD (1958) An analysis of behaviour sequences in Automeris aurantiaca
Weym (Lepidoptera). Behaviour 12: 243-284.

Bell G and Mooers AO (1997) Size and complexity among multicellular organisms. Biol. J.
Linnean Soc. 60: 345-363.

Berg CJ (1974) A comparative ethological study of strombid gastropods. Behaviour 51: 274—
322.

Berkinblit MB, Feldman AG and Fukson Ol (1986) Adaptability of innate motor patterns and
motor control mechanisms. Behav. Brain Sci. 9: 585-638.

Bernstein NP and Maxson SJ (1982) Behaviour of the antarctic blue-eyed shag, Phalacrocorax
atriceps bransfieldensis. Nortonis 29: 197-207.

Berry MJ I, Brivanlou IH, Jordan TA and Melster M (1999) Anticipation of moving stimuli
by the retina. Nature 398: 334-338.

Bertrand J (1889) Calcul des probabilites. Gauthier-Villars, Paris.

Betz O (1999) A behavioural inventory of adult Stenus species (Coleoptera: Staphylinidae). J.
Natural Hist. 33: 1691-1712.

Bishop SC (1943) Handbook of salamanders. Comstock, Ithaca.

Bizzi E and Mussa-lvaldi FA (1998) Neural basis of motor control and its cognitive implica-
tions. Trends Cogn. Sci. 2: 97-102.

Bollabas B (1985) Random Graphs. Academic Press, London.

Bolles RC and Woods PJ (1964) The ontogeny of behaviour in the albino rat. Anim. Behav.
12: 427-441.

Bolwig N (1959) A study of the behaviour of the Chacma baboon, Papio ursinus. Behaviour
14: 136-163.

Bonin G von (1937) Brain-weight and body-weight of mammals. J. Gen. Psych. 16: 379-389.

Bouma H and Andriessen JJ (1970) Induced changes in the perceived orientation of line seg-
ments. Vision Res. 10: 333-349.



BIBLIOGRAPHY 297

Boyd JS, Paterson C and May AH (1991) Clinical Anatomy of the Dog and Cat. Moshy, St.

Louis.

Bradley OC and Grahame T (1959) Topographical Anatomy of the Dog. Macmillan, New
York.

Brainard DH and Freeman WT (1997) Bayesian color constancy. J. Opt. Soc. Am. A14: 1393-
1411.

Braitenberg V (1978) Cortical architectonics: General and areal. In Brazier MAB, Petsche H
(eds) Architectonics of the Cerebral Cortex. Raven Press, New York, pp. 443-465.

Brenner E and Smeets JBJ (2000) Motion extrapolation is not responsible for the flash-lag
effect. Vision Res. 40: 1645-1648.

Brewer DW and Sites RW (1994) Behavioral inventory of Pelocoris femoratus (Hemiptera:
Naucoridae). J. Kansas Entomol. Soc. 67: 193-198.

Broad CD (1918) On the relation between induction and probability. Mind 108:389-404.

Brockway BF (1964a) Ethological studies of the Budgerigar (Melopsittacus undulatus): Non-
reproductive behavior. Behaviour 22: 193-222.

Brockway BF (1964b) Ethological studies of the Budgerigar: Reproductive behavior. Be-
haviour 23: 294-324.

Brown ED, Farabaugh SM and Veltman CJ (1988) Song sharing in a group-living songbird, the
Australian Magpie, Gymnorhina tibicen. Part I. Vocal sharing within and among social
groups. Behavior 104: 1-28.

Brusca RC, Brusca CJ (1990) Invertebrates. Sinauer Associates, Sunderland.

Buchshaum R (1956) Animals without backbones. An introduction to the invertebrates. The
University of Chicago Press, Chicago.

Buchsbaum R, Buchsbaum M, Pearse J and Pearse V (1987) Animals without backbones. The
University of Chicago Press, Chicago.

Budras K-D and Sack WO (1994) Anatomy of the Horse: An Illustrated Text. Mosby-Wolfe,
London.

Burnie D, Elphick J, Greenaway T, Taylor B, Walisiewicz M and Walker R (1998) Nature
encyclopedia. DK Publishing, London

Busam JF (1937) A Laboratory Guide on the Anatomy of the Rabbit. Spaulding-Moss, Boston.
Calder, WA 111 (1996) Size, Function, and Life History. Dover, Mineola.

Campbell R (1974) The sorites paradox. Phil. Sudies 26: 175-191.

Cargile J (1969) The sorites paradox. Brit. J. Phil. Sci. 20: 193-202.

Carnap R (1950) Logical Foundations of Probability. The University of Chicago Press, Chicago.

Carnap R (1952) The Continuum of Inductive Methods. The University of Chicago Press,
Chicago.

Carnap R (1989) Statistical and inductive probability. In Brody BA and Grandy RE (eds)
Readings in the Philosophy of Science. Prentice Hall, Eaglewood Cliffs, pp. 279-287.

Carpenter RHS and Blakemore C (1973) Interactions between orientations in human vision.
Exp. Brain Res. 18: 287-303.



298 BIBLIOGRAPHY

Case R, Kurland DM and Goldberg J (1982) Operational efficiency and the growth of short-
term memory span. J. Exp. Child Psychol. 33: 386-404.

Chamberlain FW (1943) Atlas of Avian Anatomy. Hallenbeck, East Lansing.

Changizi MA (1995) Fuzziness in classical two-valued logic. Proc. of the Third Int. Symp. on
Uncertainty Modeling and Analysis, and the Annual Conf. of the North American Fuzzy
Information Processing Soc.. |IEEE, pp 483-488.

Changizi MA (1999a) Vagueness and computation. Acta Analytica 14: 39-45.

Changizi MA (1999b) Motivation for a new semantics for vagueness. EWIC (Irish Workshop
on Formal Methods).

Changizi MA (1999c) Vagueness, rationality and undecidability: A theory of why there is
vagueness. Synthese 117: 345-374.

Changizi MA (2001a) The economy of the shape of limbed animals. Biol. Cyb. 84: 23-29.

Changizi MA (2001b) Principles underlying mammalian neocortical scaling. Biol. Cybern.
84: 207-215.

Changizi MA (2001c) ‘Perceiving the present’ as a framework for ecological explanations for
the misperception of projected angle and angular size. Perception 30: 195-208.

Changizi MA (2001d) Universal scaling laws for hierarchical complexity in languages, organ-
isms, behaviors and other combinatorial systems. J. Theor. Biol. 211: 277-295.

Changizi MA (2001e) Universal laws for hierarchical systems. Comments Theor. Biol. 6:
25-75.

Changizi MA (2002) The relationship between number of muscles, behavioral repertoire size,
and encephalization in mammals. J. Theor. Bial., in press.

Changizi MA and Barber TP (1998) A paradigm-based solution to the riddle of induction.
Synthese 117: 419-484.

Changizi MA and Cherniak C (2000) Modeling large-scale geometry of human coronary ar-
teries with principles of global volume and power minimization. Can. J. Physiol. Phar-
macol. 78: 603-611.

Changizi MA and Hall WG (2001) Thirst modulates a perception. Perception 30: 1489-1497.

Changizi MA, McDannald M and Widders D (2002a) Scaling of differentiation in networks:
Nervous systems, organisms, ant colonies, ecosystems, businesses, universities, cities,
electronic circuits and Legos. J. Theor. Biol., in press.

Changizi MA, McGehee RMS and Hall WG (2002b) Evidence that appetitive responses for
dehydration and food-deprivation are learned. Physiol. Behav., in press.

Changizi MA and Widders D (2002) Latency-correction explains the classical geometrical
illusions. Perception, in press.

Cherniak C (1992) Local optimization of neuron arbors. Biol. Cybern. 66: 503-510.

Cherniak C (1994) Component placement optimization in the brain. J. Neurosci. 14: 2418-
2427.

Cherniak C (1995) Neural component placement. Trends Neurosci. 18: 522-527.



BIBLIOGRAPHY 299

Cherniak C, Changizi MA, Kang DW (1999) Large-scale optimization of neuron arbors. Phys-
ical Review E 59: 6001-6009.

Chierchia G and McConnell-Ginet S (1990) Meaning and Grammar: An Introduction to Se-
mantics. MIT Press.

Chin E Jr (1957) The Rabbit. An Illustrated Anatomical Guide. Master’s Thesis, College of
the Pacific.

Chklovskii DB (2000) Binocular disparity can explain the orientation of ocular dominance
stripes in primate V1. Vision Res. 40: 1765-1773.

Chklovskii DB and Koulakov AA (2000) A wire length minimization approach to ocular dom-
inance patterns in mammalian visual cortex. Physica A 284: 318-334.

Chomsky N (1972) Language and Mind. Harcourt Brace Jovanovich, New York.
Clark EV (1993) The Lexicon in Acquisition. Cambridge University Press, Cambridge.

Clark HH and Wasow T (1998) Repeating words in spontaneous speech. Cog. Psychol. 37:
201-242.

Coelho AM Jr and Bramblett CA (1981) Interobserver agreement on a molecular ethogram of
the genus Papio. Anim. Behav. 29: 443-448.

Cole BJ (1985) Size and behavior in ants: Constraints on complexity. Proc. Natl. Acad. Sci.
USA 82: 8548-8551.

Cooper G and Schiller AL (1975) Anatomy of the Guinea Pig. Harvard University, Cambridge.

Copeland BJ (1998) Turing’s O-machines, Searle, Penrose and the brain. Analysis 58: 128—
138.

Coren S and Girgus JS (1978) Seeingisdeceiving: The psychology of visual illusions. Lawrence
Erlbaum, Hillsdale.

Cormen TH, Leiserson CE and Rivest RL (1990) Introduction to Algorithms. MIT Press,
Cambridge.

Corrigan R (1983) The development of representational skills. In Fischer K (ed) Levels and
Transitions in Children’s Devel opment. Jossey-Bass, San Francisco, pp. 51-64.

Courts SE (1996) An ethogram of captive Livingstone’s fruit bats Pteropus livingstonii in a
new enclosure at Jersey wildlife preservation trust. Dodo J. WildI. Preserv. Trusts 32:
15-37.

Coxeter HSM (1962) The problem of packing a number of equal nonoverlapping circles on a
sphere. Trans. N.Y. Acad. ci. Series || 24: 320-331.

Craigie EH (1966) A Laboratory Guide to the Anatomy of the Rabbit. University of Toronto
Press, Toronto.

Crile G and Quiring DP (1940) A record of the body weight and certain organ and gland
weights of 3690 animals. Ohio J. Sci. 40: 219-259.

Danoff-Burg JA (1996) An ethogram of the ant-guest bettle trive sceptobiini (Coleoptera:
Staphylinidae; Formicidae). Sociobiol. 27: 287-328.

Dawkins R and Dawkins M (1976) Hierarchical organization and postural facilitation: Rules
for grooming in flies. Anim. Behav. 24: 739-755.



300 BIBLIOGRAPHY

de Finetti B (1974) Theory of Probability John Wiley and Sons, New York.
Deacon T (1990) Rethinking mammalian brain evolution. Amer. Zool. 30: 629-705.
Deas R (1989) Sorensen’s sorites. Analysis 49: 26-31.

De Valois RL and De Valois KK (1991) Vernier acuity with stationary moving Gabors. Vision
Res. 31: 1619-1626.

DeVito S (1997) A gruesome problem. British Journal for the Philosophy of Science 48: 391—
396.

Devoogd TJ, Krebs JR, Healy SD and Purvis A (1993) Relations between song repertoire
size and the volume of brain nuclei related to song: comparative evolutionary analyses
amongst ocine birds. Proc. R. Soc. Lond. B 254: 75-82.

Douglas JM and Tweed RL (1979) Analysing the patterning of a sequence of discrete be-
havioural events. Anim. Behav. 27: 1236-1252.

Downey ME (1973) Sarfishes from the Caribbean and the Gulf of Mexico. Smithsonian Insti-
tution, Washington, D.C.

Draper WA (1967) A behavioural study of the home-cage activity of the white rat. Behaviour
28: 280-306.

Dummett M (1975) Wang’s paradox. Synthese 30: 301-324.

Durbin R and Mitchison G (1990) A dimension reduction framework for understanding cortical
maps. Nature 343: 644-647.

Eagleman DM and Sejnowski TJ (2000) Motion integration and postdiction in visual aware-
ness. Science 287: 2036-2038.

Earman J (1992) Bayes or Bust? A Critical Examination of Bayesian Confirmation Theory.
MIT Press, Cambridge .

Earman J and Norton JD (1993) Forever is a day: Supertasks in Pitowsky and Malament-
Hogarth spacetimes. Philosophy of Science 60: 22-42.

Earman J and Norton JD (1996) Infinite pains: The trouble with supertasks. In Morton A and
Stich SP (eds) Benacerraf and his Critics, Blackwell, pp. 65-124.

Edgington D (1992) Validity, uncertainty and vagueness. Analysis52: 193-204.
Edgington D (1993) Wright and Sainsbury on higher-order vagueness. Analysis 53: 193-200.

Ehrlich A (1977) Social and individual behaviors in captive Greater Galagos. Behaviour 63:
192-214.

Ehrlich A and Musicant A (1977) Social and individual behaviors in captive Slow Lorises.
Behaviour 60: 195-220.

Eisenberg JF (1962) Studies on the behavior of Peromyscus maniculatus gambelii and Per-
omyscus californicus parasiticus. Behaviour 29: 177-207.

Ellsworth AF (1976) The North American Opossum: An Anatomical Atlas. Robert E. Krieger
Publishing, Huntington.

Evans HE (1993) Miller’s Anatomy of the Dog. W.B. Saunders, Philadelphia.

Everett RA, Ostfeld RS and Davis WJ (1982) The behavioral hierarchy of the garden snail
Helix aspersa. J. Compar. Ethology 59: 109-126.



BIBLIOGRAPHY 301

Fagen RM and Goldman RN (1977) Behavioural catalogue analysis methods. Anim. Behav.
25: 261-274.

Fentress JC (1983) Ethological models of hierarchy and patterning in species-specific behavior.
In Satinoff E and Teitelbaum P (eds) Handbook of Behavioral Neurobiology. Plenum
Press, New York, pp. 185-234.

Fentress JC and Stilwell FP (1973) Grammar of a movement sequence in inbred mice. Nature
244: 52-53.

Fernald RD and Hirata NR (1977) Field study of Haplochromis burtoni: Quantitative be-
havioural observations. Anim. Behav. 25: 964-975.

Ferron J (1981) Comparative ontogeny of behaviour in four species of squirrels (Sciuridae). J.
Compar. Ethol. 55: 193-216.

Ferron J and Ouellet J-P (1991) Physical and behavioral postnatal development of woodchucks
(Marmota monax). Can. J. Zool. 69: 1040-1047.

Figueredo AJ, Ross DM and Petrinovich L (1992) The quantitative ethology of the zebra finch:
A study in comparative psychometrics. Multivariate Behav. Res. 27: 435-458.

Fine K (1975) Vagueness, truth, and logic. Synthese 30: 265-300.

Fisher GH (1969) An experimental study of angular subtension. Q. J. Exp. Psych. 21: 356-
366.

Forster MR and Sober E (1994) How to tell when simpler, more unified, or less ad hoc theories
will provide more accurate predictions. British Journal for the Philosophy of Science 45:
1-35.

Foster C and Altschuler EL (2001) The bulging grid. Perception 30: 393-395.

Frahm HD, Stephan H, Stephan M (1982) Comparison of brain structure volumes in Insec-
tivora and Primates. |. Neocortex. J. Hirnforschung 23: 375-389.

Freeman WT (1994) The generic viewpoint assumption in a framework for visual perception.
Nature 368: 542-545.

Freyd JJ (1983a) Representing the dynamics of a static form. Memory and Cognition 11:
342-346.

Freyd JJ (1983b) The mental representation of movement when static stimuli are viewed. Per-
ception and Psychophysics 33: 575-581.

Freyd JJ and Finke RA (1984) Representational momentum. Journal of Experimental Psychol-
ogy: Learning, Memory and Cognition 10: 126-132.

Gadagkar R and Joshi NV (1983) Quantitative ethology of social wasps: Time-activity budgets
and caste differentiation in Ropalidia marginata (Lep.) (Hymenoptera: Vespidae). Anim.
Behav. 31: 26-31.

Gallistel CR (1980) The Organization of Action: A New Synthesis. Lawrence Erlbaum, Hills-
dale.

Ganslosser U and Wehnelt S (1997) Juvenile development as part of the extraordinary social
system of the Mara Dolichotis patagonum (Rodentia: Caviidae). Mammalia 61: 3-15.

Gardenfors P (1990) Induction, conceptual spaces, and Al. Philosophy of Science 57: 78-95.



302 BIBLIOGRAPHY

Geist V (1963) On the behaviour of the North American moose (Alces alces andersoni Peterson
1950) in British Columbia. Behaviour 20: 377-416.

Gilbert EN and Pollak HO (1968) Steiner minimal trees. SAM J. Appl. Math. 16: 1-29.
Gibson JJ (1986) The Ecological Approach to Visual Perception. Lawrence Erlbaum, Hillsdale.

Gibson RN (1980) A quantitative description of the behaviour of wild juvenile plaice. Anim.
Behav. 28: 1202-1216.

Gillam BJ (1980) Geometrical illusions. Sci. Am. 242: 102-111.

Gillam BJ (1998) Illusions at century’s end. In Hochberg J (ed) Perception and Cognition at
Century’s End. Academic Press, San Diego, pp. 98-137.

Goodhill GJ, Bates KR and Montague PR (1997) Influences on the global structure of cortical
maps. Proc. R. Soc. Lond. B 264: 649-655.

Greene E (1988) The corner Poggendorff. Perception 17: 65-70.
Greene EC (1935) Anatomy of the Rat. The American Philosophical Society, Philadelphia.

Greenfield PM (1991) Language, tools and brain: The ontogeny and phylogeny of hierarchi-
cally organized sequential behavior. Behav. Brain Sci. 14: 531-595.

Gregory RL (1963) Distortion of visual space as inappropriate constancy scaling. Nature 199:
678-680.

Gregory RL (1997) Eye and Brain. Princeton University Press, New Jersey, Fifth edition.

Gunn D and Morton DB (1995) Inventory of the behaviour of New Zealand White rabbits in
laboratory cages. Appl. Anim. Behav. Sci. 45: 277-292.

Hailman JP (1989) The organization of major vocalizations in the paradae. Wlson Bull. 101:
305-343.

Hanlon RT, Maxwell MR, Shashar N, Loew ER and Boyle K-L (1999) An ethogram of body
patterning behavior in the biomedically and commercially valuable squid Loligo pealei
off Cape Cod, Massachusetts. Biol. Bull. 197: 49-62.

Harsanyi JC (1983) Bayesian decision theory. Subjective and objective probabilities, and ac-
ceptance of empirical hypotheses. Synthese 57: 341-365.

Haug H (1987) Brain sizes, surfaces and neuronal sizes of the cortex cerebri: A stereological
investigation of man and his variability and a comparison with some mammals (primates,
whales, marsupials, insectivores, and one elephant). Am. J. Anatomy 180: 126-142.

Hebel R and Stromberg MW (1976) Anatomy of the Laboratory Rat. Williams and Wilkins,
Baltimore.

Hegner RW (1933) Invertebrate Zoology. Macmillan, New York.

Helmholtz H von (1962) HelmholtZ's Treatise on Physiological Optics. (trans. ed. Southall
JPC) Optical Society of America, New York.

Hintikka J (1966) A two-dimensional continuum of inductive methods. In Hintikka J and
Suppes P (eds) Aspects of Inductive Logic. North-Holland, Amsterdam, pp. 113-132.

Hof PR, Glezer I, Condé F, Flagg RA, Rubin MB, Nimchinsky EA, Weisenhorn, DMV. (1999)
Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calre-
tinin in the neocortex of mammals: phylogenetic and developmental patterns. J. Chem.
Neuroanat. 16: 77-116.



BIBLIOGRAPHY 303

Hofman MA (1982a) Encephalization in mammals in relation to the size of the cerebral cortex.
Brain Behav. Evol. 20: 84-96.

Hofman MA (1982b) A two-component theory of encephalization in mammals. J. Theor. Biol.
99: 571-584.

Hofman MA (1989) On the evolution and geometry of the brain in mammals. Progress in
Neurobiology 32: 137-158.

Hofman MA (1991) The fractal geometry of convoluted brains. J. Hirnforschung 32: 103-111.

Hogarth M (1994) Non-Turing computers and non-Turing computability. Proceedings of the
Philosophy of Science Association 1: 126-138.

Horgan T (1994) Transvaluationism: A Dionysian approach to vagueness. The Southern Jour-
nal of Philosophy 33 Supplement: 97-126.

Howell AB (1926) Anatomy of the Wood Rat. Williams and Wilkins, Baltimore.

Howson C (1987) Popper, prior probabilities, and inductive inference. The British Journal for
the Philosophy of Science 38: 207-224.

Howson C and Urbach P (1989) Scientific Reasoning: The Bayesian Approach. Open Court,
Chicago.

Hrdlicka A (1907) Brain weight in vertebrates. Washington, D. C.: Smithsonian Miscellaneous
Collections, pp 89-112.

Hubbard TL and Ruppel SE (1999) Representational momentum and the landmark attraction
effect. Canadian Journal of Experimental Psychology 43: 242-255.

Hudson LC and Hamilton WP (1993) Atlas of Feline Anatomy for \Veterinarians. W. B. Saun-
ders, Philadelphia.

Hunt KW (1965) A synopsis of clause-to-sentence length factors. English J. 54: 300-309.

Hutt SJ and Hutt C (1971) Direct Observation and Measurement of Behaviour. C. C. Thomas,
Springfield, 111.

Hyde D (1994) Why higher-order vagueness is a pseudo-problem. Mind 103: 35-41.
Hyde D (1997) From heaps and gaps to heaps of gluts. Mind 106: 641-660.

Ince SA and Slater PJB (1985) Versatility and continuity in the songs of thrushes Turdus spp.
Ibis 127: 355-364.

Jacobs RA and Jordan MI (1992) Computational consequences of a bias toward short connec-
tions. J. Cogn. Neurosci. 4: 323-336.

Jaffe K (1987) Evolution of territoriality and nestmate recognition systems in ants. In Pasteels
JM and Deneubourg JL (eds), From Individual to Collective Behavior in Social Insects.
Birkhauser Verlag, Basel, pp. 295-311.

Jaynes ET (1973) The well-posed problem. Foundations of Physics 3: 477-493.
Jeffreys H (1948) Theory of Probability. Clarendon Press, Oxford.

Jeffreys H (1955) The present position in probability theory. The British Journal for the Phi-
losophy of Science 5: 275-289.

Jerison H (1973) The Evolution of the Brain and Intelligence. Academic Press, New York.



304 BIBLIOGRAPHY

Jerison HJ (1982) Allometry, brain size, cortical surface, and convolutedness. In Armstrong E
and Falk F, Primate Brain Evolution. Plenum Press, New York, pp. 77-84.

Johnson WE (1924) Logic, Part I11: The Logical Foundations of Science. Cambridge Univer-
sity Press, Cambridge.

Kamiya A and Togawa T (1972) Optimal branching structure of the vascular tree. Bull. Math.
Biophys. 34: 431-438.

Kamp JAW (1975) Two theories about adjectives. In Keenan EL (ed) Formal Semantics of
Natural Language. Cambridge University Press, Cambridge, pp. 123-155.

Kaufman C and Rosenblum LA (1966) A behavioral taxonomy for Macaca nemestrina and
Macaca radiata: Based on longitudinal observation of family groups in the laboratory.
Primates 7: 205-258.

Kaupp BF (1918) The Anatomy of the Domestic Fowl. W. B. Saunders, Philadelphia.
Kemeny JG (1953) The use of simplicity in induction. The Philosophical Review 62: 391-408.
Keynes JM (1921) A Treatise on Probability. Macmillan, New York.

Khuller S, Raghavachari B and Young N (1995) Balancing Minimum Spanning and Shortest
Path Trees. Algorithmica 14: 305-321.

Khurana B and Nijhawan R (1995) Extrapolation or attention shift? Nature 378: 565-566.

Khurana B, Watanabe R and Nijhawan R (2000) The role of attention in motion extrapolation:
Are moving objects *corrected’ or flashed objects attentionally delayed? Perception 29:
675-692.

Kingdom FAA, Blakeslee B and McCourt ME (1997) Brightness with and without perceived
transparency: When does it make a difference? Perception 26: 493-506.

Kitazaki M and Shimojo S (1996) ‘Generic-view principle’ for three-dimensional-motion per-
ception: Optics and inverse optics of a moving straight bar. Perception 25: 797-814.

Kneale W (1949) Probability and Induction. Clarendon Press, Oxford.

Knill DC and Kersten D (1991) Apparent surface curvature affects lightness perception. Nature
351: 228-230.

Knill D and Richards W (eds) (1996) Perception as Bayesian Inference. Cambridge University
Press, Cambridge.

Kolmes SA (1985) An information-theory analysis of task specialization among worker honey
bees performing hive duties. Anim. Behav. 33: 181-187.

Koons RC (1994) A new solution to the sorites problem. Mind 103: 439-449.

Koulakov AA and Chklovskii DB (2001) Orientation preference patterns in mammalian visual
cortex: A wire length minimization approach. Neuron 29: 519-527.

Krekelberg B and Lappe M (1999) Temporal recruitment along the trajectory of moving objects
and the perception of position. is. Res. 39: 2669-2679.

Kroodsma DE (1977) Correlates of song organization among North American wrens. Am.
Naturalist 111: 995-1008.

Kroodsma DE (1984) Songs of the Alder Flycatcher (Empidonax alnorum) and Willow Fly-
catcher (Empidonax Traillii) are innate. Auk 101: 13-24.



BIBLIOGRAPHY 305

Kuhn TS (1977) Objectivity, value judgments, and theory choice. In Kuhn TS (ed) The Essen-
tial Tension. University of Chicago Press, Chicago.

Laplace PS (1995) Philosophical Essays on Probability. (Edited by Toomer GJ, translated by
Dale Al, first published 1820.) Springer-Verlag, New York.

Lappe M and Krekelberg B (1998) The position of moving objects. Perception 27: 1437-1449.

Lasek R (1988) Studying the intrinsic determinants of neuronal form and function, In Lasek R,
Black M (eds) Intrinsic Determinants of Neuronal Form and Function, Liss, New York.

Lefebvre L (1981) Grooming in crickets: Timing and hierarchical organization. Anim Behav.
29: 973-984.

Lennie P (1981) The physiological basis of variations in visual latency. Vision Res. 21: 815-
824.

Leonard JL and Lukowiak K (1984) An ethogram of the sea slug, Navanax inermis (Gas-
tropoda, Opisthobranchia). J. Compar. Ethol. 65: 327-345.

Leonard JL and Lukowiak K (1986) The behavior of Aplysia californica cooper (Gastropoda;
Opisthobranchia): 1. Ethogram. Behaviour 98: 320-360.

Levine R, Chein | and Murphy G (1942) The relation of the intensity of a need to the amount
of perceptual distortion: A preliminary report. J. Psychol. 13: 283-293.

Lewis D (1984) Putnam’s paradox. Australasian Journal of Philosophy 62: 221-236.

Lewis JJ (1985) The ethology of captive juvenile Caiman sclerops: Predation, growth and de-
velopment, and sociality (crocadilians, life history, behavior, dominance). Dissertation,
Northwestern University, DA, 46, no. 11B: 3751.

Mach E (1976) Knowledge and Error. Sketches on the Psychology of Enquiry. Translated by
McCormack TJ and Folks P. D. Reidel, Dordrecht.

MacKay DM (1958) Perceptual stability of a stroboscopically lit visual field containing self-
luminous objects. Nature 181: 507-508.

Di Maio MC (1994) Inductive logic: Aims and procedures. Theoria 60: 129-153.

Manger P, Sum M, Szymanski M, Ridgway S and Krubitzer L (1998) Modular subdivisions of
Dolphin insular cortex: Does evolutionary history repeat itself? J. Cogn. Neurosci. 10:
153-166.

Mariappa D (1986) Anatomy and Histology of the Indian Elephant. Indira Publishing House,
Oak Park, Michigan.

Marinoff L (1994) A resolution of Bertrand’s Paradox. Philosophy of Science 61: 1-24.

Markus EJ and Petit TL (1987) Neocortical synaptogenesis, aging, and behavior: Lifespan
development in the motor-sensory system of the rat. Exp. Neurol. 96: 262-278.

Martin 1G (1980) An ethogram of captive Blarina brevicauda. Am. Midland Naturalist 104:
290-294.

Masin SC (1997) The luminance conditions of transparency. Perception 26: 39-50.

Mather JA (1985) Behavioural interactions and activity of captive Eledone moschata: labora-
tory investigations of a ‘social’ octopus. Anim. Behav. 33: 1138-1144.



306 BIBLIOGRAPHY

Maunsell JHR and Gibson JR (1992) Visual response latencies in striate cortex of the macaque
monkey. J. Neurophysiol. 68: 1332-1344.

McClure RC, Dallman MJ and Garrett PD (1973) Cat Anatomy: An Atlas, Text and Dissection
Guide. Lea and Febiger, Philadelphia.

McLaughlin CA and Chiasson RB (1990) Laboratory Anatomy of the Rabbit. Wm. C. Brown
Publishers, Dubuque.

Mellor DH (1971) The Matter of Chance. University Press, Cambridge.

Miller GA (1956) The magical number seven, plus or minus two: Some limits on our capacity
for processing information. Psychol. Rev. 63: 81-97.

Miller BJ (1988) Conservation and behavior of the endangered Black-footed ferret (Mustela
nigripes) with a comparative analysis of reproductive behavior between the Black-footed
ferret and the congeneric domestic ferret (Mustela putorius furo). Dissertation, Univer-
sity of Wyoming, DAI, 50, no. 03B: 08309.

Miller HC (1963) The behavior of the Pumpkinseed sunfish, Lepomis gibbosus (Linneaus),
with notes on the behavior of other species of Lepomis and the Pigmy sunfish, Elassoma
evergladei. Behaviour 22: 88-151.

Miller RJ and Jearld A (1983) Behavior and phylogeny of fishes of the genus Colisa and the
family Belontiidae. Behaviour 83: 155-185.

Mitchison G (1991) Neuronal branching patterns and the economy of cortical wiring. Proc. R.
Soc. Lond. B 245: 151-158.

Mitchison G (1992) Axonal trees and cortical architecture. Trends Neurosci. 15: 122-126.

Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic
sensory cortex. J. Neurophysiol. 20: 408-434.

Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120: 701-722.

Miiller M, Boutiére H, Weaver ACF and Candelon N (1998) Ethogram of the bottlenose dol-
phin, with special reference to solitary and sociable dolphins. Vie et Milieu 48: 89-104.

Mundinger PC (1999) Genetics of canary song learning: Innate mechanisms and other neu-
robiological considerations. In Hauser MD and Konishi M (eds) The Design of Animal
Communication MIT Press, Cambridge, pp. 369-390.

Murray CD (1926a) The physiological principle of minimum work. 1. The vascular system
and the cost of blood volume. Proc. Natl. Acad. Sci. USA 12: 207-214.

Murray CD (1926b) The physiological principle of minimum work applied to the angle of
branching of arteries. J. Gen. Physiol. 9: 835-841.

Murray CD (1927) A relationship between circumference and weight in trees and its bearing
on branching angles. J. Gen. Physiol. 10: 725-729.

Nakayama K and Shimojo S (1992) Experiencing and perceiving visual surfaces. Science 257:
1357-1363.

Netter FH (1997) Atlas of Human Anatomy. East Hanover, New Jersey.

Nickel R, Schummer A, Seiferle E, Siller WG and Wight PAL (1977) Anatomy of the Domestic
Birds. Springer-Verlag, New York.



BIBLIOGRAPHY 307

Nijhawan R (1994) Motion extrapolation in catching. Nature 370: 256-257.

Nijhawan R (1997) Visual decomposition of colour through motion extrapolation. Nature 386:
66—69.

Nijhawan R (2001) The flash-lag phenomenon: object motion and eye movements. Perception
30: 263-282.

Nimchinsky EA, Gilissen E, Allman JM, Perl DP, Erwin JM (1999) A neuronal morphologic
type unique to humans and great apes. Proc. Natl. Acad. Sci. USA 96: 5268-5273.

Nishida S and Johnston A (1999) Influence of motion signals on the perceived position of
spatial pattern. Nature 397: 610-612.

Nowak RM (1999) Walker’'s Mammals of the World. The Johns Hopkins University Press,
Baltimore.

Nundy S, Lotto B, Coppola D, Shimpi A and Purves D (2000) Why are angles misperceived?
Proc. Nat. Acad. Sci. 97: 5592-5597.

Orbison WD (1939) Shape as a function of the vector-field. American Journal of Psychology
52: 31-45.

Oswald M and Lockard JS (1980) Ethogram of the De Brazza’s guenon (Cercopithecus ne-
glectus) in captivity. Appl. Anim. Ethol. 6: 285-296.

Owings DH, Borchert M and Virginia R (1977) The behaviour of California Ground squirrels.
Anim. Behav. 25: 221-230.

Palmer SE (1999) Vision Science: Photons to Phenomenology. MIT Press, Cambridge.

Parker SP (ed) (1982) Synopsis and classification of living organisms. McGraw-Hill, New
York.

Pascual-Leone J (1970) A mathematical model for the transition rule in Piaget’s developmental
stages. Acta Psychologica 32: 301-345.

Pasquini C, Reddy VK and Ratzlaff MH (1983) Atlas of Equine Anatomy. Sudz, Eureka.

Passingham RE (1973) Anatomical differences between the neocortex of man and other pri-
mates. Brain Behav. Evol. 7: 337-359.

Patenaude F (1984) The ontogeny of behavior of free-living beavers (Castor canadensis). J.
Compar. Ethol. 66: 33-44.

Pearse V, Pearse J, Buchsbhaum M, Buchsbaum R (1987) Living invertebrates. Blackwell Sci-
entific, Palo Alto.

Pearson K (1992) The Grammar of Science. J. M. Dent and Sons, London.
Penrose R (1994) Shadows of the Mind. Oxford University Press, Oxford.

Pickwell G (1947) Amphibians and Reptiles of the Pacific Sates. Stanford University Press,
Stanford University.

Pinker S (1994) The Language Instinct. HarperPerennial, New York.

Pinna B and Brelstaff GJ (2000) A new visual illusion of relative motion. Vision Research 40:
2091-2096.

Popesko P, Rajtov V and Horak J (1990) A Colour Atlas of the Anatomy of Small Laboratory
Animals. Wolfe Publishing, Bratislava.



308 BIBLIOGRAPHY

Popper KR (1959) The Logic of Scientific Discovery. Hutchinson and Company, London.

Prothero J (1997a) Cortical scaling in mammals: A repeating units model. J. Brain Res. 38:
195-207.

Prothero J (1997b) Scaling of cortical neuron density and white matter volume in mammals.
J. Brain Res. 38: 513-524.

Prothero JW and Sundsten JW (1985) Folding of the cerebral cortex in mammals. Brain Behav.
Evol. 24: 152-167.

Purushothaman G, Patel SS, Bedell HE and Ogmen H (1998) Moving ahead through differen-
tial visual latency. Nature 396: 424.

Putnam H (1980) Models and reality. Journal of Symbolic Logic 45: 464-482.

Putnam H (1981) Reason, Truth and History. Cambridge University Press, Cambridge.
Putnam H (1983) Vagueness and alternative logic. Erkenntnis 19: 297-314.

Quine WVO (1960) Word and Object. MIT Press, Cambridge.

Quine WVO (1963) On simple theories in a complex world. Synthese 15: 103-106.
Raghavan D (1964) Anatomy of the Ox. Indian Council of Agricultural Research, Calcutta.

Ramachandran NK (1998) Activity patterns and time budgets of the pheasant-tailed (Hy-
drophasianus chirurgus) and bronzewinged (Metopidius indicus) jacanas. J. Bombay
Nat. History Soc. 95: 234-245.

Ramsey FP (1931) Truth and probability. Foundations of Mathematics and Other Essays.
Routledge and Kegan Paul, London.

Read AF and Weary DM (1992) The evolution of bird song: Comparative analyses. Phil.
Trans. R. Soc. Lond. B 338: 165-187.

Reichenbach H (1938) Experience and Prediction. University of Chicago Press, Chicago.
Reighard J and Jennings HS (1929) Anatomy of the Cat. Henry Holt and Company, New York.

Ringo JL (1991) Neuronal interconnection as a function of brain size. Brain Behav. Evol. 38:
1-6.

Ringo JL, Doty RW, Demeter S, Simard PY (1994) Time is of the essence: A conjecture that
hemispheric specialization arises from interhemispheric conduction delay. Cereb. Cortex
4: 331-343.

Robinson BF and Mervis CB (1998) Disentangling early language development: Modeling
lexical and grammatical acquisition using an extension of case-study methodology. De-
vel. Psychol. 34: 363-375.

Rock 1 (1975) An Introduction to Perception. Macmillan, New York.
Rock 1 (1983) The Logic of Perception. MIT Press, Cambridge.
Rock 1 (1984) Perception. Scientific American Library, New York.

Rockel AJ, Hiorns RW and Powell TPS (1980) The basic uniformity in structure of the neo-
cortex. Brain 103: 221-244.

Rodger RS and Rosebrugh RD (1979) Computing the grammar for sequences of behavioural
acts. Anim. Behav. 27: 737-749.



BIBLIOGRAPHY 309

Rohen JW and Yokochi C (1993) Color Atlas of Anatomy. Igaku-Shoin, New York.

Roper TJ and Polioudakis E (1977) The behaviour of Mongolian gerbils in a semi-natural
environment, with special reference to ventral marking, dominance and sociability. Be-
haviour 61: 207-237.

Ross MH, Romrell LJ and Kaye GI (1995) Histology: A Text and Atlas. Williams and Wilkins,
Baltimore.

Roy AG and Woldenberg MJ (1982) A generalization of the optimal models of arterial branch-
ing. Bull. of Math. Bio. 44: 349-360.

Ruby DE and Niblick HA (1994) A behavioral inventory of the desert tortoise: Development
of an ethogram. Herpetol. Monogr. 8: 88-102.

Ruppin E, Schwartz EL and Yeshurun Y (1993) Examining the volume efficiency of the corti-
cal architecture in a multi-processor network model. Biol. Cybern. 70: 89-94.

Russell B (1918) Mysticismand Logic. Longmans; now Allen and Unwin, New York.

Sainsbury M (1990) Concepts without boundaries. Inaugural lecture delivered November 6,
1990, published by King’s College London Department of Philosophy, London WC2R
2LS.

Salmon WC (1966) The Foundations of Scientific Inference. University of Pittsburgh Press,
Pittsburgh.

Salmon WC (1990) Rationality and objectivity in science, or Tom Kuhn meets Tom Bayes.
In Savage CW (ed) cientific Theories. University of Minnesota Press, Twin Cities, pp.
175-204.

Santos RS and Barreiros JP (1993) The ethogram of Parablennius sanguinolentus parvicornis
(Valenciennes in Cuvier and Valenciennes, 1836) (Pisces: Blenniidae) from the Azores.
Arquipelago ciencias da natureza 0: 73-90.

Scannel JW and Young MP (1993) The connectional organization of neural systems in the cat
cerebral cortex. Current Biol. 3: 191-200.

Schlag J, Cai RH, Dorfman A, Mohempour A and Schlag-Rey M (2000) Extrapolating move-
ment without retinal motion. Nature 403: 38-39.

Schleidt WM, Yakalis G, Donnelly M and McGarry J (1984) A proposal for a standard eth-
ogram, exemplified by an ethogram of the bluebreasted quail (Coturnix chinensis). J.
Compar. Ethol. 64: 193-220.

Schlossberg L and Zuidema GD (1997) The Johns Hopkins Atlas of Human Functional Anatomy.
Johns Hopkins University Press, Baltimore.

Schmidt-Nielson K (1984) Scaling: Why is Animal Size So Important? Cambridge University
Press, Cambridge.

Schmolesky MT, Wang Y, Hanes DP, Thompson KG, Leutger S, Schall JD and Leventhal AG
(1998) Signal timing across the macaque visual system. J. Neurophysiol. 79: 3272-
3278.

Schrater PR, Knill DC and Simoncelli EP (2001) Perceiving visual expansion without optic
flow. Nature 410: 816-819.

Schreiner W and Buxbaum PF (1993) Computer-optimization of vascular trees. |EEE Trans-
actions on Biomedical Engineering 40: 482-491.



310 BIBLIOGRAPHY

Schreiner W, Neumann M, Neumann F, Roedler SM, End A, Buxbaum P, Miller MR and
Spieckermann P (1994) The branching angles in computer-generated optimized models
of arterial trees. J. Gen. Physiol. 103: 975-989.

Schreiner W, Neumann F, Neumann M, End A, and Miiller MR (1996) Structural quantification
and bifurcation symmetry in arterial tree models generated by constrained constructive
optimization. J. Theor. Biol. 180: 161-174.

Schwarz G (1978) Estimating the dimension of a model. The Annals of Satistics 6: 461-464.

Schiiz A (1998) Neuroanatomy in a computational perspective. In Arbib MA (ed) The Hand-
book of Brain Theory and Neural Networks. MIT Press, Cambridge, pp. 622-626.

Scudder HH (1923) Sentence length. English J. 12: 617-620.

Segall MH, Campbell DT and Herskovits MJ (1966) The Influence of Culture on Visual Per-
ception. The Bobbs-Merill Co., New York.

Sherwani N (1995) Algorithms for VLS physical design automation. Kluwer Academic,
Boston.

Sheth BR, Nijhawan R and Shimojo S (2000) Changing objects lead briefly flashed ones.
Nature Neurosci. 3: 489-495.

Shultz JR and Wang SS-H (2001) How the cortex got its folds: Selection constraints due to
preservation of cross-brain conduction time. Proceedings of Neuroscience Conference.

Siegel LS and Ryan EB (1989) The development of working memory in normally achieving
and subtypes of learning disabled children. Child Develop. 60: 973-980.

Singh H and Roy KS (1997) Atlas of the Buffalo Anatomy. Indian Council of Agricultural
Research, Pusa, New Delhi.

Sisson S and Grossman JD (1953) The Anatomy of the Domestic Animals. W. B. Saunders,
Philadelphia.

Slater PJB (1973) Describing sequences of behavior. In Bateson PPG and Klopfer PH (eds)
Perspectives in Ethology. Plenum Press, New York, pp. 131-153.

Smith AFM and Spiegelhalter DJ (1980) Bayes factors and choice criteria for linear models.
Journal of the Royal Satistical Society B 42: 213-220.

Sober E (1975) Smplicity. Oxford University Press, Oxford.

Sorensen RA (1985) An argument for the vagueness of ‘vague’. Analysis45: 154-157.
Sorensen RA (1988) Blindspots. Clarendon Press, Oxford.

Sorensen RA (1994) A thousand clones. Mind 103: 47-54.

Stalnaker R (1979) Anti-essentialism. Midwest Sudies in Philosophy 4: 343-355.

Stamhuis EJ, Reede-Dekker T, van Etten Y, de Wilges JJ and Videler JJ (1996) Behaviour
and time allocation of the burrowing shrimp Callianassa subterranea (Decapoda, Tha-
lassinidea). J. Exp. Marine Biol. Ecol. 204: 225-239.

Stebbins RC (1954) Amphibians and reptiles of western North America. McGraw-Hill, New
York.

Stevens CE (1989) How cortical interconnectedness varies with network size. Neural Compu-
tation 1: 473-479.



BIBLIOGRAPHY 311

Stevenson MF and Poole TB (1976) An ethogram of the Common Marmoset (Calithrix jacchus
jacchus): General behavioural repertoire. Anim. Behav. 24: 428-451.

Stone RJ and Stone JA (1990) Atlas of the Skeletal Muscles. Wm. C. Brown, Dubuque.
Streeter VV and Wylie E (1985) Fluid Mechanics. McGraw-Hill, New York, 8th edition.

Suppe F (1989) The Semantic Conception of Theories and Scientific Realism. University of
Ilinois Press, Urbana.

Thompson D (1992) On Growth and Form. Dover, New York, the complete revised edition.

Thorson J and Lange GD and Biederman-Thorson M (1969) Objective measure of the dynam-
ics of a visual movement illusion. Science 164: 1087-1088.

Thouless RH (1931a) Phenomenal regression to the real object. I. B. J. Psych. 21: 339-359.
Thouless RH (1931b) Phenomenal regression to the real object. Il. B. J. Psych. 22: 1-30.

Tinbergen N (1950) The hierarchical organization of nervous mechanisms underlying instinc-
tive behaviour. Symp. Soc. Exp. Biol. 4: 305-312.

Torr GA and Shine R (1994) An ethogram for the small scincid lizard Lampropholis guichenoti.
Amphibia-Reptilia 15: 21-34.

Tower DB (1954) Structural and functional organization of mammalian cerebral cortex: The
correlation of neurone density with brain size. J. Compar. Neurol. 101: 9-52.

Traverso S, Morchio R and Tamone G (1992) Neuronal growth and the Steiner problem. Riv-
ista di Biologia-Biology Forum 85: 405-418.

Turney P (1990) The curve fitting problem: A solution. British Journal for the Philosophy of
Science 41: 509-530.

Tye M (1994) Why the vague need not be higher-order vague. Mind 103: 43-45.
Unger P (1979) There are no ordinary things. Synthese 41: 117-54.

Uribe F (1982) Quantitative ethogram of Ara ararauna and Ara macao (Aves, Psittacidae) in
captivity. Biology of Behaviour 7: 309-323.

Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the
central nervous system. Nature 385: 313-3109.

Varignon M (1725) Nouvelle Mecanique. Claude Jombert, Paris, vol. 1 and 2.

Velten HV (1943) The growth of phonemic and lexical patterns in infant language. Language
19: 281-292.

Walker WF (1988) Anatomy and Dissection of the Fetal Pig. W.H. Freeman, New York.

Watts DJ and Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:
440-442.

Way RF and Lee DG (1965) The Anatomy of the Horse. J. B. Lippincott, Philadelphia.

Webster AB and Hurnik JF (1990) An ethogram of white leghorn-type hens in battery cages.
Can. J. Anim. ci. 70: 751-760.

West GB, Brown JH and Enquist BJ (1997) A general model for the origin of allometric scaling
laws in biology. Science 276: 122-126.

Wheeler SC (1979) On that which is not. Synthese 41: 155-194.



312 BIBLIOGRAPHY

Whitney D and Cavanagh P (2000) Motion distorts visual space: shifting the perceived position
of remote stationary objects. Nature Neurosci. 3: 954-959.

Whitney D and Murakami | (1998) Latency difference, not spatial extrapolation. Nature Neu-
rosci. 1: 656-657.

Whitney D, Murakami | and Cavanagh P (2000) Illusory spatial offset of a flash relative to
a moving stimulus is caused by differential latencies for moving and flashed stimuli.
Vision Res. 40: 137-149.

Williams PL, Warwick R, Dyson M and Bannister LH (1989) Gray's Anatomy. Churchill
Livingstone, New York.

Williamson T (1994) Vagueness. Routledge, London.

Wilson EO and Fagen R (1974) On the estimation of total behavioral repertories in ants. J. NY
Entomol. Soc. 82: 106-112.

Wingerd BD (1985) Rabbit Dissection Manual. The Johns Hopkins University Press, Balti-
more.

Wittgenstein L (1961) Tractatus Logico-philosophicus. Routledge and Kegan Paul, London.

Woldenberg MJ and Horsfield K (1983) Finding the optimal lengths for three branches at a
junction. J. Theor. Biol. 104: 301-318.

Woldenberg MJ and Horsfield K (1986) Relation of branching angles to optimality for four
cost principles. J. Theor. Biol. 122: 187-204.

Woolridge D (1963) The Machinery of the Brain. McGraw-Hill, New York.

Wooton RJ (1972) The behaviour of the male three-spined stickleback in a natural situation:
A quantitative description. Behaviour 41: 232-241.

Wright C (1975) On the coherence of vague predicates. Synthese 30: 325-365.

Young MP (1993) The organization of neural systems in the primate cerebral cortex. Proc. R.
Soc. Lond. B 252: 13-18.

Zabell SL (1989) The rule of succession. Erkenntnis 31: 283-321.
Zadeh LA (1965) Fuzzy sets. Information and Control 8: 338-353.
Zamir M (1976) Optimality principles in arterial branching. J. Theor. Biol. 62: 227-251.

Zamir M (1978) Nonsymmetrical bifurcations in arterial branching. J. Gen. Physiol. 72: 837—
845.

Zamir M (1986) Cost analysis of arterial branching in the cardiovascular systems of man and
animals. J. Theor. Biol. 120: 111-123.

Zamir M, Wrigley SM, and Langille BL (1983) Arterial bifurcations in the cardiovascular
system of a rat. J. Gen. Physiol. 81: 325-335.

Zamir M, Phipps S, Languille BL and Wonnacott TH (1984) Branching characteristics of coro-
nary arteries in rats. Can. J. Physiol. Pharmacol. 62: 1453-1459.

Zamir M and Chee H (1986) Branching characteristics of human coronary arteries. Can. J.
Physiol. Pharmacol. 64: 661-668.



| ndex

acknowledged properties of hypothe-
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algorithm, xix, xxii, 245, 256, 267ff

angular size, 80ff

animal behavior, 40ff

ant colony scaling, 53ff

Any-Algorithm Hypothesis, 270

area-interconnectedness, 8ff,

axon radius, 8ff, 21

bands, 20

barrels, 20

Bayesian, xxiii, 75, 85ff, 140, 156ff
behavioral complexity, 29ff
Bertrand’s Paradox, 222ff
bird vocalization, 40

blobs, 20

body-limb networks, 58ff
body node, 58

body radius, 58

borderline region, 248, 276ff
branch angle, 2, 5
brightness, 140ff

bulging grid illusion, 137

carpentered world simplification, 94ff
cell type scaling, 53ff

Church’s Thesis, 244, 260ff

clusters, 20

color, 140ff
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columns, 20

combinatorial degree, 27ff

complexification tree, 212ff

complexions, 186ff

complexity (behaviors, languages,
and networks), 26ff

computation, xiv, xv, xix, xxiv, 10,
19, 24, 27, 75, 136, 185,
239ff

conceptual framework, 170

consistent perception, 87ff

content words, 37

convolutions, 8ff, 19ff

corner Poggendorff illusion, 94, 105,
106, 109, 113

cortical surface area, 8ff, 19ff

cortical thickness, 8ff, 19ff

curve-fitting, 217ff

decidability, 244, 257, 258, 267, 273,
277, 283

deductive argument, 151

defensibility hierarchy, 181ff

defensible hypotheses, 180

digital circuits, 49

differentiation in the neocortex, 49ff

distinguishing properties of hypothe-
ses, 179

double Judd illusion, 94, 105, 106,
121, 126
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Ebbinghaus illusion, 149
electronic circuit scaling, 53ff
encephalization, 42ff, 53
enumerative induction, 199ff
equivalent hypotheses, 183

essentialness of vagueness, 252, 279ff

ethobehavior, 42
ethogram, 42
expressive complexity, 26

flash-lag effect, 137ff

focus of expansion, 94ff

frequency-induction, 199, 203ff

frequency interpretation of proba-
bility, 153

function, xix

function words, 37

halting problem, 243, 255, 257
Hering illusion, 85, 94, 105, 106,
109, 113, 121, 127
higher-order vagueness, 248, 277ff
horizontal meridian, 96ff

illusory contours, 144

inconsistent perception, 87ff

increasing-C-d approach, 28

induction, xxiiff, 151ff

inductive method, 153ff

ineliminability of vagueness, 251,
281ff

information criteria, 219ff

innateness, 164ff, 231ff

invariant functional units, 19ff, 28,
49, 52, 55

invariant hypothesis, 179

invariant-length approach, 28
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Kanizsa square, 144

language complexity, 29ff
latency correction, 75ff
law-induction, 199, 206ff
learning, 151ff

Legos scaling, 53ff
lightness, 140ff
likelihoods, 86, 157ff, 219
limb data, 70

limb edge, 58

limbs on spherical bodies, 70
limb plane, 59

limb ratio, 63

limb tip nodes, 58

linear size, 80ff

logical probability, 153

max-MST hypothesis, 61ff

minicolumns, 19, 23, 55,

minimal spanning trees, 64

misperception of ambiguous angles,
118ff

misperception of angles with cues,
109ff

misperception of angular size, 121ff

module diameter, 8ff, 19ff

modules, 20

moving spiral, 140

motion-induced illusions, 137ff

Miller-Lyer illusion, 94, 105, 106,
121, 127

neocortex, 7ff, 53

neuron density, 8ff, 15ff
neuron encephalization, 53
neuron type scaling, 53ff
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network diameter, 6, 18ff

networks under selective pressure,
51ff

neural networks, xv

No-Good-Reason-for-Non-Programs
Hypothesis, 266

No-Good-Reason-for-R.E.-Subsets-
of-Algorithms, 269

no-induction, 199ff

non-Euclidean perception, 99ff

No-R.E.-Subsets-of-Algorithms Hy-
pothesis, 270

number of areas, 8ff, 15ff

number of digits, 67

number of limbs, 57

number of muscles, 42ff

number of neurons, 8ff, 15ff

objective size, see linear size

Occam’s Razor, 212ff

ontogeny of behavior, 46

ontogeny of language, 29ff

Orbison illusion, 75, 84, 87, 88, 94,
105, 106, 109, 114, 115,
130, 137

Paradigm Theory, 170ff

paradigms, 173ff

Peano Arithmetic, 241, 243, 265,
292

perception and decision theory, 86

phoneme development, 31

Poggendorff illusion, 94, 105, 106,
109, 113,

Ponzo illusion, 94, 105, 106, 127

posterior probabilities, 86, 154ff

power law, 7, 8, 28, 35, 38, 40, 53,
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55,
predicate, 245ff
prescriptive theory of induction, 153
Principle of Defensibility, 189
Principle of Indifference, 195
Principle of No-R.E.-Subsets-of-Alg-
orithms, 269
Principle of Program-Favoring, 265
Principle of Symmetry, 187
Principle of Sufficient Reason (Leib-
niz), 183, 196
Principle of Type Uniformity, 186
prior probabilities, 86, 156ff
probability, xxii, xxiii, 85ff, 151ff
probable focus of expansion, 106ff
probable scene underlying stimulus,
101ff 105ff
Programs-in-Head Hypothesis, 266
projection sphere, 96ff
principal lines, 94ff
projected size, see angular size
purpose, xviii

R.E., see recursively enumerable

random network, 7, 18

recursive, 264

recursively enumerable, 264ff

relationship between behavioral reper-
toire size and encephaliza-
tion, 46

relationship between network size
and complexity, 52ff

relationship between network size
and differentiation, 52ff

representational momentum, 145

riddle of induction, 151ff
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scaling, xx, 1, 6, 8ff, 57ff
scene, 79ff
selected networks, 53
self-organization, 3
semidecidability, 258
sentence length, 37
shortest-path tree, 4
simplicity, 212ff
small world network, 7, 18
soma radius, 8ff, 21
sorites paradox, 250, 279
spanning trees, 64
specialized component types approach,
28
standard Bayesian approach to per-
ception, 85ff
Steiner trees, 5
stretched circles, 58
stretched-circle ratio, 63
surface color, 143ff
subjective probability, 153
symmetry, 176ff

tradeoff between latency and com-

putational power, 75ff
traditional visual inference, 80ff
tree morphology, 4

undecidability, 244, 257, 258, 267,
273, 277, 283

universal learning machine, 151, 164ff

universal language approach, 27

university scaling, 53ff

upside-down ‘T’ illusion, 94, 105,
106, 128

VLSI, xxi, 2

vagueness, 239ff

vertical meridian, 96ff

visual inference, 79ff

vocabulary increase over history, 33ff

volume minimizing, xxi, 1, 2ff, 10,
13, 23ff, 61, 51

white matter volume, 8ff, 22
Widder’s illusion, 145

word development 31, 33
working memory limit, 38

x lines, 94ff
y lines, 94ff

z lines, 94ff
Z0llIner illusion, 94
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