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Modeling the large-scale geometry of human
coronary arteries

Mark A. Changizi and Christopher Cherniak

Abstract: Two principles suffice to model the large-scale geometry of normal human coronary arterial networks. The
first principle states that artery diameters are set to minimize the power required to distribute blood through the
network. The second principle states that arterial tree geometries are set to globally minimize the lumen volume. Given
only the coordinates of an arterial tree’s source and “leaves”, the model predicts the nature of the network connecting
the source to the leaves. Measurements were made of the actual geometries of arterial trees from postmortem healthy
human coronary arteriograms. The tree geometries predicted by the model look qualitatively similar to the actual tree
geometries and have volumes that are within a few percent of those of the actual tree geometries. Human coronary
arteries are therefore within a few percent of perfect global volume optimality. A possible mechanism for this near-
perfect global volume optimality is suggested. Also, the model performs best under the assumption that the flow is not
entirely steady and laminar.

Key words arteries, optimization, volume, power, geometry.

Résumé :0On peut modéliser la géométrie d'un réseau d’artéres coronaires humaines normales en faisant appel a deux
principes. Le premier veut que les diamétres artériels soient tels qu’ils minimisent le travail nécessaire pour distribuer

le sang a travers le réseau. Le second veut que la géométrie de I'arbre artériel soit telle qu’elle minimise globalement
le volume de la lumiere. S'appuyant uniquement sur les coordonnées de source et de terminaisons d'un arbre, le
modele peut alors prédire le réseau. Les géométries réelles d’arbres artériels sains, obtenus par coronarographie post-
mortem chez des humains, ont été mesurées. Les géométries prédites par le modeéle sont qualitativement similaires aux
géométries réelles et ont des volumes correspondant a un pourcentage prés a ceux des géométries réelles. Ainsi, les
artéres coronaires humaines ont une optimalité de volume global presque parfaite. On suggére un mécanisme possible
pour cette optimalité presque parfaite. Le modeéle est meilleur sous I'hypothése que I'écoulement n’est pas entierement
stationnaire et laminaire.

Mots clés: arteres, optimisation, volume, travail, géométrie.

[Traduit par la Rédaction]

Introduction research presented here is the first to employ algorithms ca
pable of predicting the arterial tree given only the coerdi
nates of the source and leaf segments. We were able to show

e extent to which global optimality principles concerning

. . umping power, drag force, volume, and surface area predict
obseryed diameters or branching angles are such that th e actual geometry of multiple-leaf arterial tree networks.

optimize some magnitude. The large-scale geometry of artetThe large-scale geometry of dendrites and axons has been

rial networks has been little studied in the light of these : ; g o ;
optimality principles, with the exception of Kamiya and igjgglead using these optimality principles by Cherniak et al.

Togawa (1972) who found the locally optimal tree for one . i S .

mesenteric tree in a dog and Schreiner and Buxbaum (1993) The_lr_(re]me;_mder of th'S,\'/IntrOdl,’Ct:_on IS dléndedlmto tv(\;o secd

and Schreiner et al. (1994, 1996) who built model vasculaf'ons- The first covers Murray's Law and variants, derive
via a principle of power optimization, which lead to equa

trees by iteratively adding locally optimal ‘Y’ junctions. The " .
y y g y op : tions of the form ¢° = d,” + d,P, where d is the parent’s, or

trunk’s diameter, anddand @ are its childrens’ diameters.
Received November 8, 1999. Published on the NRC ResearchVe argue that values of p ought be considered within the
Press web site on July 14, 2000. range [2,3]. Equations of this form will be used in order to
assign diameters to trees so that their pumping power cost,
drag force cost, volume cost, or surface area cost may be
calculated. These latter four principles are introduced in the
C. Cherniak. Committee on the History and Philosophy of  second section of the introduction and were used in order to
Science, Department of Philosophy, University of Maryland, determine arterial tree geometries which were compared
College Park, MD 20742, U.S.A. with actual arterial geometries. For example, we compared
1Author for correspondence at the Department of global volume-optimal tree geometries to actual tree geome
Neurobiology, Duke University Medical Center, Box 3209, tries and observed close quantitative and qualitative agree
Durham, NC 27710, U.S.A. (e-mail: changizi@cs.ucc.ie). ment.

Optimality principles have often been applied to the diam
eters and branching angles of arterial junctions at least sin
the work of Murray (1926,b), the prediction being that the
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Principle of minimum pumping power and diameter area optimization model predicts branch angles at all close
determination to the observed angles (Woldenberg and Horsfield 1983),

Under the assumption that blood flow obeys Poiseuille’swhich tend to be in the range from 60° to 80° (see below).
Law, Murray (192@) derived that for arterial networks mini The large-scale structure of an arterial network is that of a

mizing pumping power, the volumetric flow rate in an arte tree, and our goal was to model arterial trees. The trees we
rial segment is proportional to the cube of the diameter: thistudied did not include all actual arterial depths below the
is called Murray’s Law. [Hess (1917) was apparently thesource; rather, the trees were just subtrees of the full arterial
first to derive this result.] Let the depth of a branch segmennetwork, and the leaves did not need to be at the same depth.
in an arterial tree be the number of branch junctions away-or example, from among a depth-3 binary tree (i.e., with 8
from the single source segment. Since the flow through deaves), we might consider the subtree consisting of the
fluid network must be conserved, the sum of the flow in all source, its two children, and the two grandchildren from just
arterial segments at the same depth must be the same acr@s e child. Also, we studied only planar trees as global-opti
depths, e.g., the flow through the superior mesenteric artergnization of three-dimensional trees is not well understood.
equals the flow through all its grandchildren segments. ByA full geometrical characterization of a tree, or tree geome
Murray’s Law this is to say thafd®, where the summation is try, specifies i) the coordinates of the source and each leaf;
over all cubed diameters of segments at a given depth in thei) the coordinates of each branch junction between source
network, is constant across all depths. A corollary of this isand leaves; andi() the connectivity relation over the set of
that the diameter of a single parent segment is related tthe source, leaves and branch junctions (this specifies the
those of its children by ¢t = Zd.°, where ¢ is the diameter tree’s topology). In modeling a particular actual tree, the ac
of the parent segment (or trunk) and eaghisda child seg  tual source and leaf coordinates are measured and assumed
ment diameter. If one knows the diameters of each leaf sedixed, so that any predicted tree must also connect the fixed
ment of a tree, this last version of Murray’s Law is a source to the fixed leaves. Predicted trees need satisfy no
powerful tool in that it allows one to obtain the optimat di other geometrical constraint; they may make their branch
ameters for every non-leaf segment. [LaBarbera (1990) prangs anywhere in the plane. Our task was thus reduced to
posed a local shear stress-dependent mechanism féetermining if) and (i) so as to closely approximate the act-
explaining how arterial networks conform, to the extent thatual tree. See Fig. 1A for terminology related to trees.
they do, to Murray’s Law.] More generally, we presume that It was necessary that candidate tree geometries acquire di-
diameters are set so as to minimize the required pumpingmeters for their segments so that we could ultimately com-
power and that the resulting parent to child diameter relapute the tree geometry with the minimum, say, volume. In
tionship is given by the general formulgPd= Zd for some  assigning diameter values to segments in candidate trees of
p € [2,3] (see Discussion). We are supposing that p may posiaon-actual topologies, there was a difficulty: the segments of
sibly be any value in this range since the complete arterialrees of different topologies could not be put into any natural
network may be subject to a mixed story; i.e., some subene-to-one correspondence. Consider Fig. 2. Suppose that
networks may be partially steady, partially laminar, or both.(A) represents the actual geometry of the measured tree, and
Note that this 8 rule, for any p, is just as strong a tool as that the tree shown in (B) is another candidate tree, but of a
Murray’s Law for obtaining non-leaf branch segment diame different topology. In order to compare the costs of the two
ters given the leaf diameters. trees, each segment in each tree must be assigned a diameter.
Roy and Woldenberg (1982) defended fardle as well, The leaf diameters in (B) can be set to whatever they are in
summarily reporting that exponent values best fitting the ac(A), but what should the diameters of c and d be? ¢ and d do
tual diameter data tend to be highly variable. However, theynot correspond to a and b. For this reason, it is not well-
allowed the exponent to range more widely than did we, andlefined to set the diameters of segments in a candidate tree
specifically to range below 2. Our background assumption$0 the diameters of corresponding segments in the actual
leading us to confine the exponent to [2,3] are therefordree. A natural way of handling this dilemma is to presume
stronger than Roy and Woldenbergs’, but seem justified fothat for any candidate tree geometry, whether it be that of
the following reasons:i) theoretically, as noted in the actual geometry or that of some predicted tree, the-diam
Woldenberg and Horsfield (1983), whep < 2 thecross-  €ters are set according to thédle for some pe [2,3]; i.e.,
sectional area of the parent is less than the sum of that of tH&iey are assumed to be power optimizing (see earlier discus
children the volumetric flow rate accordingly increases,-con sion). The leaf diameters of any candidate tree connecting
tradicting the eventual tendency for the flow rate to decreasgource to leaves are presumed to be that of the actual tree,
in lower depths; andii) empirically, other than in and the non-leaf segment diameters (including the source
Woldenberg and Horsfield (1983) where more than half ofsegment diameter) are obtained by ttterdle. (See Mate
199 human pulmonary artery junctions in the diameter rangélals and methods for how the leaf diameters of the actual
0.7-16.8 mm have a best-fit expoten2 for the actual di ~ tree are determined.)
ameters, other research confirms best-fit exponents nearer to
3, and certainly tending above 2 (see Discussion). On thi®rinciples of minimum volume and surface area and
latter note, Woldenberg and Horsfield in the same article retree geometry determination
port that 125 of the 199 junctions optimize surface area There are a class of optimality principles that predict, re
better than volume (and better than the other cost measurepectively, that the tree geometry is such that it minimizes
discussed below). This is predominantly a consequence dhe power (P) required to pump blood through the junction
the unusually large proportion of best-fit exponent values be(Murray 192&), the total drag force (D) along the endothe
low 2, because for these exponent values only the surfadaum (Zamir 197®), the total lumen volume (V), and surface
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Fig 1. Terminology concerning branching networks. A) This schematic diagram depicts the measured portion of an arterial tree. In ad
dition to the terms defined in the figure, the source is the arterial segment adjacent (and downstream) to the source coordinate, and a
leaf is the arterial segment adjacent (and upstream) to a leaf coordinate. Sample diameter values from the model are shown next to ar
terial segments (see Materials and methods). B) Diagram defining the local and global branching angle. The local angle is the angle
between the two children segments very near the branching junction. The global angle is the angle between the branching junction and
the endpoints of the children segments.
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Fig. 2. Segments in trees of different topologies. Although the Lhned(;(resrlélgggcgcglteer?;ighnrseeo?tl\‘/l\/r:agi]gjhttlse)d tOQZtnhder In_?hglane
. ’ ] mlv ‘“é'
leaf segments of trees (A) and (B) can be put into correspon weight under (P) is given by ; fi4 / dig, where f denotes

dence with one another, as can the sources, the segments in be'Ehe volumetric flow rate and d the diameter. Similarly, that
tween cannot. For example, a corresponds to neither ¢ nor d. It : Y,

: _£2 ) 44 : _ A2
is for this reason that thePdule must be used to set the diame- for (D) is w; = f; / d7, that for (V) is w = d and that for

ter values for non-leaf segments. [See Cherniak et al. (1999) foréss) (Ijsi‘svc\‘uzsci' dV\(/elgsli?e? a;ﬁgrzggoﬁ domlgvg pJg{Jigrr]téopjl Eg)d and
more discussion on the nature of the alternative topologies.] ! q

(D) of the dependence on flow.
A B We directly tested only the principles of minimum volume
(V) and surface area (S). This is because if one assumes that

the flow in a segment is proportional t® tbr an exponent p
e [2,3], the predicted tree layouts via optimality principles
(P) and (D) are similar to those predicted by (S), and we will
discover that (S) is highly disconfirmed by the data in such a
way that (P) (when p is not near 3) and (D) (no matter the
value of p) are expected to also be disconfirmed. To see this
in the simplest case we may consider a single symmetrical
junction @, =6,, d; =d, and f, =f, =,/ 2), presume the™
rule, and ask what are the predicted angles for values of the
exponent pe [2,3]. The equations for all four principles be
come functions of p only, and they are, respectively:
area (S) of the artery (Murray 1927; Kamiya and Togaw
1972). Any pair of these principles are generally not equiv:IZ] (P) 6 = acos(2-%r-1)
lent; however, if one assumes Murray’s Law (p = 3), then[g; (D) 6 = acos(2-4/r-1)
(P) and (V) are equivalent, as are (D) and (S) (Zamir 1978).

Consider as a simple case a tree with just two leaves (i.e[4] (V) 6 = acos(2/P-1-1)
a single bifurcation), where the tree geometry is character, _ _
ized completely by the two junction branch anghs the [5] (S) 6 = acos(2/P--1)
downstream angle between child 1 and the parent,@nd Figure 3 shows the graphs of the optimal angle according to
the downstream angle between child 2 and the parent (segach principle as a function of p, and one can see that except
Fig. 1B). Each of the four optimality principles results in an when p is near 3, both (P) and (D) predict roughly similar or
equation for the total branch angdg= 6, + 8,) of the form  higher branch angles than (S). We found that (V) is the best
(Zamir 197@&, 1978): predictor of tree geometry, and that it succeeds most in hu
man coronary arteries when p is around 2.6. Only (P) ever
performed similarly to (V), and this only occured when (V)
where w is the weight computed according to the optimalityis at a suboptimal value for p (nanygb = 3). This supericr
principle selected, subscript O refers to the parent segmenity of (V) and, for exponents p near 3, of (P) was confirmed
and subscripts 1 and 2 refer to the two child segments. Equdy Zamir (1986) who reported thatfp = 3 (V) and (P) out
tion [1] is exactly the triangle of forces law that describesperformed (S) and (D) over a large range of arterial junc

[1] cos 0 = (Wg2— wy?— wW,2) / (2 wy Wy)
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Fig. 3. Branch angle versus exponent p. Optimal branch angle tions p = 2 means that the angle measure will be that be

(in degrees) for symmetrical junctions via the four different tween the two lines drawn straight from the source to the

optimality principles (P), (D), (S), and (V) as a function of p children (i.e., the bifurcation occurs at the source), thus, the

from the c rule. (V) curve will bottom out at some point, which may make it
120 difficult to differentiate between models each with low (but

different) exponents p.]

90 Materials and methods

Postmortem anterior-view arteriograms of 33 healthy human
hearts were obtained from The Johns Hopkins Hospital Depart
ment of Pathology (Baltimore, Md.) autopsy files under the direc
tion of Grover M. Hutchins, M.D. Each was photographed with a
charged coupled device (CCD) camera, and converted to graphics
interchange format (GIF) files readable by National Institutes of
Health (NIH) Image software (Fig. 4). 48 arterial trees were se
lected from the left main descending and right coronary arteries. A
| | | | few constraints on the selection of arterial trees were enforced.
0 First, trees were not deemed acceptable if branches within them

2 2.2 2.4 2.6 2.8 3 crossed over one another, although we found that this constraint

Exponent p rarely had to be imposed on our arteriograms. Second, because our
optimization algorithms only apply to planar arbors, we avoided

tions, human and non-human. Similar conclusions followchoosing trees in the peripheral parts of the arteriogram. By doing
from asymmetrical junctions as well. so, we confined Qurselves to trees Iylng more closely within the

The reason why (5). (P), and (D) are poor predictors ofjane of he aneriogan (Fl. ). Thi, because acceptable vees
tree geometry over the exponent range [2,3] is that they . expensive to compute globally optimal trees for them, only trees
predict branch angles that are too large. (D) and (S) predi

o > i ith five or fewer leaves were selected.
angles greater than 90° over the entire range of p; and (P) yeasurements of the geometries of the trees, the source, leaf,

predicts angles greater than 90° fof jal< 2.667, and never and branch junction coordinates, local and global branching angles,
gets below about 75°. Yet arterial branching angles falland segment diameters were obtained from the digitized images of
roughly in the range 60° to 80°. For example, Hutchins et althe arteriograms within the NIH Image software. The contrast and
(1976) measured 57 human coronary artery branch anglebyightness of the arteriograms could be manipulated to aid in the
and one can see from their Fig. 5 that only 8 junction angleddentification of arteries and the determination of their geometries.

are above 90° and that the trend is for a mean within thd/easurements were made by the first author, a non-expert
range 60° to 80°. Zamir et al. (1983) measured 302 arteri rteriogram reader; guidance and advice on this was given by Dr.
junctions in rat, and one can see from their Fig. 7 that th eter Dockery of the Department of Anatomy, National University

trend is th d that only 41 i fi h I of Ireland, Cork. In the recorded actual geometry of a measured
rend Is the same, an at only junctions have ang et?ee, segments were represented as straight, i.e., branch wiggle was

measuring above 90°. Zamir et al. (1984) measured 175 rglnored. The mean of the actual source segment diameters for all
coronary artery branch angles and found a mean around 7048 trees was 2.65 mm (+ 1.0).

and one can see from their Fig. 5 that 38 are greater than Each leaf diameter of a tree was set as follows: the visible arte
90°. Zamir and Chee (1986) measured 850 branching sites ifal tree below the leaf L (i.e., deeper in the tree) on the x-ray was
human coronary arteries and found an average angle adentified (i.e., leaf L was the source of this tree), the leaves of L's
about 70°, and one can see from their Fig. 7 that 212 havtiee were set to diameter 1, and L's diameter was computed from
angle measures above 90°. Woldenberg and Horsfield (1983ese leaves via the’dule (e.g., if there are 3 leaves in L tree, L
measured 199 human pulmonary artery junctions and th@cquires diameter 1+ 1 + 1°)7P = 3F). This idealization par
mean branch angle was about 63° (12°), and one can Sélél”y captures the fact that the leaves of the particular chosen tree
from their Fig. 7 in Woldenberg and Horsfield (1986) that 14 are not the true terminal leaves of the arterial network, and that

changing the exponent p alters them. Figure 1A shows an example

are greater than 90°. Cherniak (1992) found a mean of 78.4¢ 5. the dotted branches are below (i.e., downstream from) one

for 5 retinal capillaries from human samples (where p iSof the leaves, and are used to compute the leaf’s “actual” diameter.
most likely to be near 3, and under a volume optimizationThus, in the model, the leaf diameters are not set to the particular
model one would expect angles on this high side). Also, theliameters of the actual leaves, but are idealized by computing them
127 branch junctions of the 48 human coronary arterial treebased on the number of visible leaves further downstream.

we studied in this research had a mean angle measure of Jen-Hsin Huang and Andrew Kahng (1993) developed an-algo
63.3° (+ 23.9°), and only 19 were greater than 90°. It wagithm for us that, when giveniX the segment diametersij)(the
sometimes difficult when peering at a single isolated branct§ource and leaf coordinates, anil)(desired topology of the pre

angle to tell whether it looked natural, but we observed thafficted tree, computes the optimal tree geometry within the desired
multi-junction trees under surface area optimization, with opology connecting the source to the leaves predicted by a volume

. : : . (V) or surface area (S) optimizing model. A general description of
their Iarge_r branch angles, just did not IO_Ok. rlght. . the algorithm is as follows. With the cosine law from eq. [1], the
[One might worry about the volume optimization curve in gigorithm finds the minimum-cost coordinate for the branch junc

Fig. 3 going to 0° as p approaches 2. This is only physicallytion for each pair of leaves, i.e., the coordinate between the source
realizable if the source segment’s starting point is infinitelyand the center of mass of the two leaves such that the angle is as
far from the child segment endpoints. In actual implementagiven in eq. [1]. It then treats these branch junctions as leaves, and

60

Angle

30
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Fig. 4. Sample arteriograms and measured trees. The source (square), branch junctions (small circles), and leaves (large circles) are
shown for (A) one measured four-leaf tree from a right coronary artery and (B) one measured three-leaf tree from a left anterior de
scending coronary artery.

finds the minimum-cost branch junction sites for them. It iterateserror-prone since it is obtained from the small number of junc-
this, continuing until the source is reached. Du Won Kang createdions within the one actual tree. On the latter point, it seems
software for us that runs this algorithm over all possible topologiesnevertheless justified to use only bend-ins from the actual tree
and finds the globally optimum tree geometry. Trees with only 8since mean bend-in varies widely across arterial trees (from —
leaves have 135 135 distinct topologies, and take over five days t@2.3° to +54.0° in our data).
generate on a Pentium 6 400-MHz computer. The sensitivity of the model’s predictions to measurement error
For each observed branch junction the local angleéhe angle was tested in the following manner. First, four trees known to be
measured at the junction) and the global angle (the angle betweghinimum in length (Lewis and Papadimitriou 1978; Bern and-Gra
the two straight lines connecting the junction to each child’s junc ham 1989) were scanned in, measured in the same manner as were
tion, or leaf) were measured (Fig. 1B). Branch bend-in is the phethe coronary arteries, and evaluated by the techniques above (ex
nomenon where the global angle is less than the (local) branchept that the minimum length tree was computed instead of the
angle, and is ubiquitous in arterial junctions; the mean local branctninimum surface area or minimum volume tree). Since the actual
angle of all 127 junctions measured here was 63.3° (+ 23.9°) andfees in this case were optimal, if our measurements were without
the mean global branch angle was 47.4° (+ 19.3°), resulting in &rror the wire length of the measured tree would be identical to our
mean bend-in of 15.9° (+ 22.4°). The best-fit exponent p is thecomputed optimal tree. The average percent difference between the
value of p used to obtain segment diameters (via theutk) for measured trees and the computed optimal trees was 0.22%. Sec
which the percent difference between the cost [via (V) or (S)] ofond, a minimum surface area tree was generated from the source
the predicted tree geometry and the actual tree geometry is-smai@nd leaf coordinates of some actual tree. This surface area optimal
est. Because the effective branch angles for the entire actual tréeee was then used as if it were an actual tree in order to again as
geometry are the smaller global angles rather than the larger locgless the measurement errors. The surface area error was only
angles, and these smaller branch angles translate to lower values @000005%. [See Cherniak et al. (1999) for further discussion of
p [as can be seen in Fig. 3 for (V) and (S)], branch bend-in lowerghe calibration of our methods.]
best-fit values for p. The best-fit values for p for a particular tree Table 1 summarizes which quantities are fixed by arteriogram
were subsequently corrected by {aking the branch angle from measurement and which were determined by optimization in the
Fig. 3 (for a symmetrical junction) at pii adding to it the mean model.
branch bend-in from the junctions of the tree, aiiig {n turn tak
ing the value of p on the x axis of Fig. 3 which corresponded to the
sum. The best-fit p below should be assumed to be corrected unleResults
otherwise noted. Negative aspects of this method of correction are
that it can be only an approximation, and the mean bend-in is The (V) and (S) globally optimum tree geometries were
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Table 1. The role of quantities in the model. Fig. 5. Volume and surface area qualitative comparisons. Each of
the six boxes depicts a different human coronary artery tree
(scale ba= 1 cm); each is from the left descending artery- ex

Fixed by arteriogram

measurement Determined by the model cept for (3), which is from the right main artery. This set was
Source coordinate Topology chosen to be roughly representative of the full data set. The dot
Leaf coordinate Branch junction coordinates ted trees within a box are identical for A, B, and C and repre
Leaf diameters Non-leaf segment diameters sent the actual tree geometry with branches straightened. The
(including source) solid tree in B for each box is the globally volume-optimizing
*See Materials and methods. tree geometry at the best fit exponent p, where the tree may pos

sess a possibly different topology than that of the actual tree.

The value of p is shown, as is the percent error between the vol
computed for each tree over all values of the exponest p ume cost of the optimal tree and the actual tree. The solid tree
[2,4] at intervals of 0.1 (and alsd p = 2.05), and the best-fit in A for each box is the volume-optimizing tree geometry within
p found. The mean best-fit (corrected) p for volume optimi the same topology as the actual tree using the best-fit exponent p
zation over all 48 trees was 2.60 (= 0.64) (the second-decifrom B. If the best topology is the actual one, then A and B are
mal place arises from the branch bend-in correction). Fothe same. The percent error between the volume cost of this tree
surface area optimization it was invarighp = 2, uncor  and the actual tree is shown. The solid tree in C for each box is
rected, but it was not at a minimum-value trough as in thehe globally surface area-optimizing tree geometry, over all expo
case for volume, so the best-fit exponent p was actually < 2aents p (which is always minimunt @ = 2). The percent error
consequently we did not correct this p. The reason for th@etween the surface area cost of this predicted tree and the ac
value p = 2 forsurface area is that, as Fig. 3 shows, (S} pretual tree is shown. When the number of dots on a leaf L is
dicts the smallest angles wing = 2 (from the allowable in  greater than one, the number of dots denotes the number of
terpretable range [2,3]), and these small angles best agr@gaves below L in the arteriogram.
with the data. { 2

The volume and surface area errors from the actual tree
geometry depend on the number of leaves: a greater numbe
of leaves tends to yield greater error, since, intuitively, there
is more latitude for the model to fail. Table 2 shows the
mean best-fit cost error (percent difference between the cos
of predicted and actual geometry) for (V) and (S) for trees of
the same number of leaves. In every case volume costing dic
considerably better than surface area, coming in with errors
at a few percent for (V) compared with errors in the teens
for (S). On a tree by tree basis, (V) always had a lower error||
than (S), so this is a highly significant effed® & 0.001). \

Figure 5 shows six representative actual tree geometrie Lo
(in dotted lines) and (in solid lines) the best-fit global epti p;;_,; \!
mum volume (B) and surface area (C) geometries for them, as —1
as well as the best-fit optimal volume geometry within the
actual topology (A). One can see that the optimal tree geom
etries in the A and B boxes of Fig. 5 are qualitatively similar
to the actual tree geometry, while the global surface area-
optimizing geometries seem qualitatively dissimilar and un
natural, with branch angles that are too large and branct
junctions that occur too near the leaves.

Within a volume-optimizing model we may compare-dif
ferent exponents p. The globally volume-optimum tree ge

ometry was computed for each tree under laminar andjid well, and qualitatively do not look too unnatural (with
turbulent modelsi [i.e., run at p such that the correctedhe exception of 1C). To the extent tha = 3 does not do
value is 3 and 7/3, respectively (see Discussion)]. The turpoorly, the single principle of power optimization under a
bulent model predicts tree geometries with lower volumepgjseuille model of fluid flow, allowed to determine both
error than the laminar model in 35 of the 48 trees (signifi the diameters and tree geometries, is not too poor a predictor
cance ofP < 0.01). Table 3 shows the mean errors as &of tree geometry, with a gain in parsimony. Future research
function of the number of leaves, and Fig. 6 depicts themight concentrate on smaller diameter arterial trees to see

graph showing that the turbulent model is just slightly infe whether the best-fit p in such cases is nearer to 3.
rior to the best-fit p, and that the laminar model is more

significantly inferior. : .
Figure 7 shows four actual tree geometries (in dottedplscussmn

lines) and (in solid lines) the best-fit global volume-optimum Computing the globally volume-optimizing tree geometry

geometry (B), the turbulent global volume-optimum geeme is a variation on the classical Steiner tree problem (Bern and

try (A), and the laminar global volume-optimum geometry Graham 1989) from graph theory which seeks to find the

(C). Compared with surface area in Fig. 5C, all three herevire length-minimizing tree geometry. The Steiner tree

4449\ !
p=2.49 \|
A/B

10.68%

C

10.54%

C

© 2000 NRC Canada



Changizi and Cherniak 609

Table 2. Performance of volume and surface area models.

No. leaves No. trees volume error, % surface area error, %
2 8 0.77 £ 1.12 6.53 + 2.89
3 8 3.99 + 4,25 15.13 + 7.34
4 24 4.19 + 3.35 19.11 + 8.89
5 8 5.39 + 3.27 17.15 + 7.72

Note: Mean volume and surface area errors of globally optimum tree geometries at best-fit
exponents are shown.

Table 3. Performance of turbulent and laminar volume models.

No. leaves No. trees turbulent volume error, % laminar volume error, %
2 8 1.44 + 1.32 2.13 + 2.00
3 8 4.40 + 4.33 5.66 + 5.23
4 24 4.96 + 3.69 7.65 + 4.99
5 8 5.99 + 3.60 7.89 + 6.34

Note: Mean volume errors of globally optimum tree geometries for turbulent (p = 7/3) and
laminar (p = 3) models are shown, compared with observed artery arbors.

portional to its cross-sectional area would result in volume-
Fig. 6. Error of volume model versus number of leaves. Mean  optimizing branch angles as set by eq. [1].
global volume-c_)ptlmum tree geometry errors for laminar, turbu The second major observation is that, for the multi-
lent, and best-fit p are compared. junction arteries studied here, the best-fit exponent for the d
T : rule fluid equation is 2.60, well below the exponent of 3.0
laminar for Murray’s Law (and even the turbulent exponent of 2.33
leads to lower errors than the exponent 3.0). Although
Murray’s Law has been confirmed for a large variety of ar-
teries [see Sherman (1981) for a summary of research con-
firming Murray’s Law prior to 1981, LaBarbera (1990) for
data in the 1980s; a few more recent papers include Wang et
al. (1992), Rossitti and Lofgren (1993), and Rossitti and
Frisén (1994)], it is well known that the assumptions behind
Murray’s Law stating that blood flow obeys Poiseuille’s Law
are questionable. In particular Murray’'s Law assumes that
fluid flow is laminar and steady, neither of which can always
be expected. For example, flow in larger arteries, being
' ' nearer to the heart, is more pulsatile, and the optimal diame

2 3 4 5 ter relationship is theoretically area-preserving (West et al.
Number of Leaves 1997): @2 = 3d;%. Flow may well be turbulent in larger arter

ies, in which case the flow rate is theoretically proportional

to the diameter raised to the power of 7/3 rather than the
problem is known to be NP-hard (Lewis and Papadimitrioulaminar exponent of 3 (Uylings 1977), and the diameter-rela
1978; Garey and Johnson 1979), which strongly suggestéonship becomesgd® = 3d,%. And in arteries generally, de
that the time needed to solve problems grows exponentiallgPite the fact that turbulent flow may not be present, it is
with the size of the problem instance; this, in turn, meand?0ssible that the appropriate exponent is below 3 (Roy and
that the Steiner tree problem is only tractable for relativelyWWoldenberg 1982; Rossitti 1995).
small problem instances. It is therefore implausible to-sup Furthermore, there exist data confirming lower exponents.
pose that arterial trees are actually globally optimized, aMiller (1893) found an exponent of 2.61 for dog lung arter
pleasing and elegant as the idea might be. Arterial geometrigs. Mandelbrot (1977) summarized earlier data in the litera
is not driven by a computationally sophisticated floorplan,ture and concluded that the exponent for arteries generally
and even if it were, the resources required to compute théended to be 2.7. Although Hutchins et al. (1976) found a
optimal geometry for large portions of the arterial networkmean of 3.2 for healthy left main human coronary arteries,
(say, a few hundred-leaf tree) are super-astronomical. Thithey found that for unhealthy left main coronary arteries and
leads to the question via what sort of mechanism might arteother healthy epicardial coronary arteries the mean exponent
rial trees be achieving near-perfect global volume-optimahovered around 2.7. Suwa et al. (1963) found a mean-expo
geometries? As noted earlier, eq. [1] is the vector-nent over a large variety of arterial junctions of around 2.7,
mechanical equation governing three strings tied togetheand in particular for coronary junctions with diameters
and pulling with weights ¢ w; and w. As discussed in greater than and less than 1 mm means of 2.66 and 2.82, re
Cherniak (1992), a mechanism leading to each of the threspectively. Arts et al. (1979) found that for canine coronary
junction segments pulling on the junction with tension-pro arteries the exponent was 2.55 (which is the expected-expo

turbulent

best fit

Volume % Error
N
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Fig. 7. Turbulent, laminar, and best-fit p qualitative comparisons. Each of the four boxes depicts a different human coronary artery tree
(scale ba= 1 cm); the frst two are from the left descending and the second two are from the right main artery. These arbors are dif
ferent from the ones in Fig. 5, and are again chosen to be roughly representative of the full data set. The dotted trees within a box are
identical for A, B, and C and represent the actual tree geometry with branches straightened. The solid tree in B for each box is the
globally volume-optimizing tree geometry at the best-fit exponent p, where the tree may possess a possibly different topology than that
of the actual tree. The value of p is shown as is the percent error between the volume cost of the optimal tree and the actual tree. The
solid trees in A and C for each box are the globally volume-optimizing tree geometry under, respectively, a turbulent model (p =
7/3=2.33) and a laminar model (p = 3). The percent error between the volume cost of these trees and the actual tree is shown. When
the number of dots on a leaf L is greater than one, the number of dots denotes the number of leaves below L in the arteriogram.

8.56%

|
|
|
|

'
|

2.84% 2.76%

1
p=2.43

\
1.94%

p=3.16

3.02% 2.91% 3.62%

p=2.46

nent if diameters are set to minimize the reflections of presnificantly so (even though the diameters of the segments of
sure waves at bifurcations). Sherman (1981) reexamined thbese depths are roughly ten times those of the respective
dog small intestinal artery data of Mall (1888) and calcu depths from Mall; the pulsatile nature of artery segments
lated ZdP for each depth for exponent vakip = 2, 3 and 4. nearer to the heart as discussed earlier might help to explain
He observed that fop = 3 Mall’s values forZd® were rela  this). These latter two observations are roughly consistent
tively constant across 15 arterial depths, whereagpfe 2 with the data of Caro et al. (1971) showing that larger diam
and 4 there were significant changes in the order of magnieter arteries (5—-15 mm) have exponents near 2 and the ob
tude of2dP. However, observing depths 0 through 3 (whereservations of Iberall (1967) that the total cross-sectional area
the diameters are roughly in the range 0.1- 1.5 mm) weloes not change much until arterial diameters are around
calculated>d”” (7/3 being a natural exponent between 2 and 3)alf a millimeter. In this light, our finding of a best-fit expo
from Sherman’s Table Ill, and found that it was more constantient of 2.60 for multi-junction trees with average source di
in these depths than was®: ¥d® was significantly correlated ameter 2.65 mm is consistent with the existing trend in the
with depth (correlation of —0.98, significand® < 0.01) but literature for the measured exponent for arterial junctions.
>d’"® was not (correlation of —0.20, not significant). We also

made similar order of magnitude calculations from the hu

man left lung arterial network data of Huang et al. (1996):Acknowledgements
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