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Abstract: Two principles suffice to model the large-scale geometry of normal human coronary arterial networks. The
first principle states that artery diameters are set to minimize the power required to distribute blood through the
network. The second principle states that arterial tree geometries are set to globally minimize the lumen volume. Given
only the coordinates of an arterial tree’s source and “leaves”, the model predicts the nature of the network connecting
the source to the leaves. Measurements were made of the actual geometries of arterial trees from postmortem healthy
human coronary arteriograms. The tree geometries predicted by the model look qualitatively similar to the actual tree
geometries and have volumes that are within a few percent of those of the actual tree geometries. Human coronary
arteries are therefore within a few percent of perfect global volume optimality. A possible mechanism for this near-
perfect global volume optimality is suggested. Also, the model performs best under the assumption that the flow is not
entirely steady and laminar.
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Résumé :On peut modéliser la géométrie d’un réseau d’artères coronaires humaines normales en faisant appel à deux
principes. Le premier veut que les diamètres artériels soient tels qu’ils minimisent le travail nécessaire pour distribuer
le sang à travers le réseau. Le second veut que la géométrie de l’arbre artériel soit telle qu’elle minimise globalement
le volume de la lumière. S’appuyant uniquement sur les coordonnées de source et de terminaisons d’un arbre, le
modèle peut alors prédire le réseau. Les géométries réelles d’arbres artériels sains, obtenus par coronarographie post-
mortem chez des humains, ont été mesurées. Les géométries prédites par le modèle sont qualitativement similaires aux
géométries réelles et ont des volumes correspondant à un pourcentage près à ceux des géométries réelles. Ainsi, les
artères coronaires humaines ont une optimalité de volume global presque parfaite. On suggère un mécanisme possible
pour cette optimalité presque parfaite. Le modèle est meilleur sous l’hypothèse que l’écoulement n’est pas entièrement
stationnaire et laminaire.

Mots clés: artères, optimisation, volume, travail, géométrie.
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Introduction

Optimality principles have often been applied to the diam-
eters and branching angles of arterial junctions at least since
the work of Murray (1926a,b), the prediction being that the
observed diameters or branching angles are such that they
optimize some magnitude. The large-scale geometry of arte-
rial networks has been little studied in the light of these
optimality principles, with the exception of Kamiya and
Togawa (1972) who found the locally optimal tree for one
mesenteric tree in a dog and Schreiner and Buxbaum (1993)
and Schreiner et al. (1994, 1996) who built model vascular
trees by iteratively adding locally optimal ‘Y’ junctions. The

research presented here is the first to employ algorithms ca-
pable of predicting the arterial tree given only the coordi-
nates of the source and leaf segments. We were able to show
the extent to which global optimality principles concerning
pumping power, drag force, volume, and surface area predict
the actual geometry of multiple-leaf arterial tree networks.
(The large-scale geometry of dendrites and axons has been
studied using these optimality principles by Cherniak et al.
1999.)

The remainder of this introduction is divided into two sec-
tions. The first covers Murray’s Law and variants, derived
via a principle of power optimization, which lead to equa-
tions of the form d0

p = d1
p + d2

p, where d0 is the parent’s, or
trunk’s diameter, and d1 and d2 are its childrens’ diameters.
We argue that values of p ought be considered within the
range [2,3]. Equations of this form will be used in order to
assign diameters to trees so that their pumping power cost,
drag force cost, volume cost, or surface area cost may be
calculated. These latter four principles are introduced in the
second section of the introduction and were used in order to
determine arterial tree geometries which were compared
with actual arterial geometries. For example, we compared
global volume-optimal tree geometries to actual tree geome-
tries and observed close quantitative and qualitative agree-
ment.
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Principle of minimum pumping power and diameter
determination

Under the assumption that blood flow obeys Poiseuille’s
Law, Murray (1926a) derived that for arterial networks mini-
mizing pumping power, the volumetric flow rate in an arte-
rial segment is proportional to the cube of the diameter: this
is called Murray’s Law. [Hess (1917) was apparently the
first to derive this result.] Let the depth of a branch segment
in an arterial tree be the number of branch junctions away
from the single source segment. Since the flow through a
fluid network must be conserved, the sum of the flow in all
arterial segments at the same depth must be the same across
depths, e.g., the flow through the superior mesenteric artery
equals the flow through all its grandchildren segments. By
Murray’s Law this is to say thatΣd3, where the summation is
over all cubed diameters of segments at a given depth in the
network, is constant across all depths. A corollary of this is
that the diameter of a single parent segment is related to
those of its children by d0

3 = Σdi
3, where d0 is the diameter

of the parent segment (or trunk) and each di is a child seg-
ment diameter. If one knows the diameters of each leaf seg-
ment of a tree, this last version of Murray’s Law is a
powerful tool in that it allows one to obtain the optimal di-
ameters for every non-leaf segment. [LaBarbera (1990) pro-
posed a local shear stress-dependent mechanism for
explaining how arterial networks conform, to the extent that
they do, to Murray’s Law.] More generally, we presume that
diameters are set so as to minimize the required pumping
power and that the resulting parent to child diameter rela-
tionship is given by the general formula d0

p = Σdi
p for some

p e [2,3] (see Discussion). We are supposing that p may pos-
sibly be any value in this range since the complete arterial
network may be subject to a mixed story; i.e., some sub-
networks may be partially steady, partially laminar, or both.
Note that this dp rule, for any p, is just as strong a tool as
Murray’s Law for obtaining non-leaf branch segment diame-
ters given the leaf diameters.

Roy and Woldenberg (1982) defended a dp rule as well,
summarily reporting that exponent values best fitting the ac-
tual diameter data tend to be highly variable. However, they
allowed the exponent to range more widely than did we, and
specifically to range below 2. Our background assumptions
leading us to confine the exponent to [2,3] are therefore
stronger than Roy and Woldenbergs’, but seem justified for
the following reasons: i) theoretically, as noted in
Woldenberg and Horsfield (1983), when p < 2 thecross-
sectional area of the parent is less than the sum of that of the
children the volumetric flow rate accordingly increases, con-
tradicting the eventual tendency for the flow rate to decrease
in lower depths; and ii ) empirically, other than in
Woldenberg and Horsfield (1983) where more than half of
199 human pulmonary artery junctions in the diameter range
0.7–16.8 mm have a best-fit exponent < 2 for the actual di-
ameters, other research confirms best-fit exponents nearer to
3, and certainly tending above 2 (see Discussion). On this
latter note, Woldenberg and Horsfield in the same article re-
port that 125 of the 199 junctions optimize surface area
better than volume (and better than the other cost measures
discussed below). This is predominantly a consequence of
the unusually large proportion of best-fit exponent values be-
low 2, because for these exponent values only the surface

area optimization model predicts branch angles at all close
to the observed angles (Woldenberg and Horsfield 1983),
which tend to be in the range from 60° to 80° (see below).

The large-scale structure of an arterial network is that of a
tree, and our goal was to model arterial trees. The trees we
studied did not include all actual arterial depths below the
source; rather, the trees were just subtrees of the full arterial
network, and the leaves did not need to be at the same depth.
For example, from among a depth–3 binary tree (i.e., with 8
leaves), we might consider the subtree consisting of the
source, its two children, and the two grandchildren from just
one child. Also, we studied only planar trees as global opti-
mization of three-dimensional trees is not well understood.
A full geometrical characterization of a tree, or tree geome-
try, specifies (i) the coordinates of the source and each leaf;
(ii ) the coordinates of each branch junction between source
and leaves; and (iii ) the connectivity relation over the set of
the source, leaves and branch junctions (this specifies the
tree’s topology). In modeling a particular actual tree, the ac-
tual source and leaf coordinates are measured and assumed
fixed, so that any predicted tree must also connect the fixed
source to the fixed leaves. Predicted trees need satisfy no
other geometrical constraint; they may make their branch-
ings anywhere in the plane. Our task was thus reduced to
determining (ii ) and (iii ) so as to closely approximate the act-
ual tree. See Fig. 1A for terminology related to trees.

It was necessary that candidate tree geometries acquire di-
ameters for their segments so that we could ultimately com-
pute the tree geometry with the minimum, say, volume. In
assigning diameter values to segments in candidate trees of
non-actual topologies, there was a difficulty: the segments of
trees of different topologies could not be put into any natural
one-to-one correspondence. Consider Fig. 2. Suppose that
(A) represents the actual geometry of the measured tree, and
that the tree shown in (B) is another candidate tree, but of a
different topology. In order to compare the costs of the two
trees, each segment in each tree must be assigned a diameter.
The leaf diameters in (B) can be set to whatever they are in
(A), but what should the diameters of c and d be? c and d do
not correspond to a and b. For this reason, it is not well-
defined to set the diameters of segments in a candidate tree
to the diameters of corresponding segments in the actual
tree. A natural way of handling this dilemma is to presume
that for any candidate tree geometry, whether it be that of
the actual geometry or that of some predicted tree, the diam-
eters are set according to the dp rule for some pe [2,3]; i.e.,
they are assumed to be power optimizing (see earlier discus-
sion). The leaf diameters of any candidate tree connecting
source to leaves are presumed to be that of the actual tree,
and the non-leaf segment diameters (including the source
segment diameter) are obtained by the dp rule. (See Mate-
rials and methods for how the leaf diameters of the actual
tree are determined.)

Principles of minimum volume and surface area and
tree geometry determination

There are a class of optimality principles that predict, re-
spectively, that the tree geometry is such that it minimizes
the power (P) required to pump blood through the junction
(Murray 1926a), the total drag force (D) along the endothe-
lium (Zamir 1976b), the total lumen volume (V), and surface
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area (S) of the artery (Murray 1927; Kamiya and Togawa
1972). Any pair of these principles are generally not equiva-
lent; however, if one assumes Murray’s Law (p = 3), then
(P) and (V) are equivalent, as are (D) and (S) (Zamir 1978).

Consider as a simple case a tree with just two leaves (i.e.,
a single bifurcation), where the tree geometry is character-
ized completely by the two junction branch anglesθ1, the
downstream angle between child 1 and the parent, andθ2,
the downstream angle between child 2 and the parent (see
Fig. 1B). Each of the four optimality principles results in an
equation for the total branch angleθ (= θ1 + θ2) of the form
(Zamir 1976a, 1978):

[1] cos θ = (w0
2– w1

2– w2
2) / (2 w1 w2)

where w is the weight computed according to the optimality
principle selected, subscript 0 refers to the parent segment,
and subscripts 1 and 2 refer to the two child segments. Equa-
tion [1] is exactly the triangle of forces law that describes

the resulting angle of three strings tied together in a plane
under respective tensions, or weights, w0, w1, and w2. The
weight under (P) is given by wi = fi

4 / di
8, where f denotes

the volumetric flow rate and d the diameter. Similarly, that
for (D) is wi = fi

2 / di
4, that for (V) is wi = di

2 and that for
(S) is wi = di. With an assumption of flow proportional to dp

as discussed earlier, one can rid the equations for (P) and
(D) of the dependence on flow.

We directly tested only the principles of minimum volume
(V) and surface area (S). This is because if one assumes that
the flow in a segment is proportional to dp for an exponent p
e [2,3], the predicted tree layouts via optimality principles
(P) and (D) are similar to those predicted by (S), and we will
discover that (S) is highly disconfirmed by the data in such a
way that (P) (when p is not near 3) and (D) (no matter the
value of p) are expected to also be disconfirmed. To see this
in the simplest case we may consider a single symmetrical
junction (θ1 = θ2, d1 = d2 and f1 = f2 = f0 / 2), presume the dp

rule, and ask what are the predicted angles for values of the
exponent pe [2,3]. The equations for all four principles be-
come functions of p only, and they are, respectively:

[2] (P) θ = acos(23–8/p–1)

[3] (D) θ = acos(21–4/p–1)

[4] (V) θ = acos(24/p–1–1)

[5] (S) θ = acos(22/p–1–1)

Figure 3 shows the graphs of the optimal angle according to
each principle as a function of p, and one can see that except
when p is near 3, both (P) and (D) predict roughly similar or
higher branch angles than (S). We found that (V) is the best
predictor of tree geometry, and that it succeeds most in hu-
man coronary arteries when p is around 2.6. Only (P) ever
performed similarly to (V), and this only occured when (V)
is at a suboptimal value for p (namely p = 3). This superior-
ity of (V) and, for exponents p near 3, of (P) was confirmed
by Zamir (1986) who reported that for p = 3 (V) and (P) out-
performed (S) and (D) over a large range of arterial junc-
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Fig 1. Terminology concerning branching networks. A) This schematic diagram depicts the measured portion of an arterial tree. In ad-
dition to the terms defined in the figure, the source is the arterial segment adjacent (and downstream) to the source coordinate, and a
leaf is the arterial segment adjacent (and upstream) to a leaf coordinate. Sample diameter values from the model are shown next to ar-
terial segments (see Materials and methods). B) Diagram defining the local and global branching angle. The local angle is the angle
between the two children segments very near the branching junction. The global angle is the angle between the branching junction and
the endpoints of the children segments.

Fig. 2. Segments in trees of different topologies. Although the
leaf segments of trees (A) and (B) can be put into correspon-
dence with one another, as can the sources, the segments in be-
tween cannot. For example, a corresponds to neither c nor d. It
is for this reason that the dp rule must be used to set the diame-
ter values for non-leaf segments. [See Cherniak et al. (1999) for
more discussion on the nature of the alternative topologies.]
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tions, human and non-human. Similar conclusions follow
from asymmetrical junctions as well.

The reason why (S), (P), and (D) are poor predictors of
tree geometry over the exponent range pe [2,3] is that they
predict branch angles that are too large. (D) and (S) predict
angles greater than 90° over the entire range of p; and (P)
predicts angles greater than 90° for all p < 2.667, and never
gets below about 75°. Yet arterial branching angles fall
roughly in the range 60° to 80°. For example, Hutchins et al.
(1976) measured 57 human coronary artery branch angles,
and one can see from their Fig. 5 that only 8 junction angles
are above 90° and that the trend is for a mean within the
range 60° to 80°. Zamir et al. (1983) measured 302 arterial
junctions in rat, and one can see from their Fig. 7 that the
trend is the same, and that only 41 junctions have angles
measuring above 90°. Zamir et al. (1984) measured 175 rat
coronary artery branch angles and found a mean around 70°,
and one can see from their Fig. 5 that 38 are greater than
90°. Zamir and Chee (1986) measured 850 branching sites in
human coronary arteries and found an average angle of
about 70°, and one can see from their Fig. 7 that 212 have
angle measures above 90°. Woldenberg and Horsfield (1983)
measured 199 human pulmonary artery junctions and the
mean branch angle was about 63° (±12°), and one can see
from their Fig. 7 in Woldenberg and Horsfield (1986) that 14
are greater than 90°. Cherniak (1992) found a mean of 78.4°
for 5 retinal capillaries from human samples (where p is
most likely to be near 3, and under a volume optimization
model one would expect angles on this high side). Also, the
127 branch junctions of the 48 human coronary arterial trees
we studied in this research had a mean angle measure of
63.3° (± 23.9°), and only 19 were greater than 90°. It was
sometimes difficult when peering at a single isolated branch
angle to tell whether it looked natural, but we observed that
multi-junction trees under surface area optimization, with
their larger branch angles, just did not look right.

[One might worry about the volume optimization curve in
Fig. 3 going to 0° as p approaches 2. This is only physically
realizable if the source segment’s starting point is infinitely
far from the child segment endpoints. In actual implementa-

tions, p = 2 means that the angle measure will be that be-
tween the two lines drawn straight from the source to the
children (i.e., the bifurcation occurs at the source), thus, the
(V) curve will bottom out at some point, which may make it
difficult to differentiate between models each with low (but
different) exponents p.]

Materials and methods

Postmortem anterior-view arteriograms of 33 healthy human
hearts were obtained from The Johns Hopkins Hospital Depart-
ment of Pathology (Baltimore, Md.) autopsy files under the direc-
tion of Grover M. Hutchins, M.D. Each was photographed with a
charged coupled device (CCD) camera, and converted to graphics
interchange format (GIF) files readable by National Institutes of
Health (NIH) Image software (Fig. 4). 48 arterial trees were se-
lected from the left main descending and right coronary arteries. A
few constraints on the selection of arterial trees were enforced.
First, trees were not deemed acceptable if branches within them
crossed over one another, although we found that this constraint
rarely had to be imposed on our arteriograms. Second, because our
optimization algorithms only apply to planar arbors, we avoided
choosing trees in the peripheral parts of the arteriogram. By doing
so, we confined ourselves to trees lying more closely within the
plane of the arteriogram (Fig. 4). Third, because acceptable trees
with more than five leaves are rare and it is too computationally
expensive to compute globally optimal trees for them, only trees
with five or fewer leaves were selected.

Measurements of the geometries of the trees, the source, leaf,
and branch junction coordinates, local and global branching angles,
and segment diameters were obtained from the digitized images of
the arteriograms within the NIH Image software. The contrast and
brightness of the arteriograms could be manipulated to aid in the
identification of arteries and the determination of their geometries.
Measurements were made by the first author, a non-expert
arteriogram reader; guidance and advice on this was given by Dr.
Peter Dockery of the Department of Anatomy, National University
of Ireland, Cork. In the recorded actual geometry of a measured
tree, segments were represented as straight, i.e., branch wiggle was
ignored. The mean of the actual source segment diameters for all
48 trees was 2.65 mm (± 1.0).

Each leaf diameter of a tree was set as follows: the visible arte-
rial tree below the leaf L (i.e., deeper in the tree) on the x-ray was
identified (i.e., leaf L was the source of this tree), the leaves of L’s
tree were set to diameter 1, and L’s diameter was computed from
these leaves via the dp rule (e.g., if there are 3 leaves in L’s tree, L
acquires diameter (1p + 1p + 1p)1/p = 31/p). This idealization par-
tially captures the fact that the leaves of the particular chosen tree
are not the true terminal leaves of the arterial network, and that
changing the exponent p alters them. Figure 1A shows an example
of this; the dotted branches are below (i.e., downstream from) one
of the leaves, and are used to compute the leaf’s “actual” diameter.
Thus, in the model, the leaf diameters are not set to the particular
diameters of the actual leaves, but are idealized by computing them
based on the number of visible leaves further downstream.

Jen-Hsin Huang and Andrew Kahng (1993) developed an algo-
rithm for us that, when given (i) the segment diameters, (ii ) the
source and leaf coordinates, and (iii ) desired topology of the pre-
dicted tree, computes the optimal tree geometry within the desired
topology connecting the source to the leaves predicted by a volume
(V) or surface area (S) optimizing model. A general description of
the algorithm is as follows. With the cosine law from eq. [1], the
algorithm finds the minimum-cost coordinate for the branch junc-
tion for each pair of leaves, i.e., the coordinate between the source
and the center of mass of the two leaves such that the angle is as
given in eq. [1]. It then treats these branch junctions as leaves, and

© 2000 NRC Canada

606 Can. J. Physiol. Pharmacol. Vol. 78, 2000

Fig. 3. Branch angle versus exponent p. Optimal branch angle
(in degrees) for symmetrical junctions via the four different
optimality principles (P), (D), (S), and (V) as a function of p
from the dp rule.
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finds the minimum-cost branch junction sites for them. It iterates
this, continuing until the source is reached. Du Won Kang created
software for us that runs this algorithm over all possible topologies
and finds the globally optimum tree geometry. Trees with only 8
leaves have 135 135 distinct topologies, and take over five days to
generate on a Pentium 6 400-MHz computer.

For each observed branch junction the local angle (θ, the angle
measured at the junction) and the global angle (the angle between
the two straight lines connecting the junction to each child’s junc-
tion, or leaf) were measured (Fig. 1B). Branch bend-in is the phe-
nomenon where the global angle is less than the (local) branch
angle, and is ubiquitous in arterial junctions; the mean local branch
angle of all 127 junctions measured here was 63.3° (± 23.9°) and
the mean global branch angle was 47.4° (± 19.3°), resulting in a
mean bend-in of 15.9° (± 22.4°). The best-fit exponent p is the
value of p used to obtain segment diameters (via the dp rule) for
which the percent difference between the cost [via (V) or (S)] of
the predicted tree geometry and the actual tree geometry is small-
est. Because the effective branch angles for the entire actual tree
geometry are the smaller global angles rather than the larger local
angles, and these smaller branch angles translate to lower values of
p [as can be seen in Fig. 3 for (V) and (S)], branch bend-in lowers
best-fit values for p. The best-fit values for p for a particular tree
were subsequently corrected by (i) taking the branch angle from
Fig. 3 (for a symmetrical junction) at p, (ii ) adding to it the mean
branch bend-in from the junctions of the tree, and (iii ) in turn tak-
ing the value of p on the x axis of Fig. 3 which corresponded to the
sum. The best-fit p below should be assumed to be corrected unless
otherwise noted. Negative aspects of this method of correction are
that it can be only an approximation, and the mean bend-in is

error-prone since it is obtained from the small number of junc-
tions within the one actual tree. On the latter point, it seems
nevertheless justified to use only bend-ins from the actual tree
since mean bend-in varies widely across arterial trees (from –
12.3° to +54.0° in our data).

The sensitivity of the model’s predictions to measurement error
was tested in the following manner. First, four trees known to be
minimum in length (Lewis and Papadimitriou 1978; Bern and Gra-
ham 1989) were scanned in, measured in the same manner as were
the coronary arteries, and evaluated by the techniques above (ex-
cept that the minimum length tree was computed instead of the
minimum surface area or minimum volume tree). Since the actual
trees in this case were optimal, if our measurements were without
error the wire length of the measured tree would be identical to our
computed optimal tree. The average percent difference between the
measured trees and the computed optimal trees was 0.22%. Sec-
ond, a minimum surface area tree was generated from the source
and leaf coordinates of some actual tree. This surface area optimal
tree was then used as if it were an actual tree in order to again as-
sess the measurement errors. The surface area error was only
0.000005%. [See Cherniak et al. (1999) for further discussion of
the calibration of our methods.]

Table 1 summarizes which quantities are fixed by arteriogram
measurement and which were determined by optimization in the
model.

Results

The (V) and (S) globally optimum tree geometries were

Fig. 4. Sample arteriograms and measured trees. The source (square), branch junctions (small circles), and leaves (large circles) are
shown for (A) one measured four-leaf tree from a right coronary artery and (B) one measured three-leaf tree from a left anterior de-
scending coronary artery.

I:\cjpp\Cjpp-78\Cjpp-08\Y00-024.vp
10-Jul-2000 2:07:50 PM

Color profile: Disabled
Composite  Default screen



computed for each tree over all values of the exponent pe
[2,4] at intervals of 0.1 (and also at p = 2.05), and the best-fit
p found. The mean best-fit (corrected) p for volume optimi-
zation over all 48 trees was 2.60 (± 0.64) (the second deci-
mal place arises from the branch bend-in correction). For
surface area optimization it was invariably p = 2, uncor-
rected, but it was not at a minimum-value trough as in the
case for volume, so the best-fit exponent p was actually < 2;
consequently we did not correct this p. The reason for the
value p = 2 forsurface area is that, as Fig. 3 shows, (S) pre-
dicts the smallest angles when p = 2(from the allowable in-
terpretable range [2,3]), and these small angles best agree
with the data.

The volume and surface area errors from the actual tree
geometry depend on the number of leaves: a greater number
of leaves tends to yield greater error, since, intuitively, there
is more latitude for the model to fail. Table 2 shows the
mean best-fit cost error (percent difference between the cost
of predicted and actual geometry) for (V) and (S) for trees of
the same number of leaves. In every case volume costing did
considerably better than surface area, coming in with errors
at a few percent for (V) compared with errors in the teens
for (S). On a tree by tree basis, (V) always had a lower error
than (S), so this is a highly significant effect (P < 0.001).

Figure 5 shows six representative actual tree geometries
(in dotted lines) and (in solid lines) the best-fit global opti-
mum volume (B) and surface area (C) geometries for them,
as well as the best-fit optimal volume geometry within the
actual topology (A). One can see that the optimal tree geom-
etries in the A and B boxes of Fig. 5 are qualitatively similar
to the actual tree geometry, while the global surface area-
optimizing geometries seem qualitatively dissimilar and un-
natural, with branch angles that are too large and branch
junctions that occur too near the leaves.

Within a volume-optimizing model we may compare dif-
ferent exponents p. The globally volume-optimum tree ge-
ometry was computed for each tree under laminar and
turbulent modelsi [i.e., run at p such that the corrected
value is 3 and 7/3, respectively (see Discussion)]. The tur-
bulent model predicts tree geometries with lower volume
error than the laminar model in 35 of the 48 trees (signifi-
cance ofP < 0.01). Table 3 shows the mean errors as a
function of the number of leaves, and Fig. 6 depicts the
graph showing that the turbulent model is just slightly infe-
rior to the best-fit p, and that the laminar model is more
significantly inferior.

Figure 7 shows four actual tree geometries (in dotted
lines) and (in solid lines) the best-fit global volume-optimum
geometry (B), the turbulent global volume-optimum geome-
try (A), and the laminar global volume-optimum geometry
(C). Compared with surface area in Fig. 5C, all three here

did well, and qualitatively do not look too unnatural (with
the exception of 1C). To the extent that p = 3 does not do
poorly, the single principle of power optimization under a
Poiseuille model of fluid flow, allowed to determine both
the diameters and tree geometries, is not too poor a predictor
of tree geometry, with a gain in parsimony. Future research
might concentrate on smaller diameter arterial trees to see
whether the best-fit p in such cases is nearer to 3.

Discussion

Computing the globally volume-optimizing tree geometry
is a variation on the classical Steiner tree problem (Bern and
Graham 1989) from graph theory which seeks to find the
wire length-minimizing tree geometry. The Steiner tree
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Fixed by arteriogram
measurement Determined by the model

Source coordinate Topology
Leaf coordinate Branch junction coordinates
Leaf diametersa Non-leaf segment diameters

(including source)
aSee Materials and methods.

Table 1. The role of quantities in the model. Fig. 5. Volume and surface area qualitative comparisons. Each of
the six boxes depicts a different human coronary artery tree
(scale bar = 1 cm); each is from the left descending artery ex-
cept for (3), which is from the right main artery. This set was
chosen to be roughly representative of the full data set. The dot-
ted trees within a box are identical for A, B, and C and repre-
sent the actual tree geometry with branches straightened. The
solid tree in B for each box is the globally volume-optimizing
tree geometry at the best fit exponent p, where the tree may pos-
sess a possibly different topology than that of the actual tree.
The value of p is shown, as is the percent error between the vol-
ume cost of the optimal tree and the actual tree. The solid tree
in A for each box is the volume-optimizing tree geometry within
the same topology as the actual tree using the best-fit exponent p
from B. If the best topology is the actual one, then A and B are
the same. The percent error between the volume cost of this tree
and the actual tree is shown. The solid tree in C for each box is
the globally surface area-optimizing tree geometry, over all expo-
nents p (which is always minimum at p = 2). The percent error
between the surface area cost of this predicted tree and the ac-
tual tree is shown. When the number of dots on a leaf L is
greater than one, the number of dots denotes the number of
leaves below L in the arteriogram.
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problem is known to be NP-hard (Lewis and Papadimitriou
1978; Garey and Johnson 1979), which strongly suggests
that the time needed to solve problems grows exponentially
with the size of the problem instance; this, in turn, means
that the Steiner tree problem is only tractable for relatively
small problem instances. It is therefore implausible to sup-
pose that arterial trees are actually globally optimized, as
pleasing and elegant as the idea might be. Arterial geometry
is not driven by a computationally sophisticated floorplan,
and even if it were, the resources required to compute the
optimal geometry for large portions of the arterial network
(say, a few hundred-leaf tree) are super-astronomical. This
leads to the question via what sort of mechanism might arte-
rial trees be achieving near-perfect global volume-optimal
geometries? As noted earlier, eq. [1] is the vector-
mechanical equation governing three strings tied together
and pulling with weights w0, w1 and w2. As discussed in
Cherniak (1992), a mechanism leading to each of the three
junction segments pulling on the junction with tension pro-

portional to its cross-sectional area would result in volume-
optimizing branch angles as set by eq. [1].

The second major observation is that, for the multi-
junction arteries studied here, the best-fit exponent for the dp

rule fluid equation is 2.60, well below the exponent of 3.0
for Murray’s Law (and even the turbulent exponent of 2.33
leads to lower errors than the exponent 3.0). Although
Murray’s Law has been confirmed for a large variety of ar-
teries [see Sherman (1981) for a summary of research con-
firming Murray’s Law prior to 1981, LaBarbera (1990) for
data in the 1980s; a few more recent papers include Wang et
al. (1992), Rossitti and Löfgren (1993), and Rossitti and
Frisén (1994)], it is well known that the assumptions behind
Murray’s Law stating that blood flow obeys Poiseuille’s Law
are questionable. In particular Murray’s Law assumes that
fluid flow is laminar and steady, neither of which can always
be expected. For example, flow in larger arteries, being
nearer to the heart, is more pulsatile, and the optimal diame-
ter relationship is theoretically area-preserving (West et al.
1997): d0

2 = Σdi
2. Flow may well be turbulent in larger arter-

ies, in which case the flow rate is theoretically proportional
to the diameter raised to the power of 7/3 rather than the
laminar exponent of 3 (Uylings 1977), and the diameter rela-
tionship becomes d0

7/3 = Σdi
7/3. And in arteries generally, de-

spite the fact that turbulent flow may not be present, it is
possible that the appropriate exponent is below 3 (Roy and
Woldenberg 1982; Rossitti 1995).

Furthermore, there exist data confirming lower exponents.
Miller (1893) found an exponent of 2.61 for dog lung arter-
ies. Mandelbrot (1977) summarized earlier data in the litera-
ture and concluded that the exponent for arteries generally
tended to be 2.7. Although Hutchins et al. (1976) found a
mean of 3.2 for healthy left main human coronary arteries,
they found that for unhealthy left main coronary arteries and
other healthy epicardial coronary arteries the mean exponent
hovered around 2.7. Suwa et al. (1963) found a mean expo-
nent over a large variety of arterial junctions of around 2.7,
and in particular for coronary junctions with diameters
greater than and less than 1 mm means of 2.66 and 2.82, re-
spectively. Arts et al. (1979) found that for canine coronary
arteries the exponent was 2.55 (which is the expected expo-
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No. leaves No. trees volume error, % surface area error, %

2 8 0.77 ± 1.12 6.53 ± 2.89
3 8 3.99 ± 4.25 15.13 ± 7.34
4 24 4.19 ± 3.35 19.11 ± 8.89
5 8 5.39 ± 3.27 17.15 ± 7.72

Note: Mean volume and surface area errors of globally optimum tree geometries at best-fit
exponents are shown.

Table 2. Performance of volume and surface area models.

Fig. 6. Error of volume model versus number of leaves. Mean
global volume-optimum tree geometry errors for laminar, turbu-
lent, and best-fit p are compared.

No. leaves No. trees turbulent volume error, % laminar volume error, %

2 8 1.44 ± 1.32 2.13 ± 2.00
3 8 4.40 ± 4.33 5.66 ± 5.23
4 24 4.96 ± 3.69 7.65 ± 4.99
5 8 5.99 ± 3.60 7.89 ± 6.34

Note: Mean volume errors of globally optimum tree geometries for turbulent (p = 7/3) and
laminar (p = 3) models are shown, compared with observed artery arbors.

Table 3. Performance of turbulent and laminar volume models.
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nent if diameters are set to minimize the reflections of pres-
sure waves at bifurcations). Sherman (1981) reexamined the
dog small intestinal artery data of Mall (1888) and calcu-
latedΣdp for each depth for exponent values p = 2, 3 and 4.
He observed that for p = 3 Mall’s values forΣdp were rela-
tively constant across 15 arterial depths, whereas for p = 2
and 4 there were significant changes in the order of magni-
tude ofΣdp. However, observing depths 0 through 3 (where
the diameters are roughly in the range 0.1– 1.5 mm) we
calculatedΣd7/3 (7/3 being a natural exponent between 2 and 3)
from Sherman’s Table III, and found that it was more constant
in these depths than wasΣd3: Σd3 was significantly correlated
with depth (correlation of –0.98, significanceP < 0.01) but
Σd7/3 was not (correlation of –0.20, not significant). We also
made similar order of magnitude calculations from the hu-
man left lung arterial network data of Huang et al. (1996):
from their Tables 5 and 6 we found that the first four depths
were more constant forΣd7/3 than forΣd3, although not sig-

nificantly so (even though the diameters of the segments of
these depths are roughly ten times those of the respective
depths from Mall; the pulsatile nature of artery segments
nearer to the heart as discussed earlier might help to explain
this). These latter two observations are roughly consistent
with the data of Caro et al. (1971) showing that larger diam-
eter arteries (5–15 mm) have exponents near 2 and the ob-
servations of Iberall (1967) that the total cross-sectional area
does not change much until arterial diameters are around
half a millimeter. In this light, our finding of a best-fit expo-
nent of 2.60 for multi-junction trees with average source di-
ameter 2.65 mm is consistent with the existing trend in the
literature for the measured exponent for arterial junctions.
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Fig. 7. Turbulent, laminar, and best-fit p qualitative comparisons. Each of the four boxes depicts a different human coronary artery tree
(scale bar = 1 cm); the first two are from the left descending and the second two are from the right main artery. These arbors are dif-
ferent from the ones in Fig. 5, and are again chosen to be roughly representative of the full data set. The dotted trees within a box are
identical for A, B, and C and represent the actual tree geometry with branches straightened. The solid tree in B for each box is the
globally volume-optimizing tree geometry at the best-fit exponent p, where the tree may possess a possibly different topology than that
of the actual tree. The value of p is shown as is the percent error between the volume cost of the optimal tree and the actual tree. The
solid trees in A and C for each box are the globally volume-optimizing tree geometry under, respectively, a turbulent model (p =
7/3≈2.33) and a laminar model (p = 3). The percent error between the volume cost of these trees and the actual tree is shown. When
the number of dots on a leaf L is greater than one, the number of dots denotes the number of leaves below L in the arteriogram.
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