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stood why the neocortex has as many areas as it does. For 
example, is neocortical parcellation due to functional rea-
sons, where having more areas implies a functionally 
more complex brain? Or, might neocortical parcellation 
be due to more epiphenomenal reasons, such as that big-
ger (but not necessarily more complex) brains must have 
more areas in order to keep volume costs or temporal de-
lay costs down [Kaas, 1977, 1989, 1995, 1997, 2000; 
Braitenberg, 1978, 2001; Cowey, 1979, 1981; Barlow, 
1986; Durbin and Mitchison, 1990; Mitchison, 1991, 
1992; Ringo, 1991; Jacobs and Jordan, 1992; Ringo et al., 
1994; Changizi, 2001, 2003b, 2005a, b]. In the hope of 
illuminating why the neocortex is parcellated, we mea-
sured how parcellation varies as a function of brain size, 
and also how area-area connectivity varies with brain 
size. 

   Materials and Methods 

 Brain mass information is used throughout the paper, and these 
data are averages from animals measured in Hrdlicka [1907], Von 
Bonin [1937], Crile and Quiring [1940], Stephan et al. [1981], the 
Stephan Collection, Hofman [1982] and Haug [1987]. ‘Encephali-
zation quotient’ (EQ) is used in  table 1 , and in the text, and is com-
puted as brain mass (grams) divided by the 3/4 power of body mass 
(grams). (That is, EQ is brain mass properly normalized by body 
mass.) Body masses are taken from the brain citations mentioned 
just above, and also from Nowak [1999]. We note that gray matter 
volume scales approximately proportionally with brain volume 
[Changizi, 2001], and so brain volume can be used as a proxy for 
gray matter volume. 
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  Abstract 
 Via the accumulation of data from across the neuroanat-
omy literature, we estimate the manner in which (i) the 
number of neocortical areas varies with neocortex size, 
and (ii) the number of area-area connections varies with 
neocortex size. Concerning parcellation, we fi nd that the 
number of areas scales approximately as the 1/3 power 
of gray matter volume, or, equivalently, as the square 
root of the total number of neocortical neurons. A con-
sequence of this is that the average number of neurons 
per area also scales approximately as the square root of 
the total number of areas. Concerning area-area connec-
tivity, we fi nd evidence that the total number of area-area 
connections scales as the square of the number of areas. 
These scaling results help constrain theories about the 
principles underlying neocortical organization. 

 Copyright © 2005 S. Karger AG, Basel 

 Introduction 

 A central feature of the mammalian neocortex – no-
ticed ever since Brodmann [Garey, 1999] – is that it is 
parcellated into multiple areas. Although it is well known 
that distinct areas have distinct functions, it is not under-
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   Methods for Parcellation 
 ‘Areas’ are groups of neurons that communicate with one an-

other largely via short-range, non-white-matter connections; where-
as the connections between neurons in different areas are largely 
made by long-range, white-matter, connections. This defi nition of 
area is related to one of the three principal experimental criteria for 
identifying areas, namely the pattern of connectivity to other parts 
of the neocortex (the other two criteria concern histology and topo-
graphic maps). The defi nition is also similar to the notion of a ‘par-
tition’ in computer electronics [Sherwani, 1995]. 

 There are two diffi culties in attempting to measure how the 
number of areas scales with brain size: (i) Different research groups 
do not always agree on a parcellation. We have sought to minimize 
this problem by confi ning ourselves to studies within one research 
group, namely that of Kaas, Krubitzer and colleagues. This group 
of researchers also has an advantage in that they have studied par-
cellation in a much greater variety of animals than any other group. 
(ii) The second diffi culty is that few animals have been completely 
mapped by any research group; currently only macaque and cat 
have any claim to this. Related to this diffi culty is that, even among 
the Kaas-Krubitzer parcellations, it is not the case that each animal 
has been studied to the same degree – greater attention to parcella-
tion has been given to some animals over others. Measuring parcel-
lation by simply counting the number of known areas for an animal 
within the Kaas-Krubitzer literature is therefore expected to have 
signifi cant errors (although when one does this, parcellation scales 
almost the same as we fi nd in this paper [Changizi, 2001]). We 
avoid the second diffi culty here by switching from testing how par-

Table 1. Data for the average relative size of cortical areas for a number of animals, measured from fl attened cortical maps

Animal Latin name Areas
shown

Average
rel. size, %

SD, log
rel. size

Brain
mass, g

EQ Reference

Shrew Sorex, Blarina, Cryptotis 4 7.434 0.226 0.218 0.04880 Catania et al., 1999
Mouse Mus musculus 9 5.556 0.487 0.05686 Krubitzer and Huffman, 2000
Star-mole Condylura cristata 3 4.692 0.697 1.077 0.06842 Krubitzer, 1995
Ghost bat Macroderma gigas 4 5.493 0.395 1.704 0.04707 Krubitzer, 1995
Rat Rattus rattus 10 5.000 1.778 0.03245 Northcutt and Kaas, 1995
Tenrec Echinops telfairi 6 5.103 0.172 2.538 0.02202 Krubitzer et al., 1997
Tree shrew Tupaia belangeri 8 5.927 0.298 3.114 0.06835 Lyon et al., 1998
Hedgehog Atelerix albiventris 7 8.383 0.152 3.273 0.02246 Krubitzer et al., 1995
Quoll Dasyurus hallucatus 8 5.322 0.368 4.666 0.05372 Krubitzer, 1995
Opossum Didelphis marsupialis 8 5.549 0.234 5.174 0.01849 Beck et al., 1996
Ferret Mustela putorius 11 4.545 5.226 0.08753 Manger et al., 2002
Squirrel Sciurus carolinensis 15 2.889 0.336 6.522 0.08031 Krubitzer, 1995
Flying fox Pteropus poliocephalus 11 3.333 0.358 7.223 0.05445 Krubitzer and Huffman, 2000
Marmoset Callithrix jacchus 22 1.737 0.360 7.779 0.12740 Krubitzer, 1995
Platypus Ornithorhyncus anatinus 6 6.153 0.548 9.000 0.03399 Krubitzer and Huffman, 2000
Echidna Tachyglossus aculeatus 8 4.939 0.331 11.000 0.01850 Krubitzer, 1995
Owl monkey Aotus 23 1.424 0.352 16.335 0.14591 Krubitzer and Huffman, 2000
Cat Felis domesticus 22 2.273 27.093 0.07449 Kaas, 1987
Macaque Macaca 25 0.987 0.467 84.643 0.21853 Krubitzer, 1995

Data are ordered here by brain size. The third column shows the number of areas indicated in the study. The fourth column is the 
average relative size of cortical areas in the study (10 to the power of the average logarithm of relative size), and the fi fth column the 
standard deviation of the logarithms of relative size. Data are plotted in fi gure 1b. EQ = Encephalization quotient.

Table 2. Data for relative size (as a percentage of neocortex) of se-
lected areas in a number of animals

Relative size of area, %

V1 V2 A1 S1 M1

Shrew 5.445 4.230 12.651
Mouse
Star-nosed mole 0.962 4.502 23.837
Ghost bat 3.833 9.402 13.815
Tenrec 6.054 4.344 10.235
Tree shrew 23.635 6.194 3.899 8.701
Hedgehog 10.764 6.158 6.436 14.526 10.463
Quoll 21.095 6.708 2.957 11.449 5.845
Opossum 12.659 6.062 8.859
Squirrel 19.680 4.486 1.584 8.081 4.573
Flying fox 14.636 5.133 1.026 8.198 6.050
Marmoset 15.375 6.468 0.678 4.029 4.772
Platypus 1.607 1.198 22.035 10.203
Echidna 8.331 1.401 7.557 13.534
Owl monkey 14.714 6.982 1.468 3.678 2.097
Macaque 17.699 9.463 0.468 1.664 1.897

Sources are those in table 1. Data are plotted in fi gure 2.
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cellation scales as a function of brain size to instead testing how the 
average relative size of an area (i.e., the percentage of neocortex 
taken up by an area) scales. In a neocortex with more areas, the 
average relative size of an area must (as a matter of logic) decrease. 
For example, a neocortex with 20 areas has areas taking up, on av-
erage, 5% of the neocortex. Thus, from an estimate of the average 
relative size of areas within a neocortex, one can compute the ex-
trapolated number of areas in the neocortex. For example, if one 
measures 10 areas in a neocortex and fi nds that the average relative 
size among them is 5%, then the extrapolated number of areas is 
20. 

 Using papers published within the Kaas-Krubitzer literature, 
we scanned in fi gures of fl attened parcellation maps, and used the 
NIH Image software to measure the surface area of each area with 
boundaries given in the fi gure. By also measuring the surface area 
of the entire neocortex in the fi gure, we could compute the relative 
size of each area in the fi gure.  Table 1  shows average relative sizes 
from areas in a number of animals from the Kaas-Krubitzer litera-
ture, along with brain volumes and encephalization quotients 
(brain volume divided by the 3/4 power of body mass). For four 
animals – mouse, rat, ferret, and cat – only unfl attened cortical 
maps were available, so measurements of relative size were not pos-
sible. In these cases, the number of areas was simply counted and 
assumed to in total fi ll the same overall amount of neocortex as that 
in the other studies (which averaged 50%; SD 12%), and the rela-
tive size computed as the inverse of twice the counted number of 
cortical areas. Standard deviations are accordingly not provided for 
these animals.  Table 2  shows the relative sizes for some specifi c 
areas – namely, V1, V2, A1, S1 and M1 – across a number of mam-
mals from the same literature. In some animals data do not exist 
for some areas. 

   Methods for Area-Area Connectivity 
 Areas are connected to other areas via white-matter axons. How 

does area-area connectivity vary with brain size? Measuring this is 
diffi cult for two reasons: (i) Attempts at building area-area connec-
tivity matrices for the entire neocortex have been made only for 
macaque [Young, 1993] and cat [Scannell and Young, 1993; Scan-
nell et al., 1995]. This means there are only two data points avail-
able. (ii) These two animals differ little in their number of areas (at 

least as found in the published connectivity matrices), and thus they 
provide effectively no range in network size with which to test the 
scaling prediction. We have circumvented these diffi culties in two 
distinct ways. 

 First, in lieu of whole-brain area networks we have instead ac-
quired data from neocortical subnetworks, as shown in  table 3 . In 
addition to circumventing the problems of number and range of 
data, this has the advantage that the connectivity matrix for a sub-
network is more likely to be fully understood. We have also con-
fi ned our study to sensory (and somato-motor) subnetworks, for one 
might expect that the proportionality constants are more similar 
among sensory-motor subnetworks, whereas they may differ be-
tween sensory-motor and non-sensory-motor subnetworks (al-
though the scaling exponents might be the same). 

 Second, although as mentioned above published connectivity 
matrices for whole brains are rare, there are a number of studies of 
the whole-brain connectivity patterns of specifi c areas of interest. 
We confi ned ourselves to sensory (and somato-motor) areas, and 
compiled estimates of the number of area-connections per area for 
areas and animals in  table 4 . For each animal, the average number 
of area-connections per area was computed, where averages were 
taken over the logarithms of values because in scaling studies this 
is appropriate (these are called ‘log-transformed averages’). These 
averages are listed in  table 5 . 

   Results 

 Parcellation 
  Figure 1 a shows the relative size of each measured area 

as a function of the size of the brain the area lies in, and 
one can see that (a) larger brains tend to have more areas 
measured by the Kaas-Krubitzer research groups (i.e., the 
number of dots per column in  fi g. 1 a increases), and, more 
importantly, (b) the relative sizes tend to decrease with 
brain size, a sure sign that there are more areas.  Figure 1 b 
shows the average relative sizes of areas as a function of 

Subnetwork Areas Edges Reference

Tree shrew, visual 8 22 Lyon et al., 1998
Rat, visual 9 36 Coogan and Burkhalter, 1993
Macaque, auditory 13 56 Hackett et al., 1998
Macaque, auditory 16 95 Young, 1993
Macaque, somato-motor 17 100 Young, 1993
Macaque, auditory + 19 123 Kaas and Hackett, 2000
Cat, auditory + 20 153 Scannell and Young, 1993
Cat, visual + 26 264 Scannell and Young, 1993
Cat, somato-motor + 27 348 Scannell and Young, 1993
Macaque, visual 30 300 Young, 1993

+ indicates that there are other cortical areas included in the subnetwork. Data are plot-
ted in fi gure 3a.

Table 3. Number of cortical areas and 
 total number of area-area connections
in a variety of neocortical sensory
(or sensory-motor) subnetworks
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Animal Kind of areas Area Area con-
nections 
per area

Reference

Opossum visual V1 5 Kahn et al., 2000
somatosensory S1 4 Beck et al., 1996

Owl monkey visual V1 11 Lyon and Kaas, 2002b
DM 14 Beck and Kaas, 1998a
VP 9 Beck and Kaas, 1998a
MT 7 Krubitzer and Kaas, 1990a

Squirrel 
monkey

visual V1 11 Lyon and Kaas, 2002b
DM 15 Beck and Kaas, 1998a
MT 7 Krubitzer and Kaas, 1990a

Marmoset visual V1 12 Lyon and Kaas, 2001
V2 6 Lyon and Kaas, 2001
MT 7 Krubitzer and Kaas, 1990a

somatosensory S1 (3b) 8 Krubitzer and Kaas, 1990b
SII 12 Krubitzer and Kaas, 1990b

Bushbaby visual MT 7 Krubitzer and Kaas, 1990a
V1 8 Lyon and Kaas, 2002a
DM 12 Beck and Kaas, 1998b
V2 10 Collins et al., 2001

Tree shrew visual V1 4 Lyon et al., 1998
V2 7 Lyon et al., 1998
TD 4 Lyon et al., 1998
TA 4 Lyon et al., 1998
TD 5 Lyon et al., 1998
TP 5 Lyon et al., 1998

Rat somatosensory S1 7 Fabri and Burton, 1991

Flying fox somatosensory S1 (3b) 6 Krubitzer et al., 1993
1/2 5 Krubitzer et al., 1993
SII 8 Krubitzer et al., 1993
PV 6 Krubitzer et al., 1993
LP 10 Krubitzer et al., 1993

Squirrel visual V1 3 Kaas et al., 1989
V2 10 Kaas et al., 1989

somatosensory S1 (3b) 5 Krubitzer et al., 1986;
Krubitzer and Kaas, 1990b

SII 6 Krubitzer et al., 1986;
Krubitzer and Kaas, 1990b

PV 8 Krubitzer et al., 1986

Cat 40 sensory areas not shown here Scannell et al., 1995

Macaque 8 visual areas not shown here Lewis and van Essen, 2000
56 sensory-motor areas not shown here Young, 1993

The average number of area connections per area for each animal are shown in table 5, 
and plotted in fi gure 3b.

Table 4. Number of area connections per 
area for a variety of areas from a variety 
of animals, with citations shown
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brain size (data directly from  table 1 ).  Figure 1 c shows 
the extrapolated number of cortical areas in the entire 
animal’s neocortex, A, versus brain volume (from  ta-
ble 1 ), and the best-fi t exponent is 0.3067 (95% confi -
dence interval is 0.159, 0.455). Gray matter volume, 
V gray , scales approximately proportionally with brain vol-
ume (see Methods), and thus it is approximately the case 
that A  �  V gray 

 1/3 . Because the number of neocortical neu-
rons, N, scales approximately as the 2/3 power of gray 
matter volume [Tower and Elliott, 1952; Tower, 1954; 
Jerison, 1973; Passingham, 1973; Prothero, 1997b], it fol-
lows that A  �  N 1/2 . Finally, because N = A ! W, where W 
is the average number of neurons per area, it follows that 
approximately W  �  A, and so W  �  V gray 

 2/3   �  N 1/2 . 
  Figure 1 b shows that the average relative size of an 

area decreases in larger neocortices, but in  fi gure 1 a one 
can observe that there are always some areas that remain 
large, namely above a relative size of about 10%. Which 
areas might these be? We examined the scaling of fi ve 
particular areas: V1, V2, A1, S1 and M1 (see  table 2 ). 
 Figure 2  shows how the relative sizes of these areas scale 
as a function of brain size. Among this group of mam-
mals, V1 and V2 do not scale down [best-fi t exponent for 
V1 is 0.291 with 95% confi dence interval (–0.096, 0.678), 
and for V2 is 0.138 with 95% confi dence interval (0.0246, 
0.2506)]. Instead, they fi ll a nearly invariant fraction of 
neocortex – the numbers of neurons in each of V1 and 
V2 appear to scale approximately proportionally to the 
total number of neocortical neurons, or W V1   �  W V2   �  N 
(as opposed to the average number of neurons per area, 
W  �  N 1/2 ). The distinctive scaling of V1 and V2 among 

our group of mammals is not explained by their being 
early sensory areas, for A1 and S1 scale down like most 
areas (as does M1). This characteristic of V1 and V2 does 
not appear to be common among areas: among the 25 
areas measured in macaque, it appears that only V1 and 
V2 show this, as can be seen by examination of the right-
most vertical array of points for macaque in  fi gure 1 a, 
where there are just two unusually large areas at the top 
right, and they are V1 and V2. These results might have 
a connection to Steven’s [2001] idea that V1 encodes one 
more dimension than LGN, and thus the number of neu-
rons in V1 scales as the 3/2 power of that for LGN. We 
note that V1 and V2 appear to slightly increase [e.g., see 
Snow et al., 1997; Kingsbury and Finlay, 2001], but for 
our data this is primarily due to the fact that the larger 
brained animals in our data are primates, with enlarged 
visual cortices; deletion of Macaque, for example, re-
moves the correlations. Among primates Frahm et al. 
[1984] fi nd that the relative size of V1 decreases with 
brain size. However, Rosa et al. [1993] fi nd roughly an 
invariant relative size for V1 in primates and non-pri-
mates: their  fi gure 3  shows that V1 surface area scales as 
body mass to approximately the 2/3 power. Because gray 
matter volume scales approximately as body mass to the 
3/4 power [Allman, 1999], V1 surface area scales as gray 
matter volume to the 8/9, which is the same scaling expo-
nent as the entire cortical surface area [see references 
within Changizi, 2001]. 

Animal Latin name Average 
area 
 connections 
per area

SD log 
area 
 connections 
per area

Brain 
mass 
g

Rat Rattus rattus 7.00 0.00 1.78
Tree shrew Tupaia belangeri 4.73 0.10 3.11
Bushbaby Galago senegalensis 9.05 0.10 4.57
Opossum Didelphis marsupialis 4.47 0.07 5.17
Squirrel Sciurus carolinensis 5.91 0.20 6.52
Flying fox Pteropus poliocephalus 6.79 0.12 7.22
Marmoset Callithrix jacchus 8.65 0.14 7.78
Owl monkey Aotus 9.92 0.13 16.34
Squirrel monkey Saimiri sciureus 10.49 0.17 22.48
Cat Felis domesticus 13.34 0.24 27.09
Macaque Macaca 16.99 0.32 84.64

See methods for references and cortical areas. Data are plotted in fi gure 3b.

Table 5. Average number of area 
 connections per area (10 to the power of 
the average base-10 logarithm of the 
 number of area connections per areas), 
standard deviation of the logarithm of the 
number of area connections per area, and 
brain mass for a variety of animals 
(ordered by brain mass)
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  Fig. 1.  Scaling of parcellation.  a  Log-log (base 10) plot of the relative size of cortical areas (as a percentage of neo-
cortex) versus brain mass (grams) for sensory (and somato-motor) areas. Data are from  table 1 . One can see that 
larger brains have more known areas, and they tend to fi ll a smaller fraction of neocortex.  b  Log-log (base 10) plot 
of the (log-transformed) average relative size versus brain mass (grams), for data in  table 1 . Error bars show stan-
dard deviations. White circles are monotremes, and if one excludes them the best-fi t exponent is –0.338, with 
correlation rising to R 2  = 0.64.  c  Log-log (base 10) plot of the extrapolated total number of areas versus brain 
mass (g). 
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   Area-Area Connectivity 
 We fi rst report how the total number of area-area con-

nections, G, varies as a function of the number of areas, 
A, across subnetworks in tree shrew, rat, cat and macaque 
(see  table 3 ).  Figure 3 a shows these data and the best-fi t 
exponent is 2.035 (95% confi dence interval is 1.807, 
2.263). Therefore, it is approximately the case that G  �  
A 2 , and this means the number of area-area connections 
scales up (across subnetworks of varying size) as quickly 

as possible. Because G = A ! D, where D is the average 
number of area-connections per area, it follows that D  �  
A. Also, using our earlier empirical conclusion concern-
ing how the number of areas scales, we can conclude that 
D  �  V gray 

 2/3   �  N 1/2  (assuming that these subnetwork scal-
ing results are indicative of scaling across brains). The 
best-fi t power law equation for the number of area-area 
connections versus the number of areas in subnetworks 
( fi g. 3 a) is G  ;  (1/3)A 2 , and this proportionality constant 
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  Fig. 2.  Log-log (base 10) plot of the relative 
size of a cortical area (as a percentage of 
neocortex) versus brain mass (grams), for 
fi ve cortical areas. Data are from  table 2 . 
 Figure 1 a shows that most areas decrease in 
relative size as a function of brain size, and 
one can see here that A1, S1 and M1 scale 
like the ‘typical’ area. V1 and V2 do not 
scale down, however. 
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means that roughly 1/3 of all the possible connections ex-
ist in these subnetworks. This is an underestimate, given 
that researchers are still discovering new connections. 
However, it is may be an overestimate for the percentage 
of possible connections existing for the entire neocortex, 
because the subnetworks consist of functionally related 
areas which might be more closely interconnected than is 
the entire neocortex. 

 The empirical result above concerning area-area con-
nectivity considered scaling across subnetworks, not scal-
ing across different mammalian brains.  Figure 3 b shows 
the average number of area-connections per area, D, for 
the 12 mammals (from  table 5 ) as a function of brain vol-
ume, and the best-fi t exponent is 0.31 (95% confi dence 
interval is 0.145, 0.468). That is, we come to the same 
conclusion as we did from the subnetwork plot above: it 
is approximately the case that D  �  V gray 

 1/3   �  N 1/2 . 

   Discussion 

 We have found evidence that both the number of neo-
cortical areas and the average number of area-connec-
tions per area scale approximately as the 1/3 power of 
gray matter volume, or as the square root of the total 
number of neocortical neurons. Alternatively, these val-
ues scale as the 3/8 power of the total neocortical surface 
area because surface area is known to scale approximate-
ly as the 8/9 power of gray matter volume [Jerison, 1982; 
Prothero and Sundsten, 1984; Hofman, 1985, 1989, 
1991; Prothero, 1997a]. If we extrapolate these power 
laws to brains of human size ( ; 1,300 g), we expect ap-
proximately 60 area connections per area, 150 areas, and 
9,000 area-area connections in all. Extrapolating to brains 
the size of an elephant ( ; 5,000 g), we expect approxi-
mately 90 area connections per area, 220 areas, and 
21,000 area-area connections in all. We caution, however, 
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  Fig. 3.    Scaling of area-area connectivity.  a  Log-log (base 10) plot of the total number of (known) area-area con-
nections G versus the number of areas A, in sensory (and somato-motor) subnetworks. Data are from  table 3 . 
Best-fi t line via linear regression is shown (as is true in all the fi gures here), and is approximately G  �  A 2 . In fact, 
paying attention to the intercept gives us G  ;  (1/3)A 2 , which shows that roughly 1/3 of the total possible number 
of connections exist independent of network size.  b  Log-log (base 10) plot of the average number of area connec-
tions per area (the number of areas with which an area connects) D versus brain volume, for sensory (and somato-
motor) areas. Error bars show standard deviation. Data are from  table 5  (and  table 4 ). If one keeps only the data 
from  table 4  from Kaas, Krubitzer and colleagues (i.e., if one confi nes to what is more probably a single research 
methodology), the number of data points drops from 11 to 8, the x-axis range drops nearly in half, the correlation 
drops to R 2  = 0.55, and the best-fi t exponent becomes 0.38. 
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that the data are still fragmentary: (i) the areas and ani-
mals included in the study have not been chosen at ran-
dom, but rather are the ones that have been of interest to 
researchers, (ii) some of the variation may well refl ect 
 behavioral specializations, not brain size per se, and 
(iii) ‘lower’ sensory areas are over-represented compared 
to ‘higher’ areas. 

 From the scaling relationships measured here, along 
with previously known relationships, we can identify 
three surprising and fundamental invariants. The fi rst is 
that the total number of areas scales approximately pro-
portionally to the average number of neurons per area – 
i.e., A  �  W – which entails that each scales as the square 
root of the total number of neocortical neurons. This may 
be called the ‘square root compartment invariance’, a ver-
sion which was fi rst conjectured by Braitenberg [1978, 
2001] and Braitenberg and Schuz [1998]. The second is 
that the average number of area connections per area 
scales approximately proportionally to the total number 
of areas, i.e., D  �  A. This may be called ‘invariant area-
interconnectedness,’ a version which was also suggested 
fi rst by Braitenberg [1978, 2001; see also Changizi, 2001]. 
The third and last fundamental invariant is that the aver-
age number of synapses per neuron,  � , scales approxi-
mately proportionally to the average number of neurons 
per area, W; i.e.,  �   �  W. This may be called ‘invariant 
area-infi ltration,’ and was fi rst suggested in Changizi 
[2001]. (The combination of the second and third invari-
ants are called ‘invariant well-connectedness.’) Unlike 
the fi rst two invariants, which followed directly from re-
sults of this paper, invariant area infi ltration relies on a 
measurement of how the average number of synapses per 
neuron,  � , scales, and this is not something we measured 
here. However, from previously known scaling relation-
ships we can compute how  �  scales with brain size. We 
mentioned earlier that the total number of neocortical 
neurons, N, scales disproportionately slowly as a function 
of gray matter volume, and specifi cally, N  �  V gray 

 2/3 . The 
volumetric density of synapses in neocortex, however, 
appears to not vary as a function of brain size [Abeles, 
1991; Changizi, 2001], and therefore the total number of 
synapses in the gray matter scales directly proportionally 
to gray matter volume. It follows from these two scaling 
relationships that the average number of synapses per 
neuron,  � , must scale as the 1/3 power of gray matter vol-
ume; i.e.,  �   �  V gray 

 1/3 , or, equivalently,  �   �  N 1/2 . But recall 
that we found that the average number of neurons per 
area, W, also scales in approximately this manner, and 
therefore  �   �  W. In total, these three invariants can be 
summarized by D  �  A  �  W  �   �   �  N 1/2 . 

 The satisfaction of these three invariants is central to 
understanding how many of the other neocortical features 
scale with brain size. For example, increasing the average 
number of synapses per neuron means that neuron den-
sity must decrease in larger brains, as it in fact does; and 
this is crucial in explaining why neocortical gray matter 
surface area and thickness scale up as they do, which con-
cerns why the neocortex becomes increasingly convoluted 
[Changizi, 2001]. The increasing average number of syn-
apse per neuron also requires that neurons have larger 
somas and axon calibers to support the greater number 
of ‘leaves’ [Cherniak et al., 1999; Changizi, 2001; Shultz 
and Wang, 2001; Harrison et al., 2002], and this is key to 
explaining why white matter volume increases dispropor-
tionately quickly compared to gray matter volume [Chan-
gizi, 2001, 2003b]. 

 Why do these three invariants hold across mammalian 
neocortices? Invariant area infi ltration – i.e., the con-
straint that the average number of synapses per neuron 
scales proportionally to the average number of neurons 
per area – may be due to selective pressure for some min-
imum threshold of neuron interconnectedness within ar-
eas, and a selective pressure for inter-area neurons to in-
fi ltrate some minimum fraction of the neurons in the area 
to which it connects. Similarly, invariant area intercon-
nectedness – i.e., the constraint that the average number 
of area connections per area scales proportionally to the 
total number of areas – may be due to selective pressure 
for some minimum threshold of connectivity at the area-
area level. Together, these two connectivity invariances 
comprise ‘invariant well-connectedness,’ and amount to 
a two-tiered hierarchical approach to neocortex design, 
where each tier possesses invariant interconnectedness, 
but where there is not invariant interconnectedness at the 
level of the entire neocortex. We do not have any expla-
nation for why there is selection pressure for such a two-
tiered approach (why not three tiers?). The   square root 
compartment invariance – i.e., the constraint that the av-
erage number of neurons per area scales proportionally 
to the total number of areas – can be explained by a hy-
pothesis that, given that invariant well-connectedness 
must (for whatever reason) be satisfi ed across neocortices 
of varying size, the most economical way of satisfying in-
variant well-connectedness is to scale the number of areas 
proportionally to the average number of neurons per area. 
This is called ‘economical well-connectedness’ [Changizi, 
2001, 2003b, 2005; Changizi and He, 2005]. 

 Note that brain size among mammals is not a correlate 
of behavioral complexity – average mammalian behav-
ioral repertoire sizes from eight mammalian orders 
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[Changizi ,  2003a] do not correlate with brain size (R 2  = 
0.1, d.f. = 6, t = 0.816, p  1  0.2) – and thus the area in-
creases we see in  fi gure 1 c are due to increasing brain size, 
not to increasing functional complexity [see also Aboitiz, 
1996]. The variation in  fi gure 1 c leaves enough room, 
however, for there to be some truth behind the general 
feeling that functionally more complex animals have 
more areas. But how are we to measure the ‘functional 
complexity’ of an animal in order to test this? It has long 
been noted that encephalization quotient, EQ (the resid-
ual on a log-log brain-versus-body-mass plot) correlates 
well with our intuitive judgment of the intelligence of an 
animal, and Changizi [2003a] showed that behavioral 
repertoire size (as measured by ethologists) indeed cor-
relates highly with EQ among mammals (for 8 mamma-
lian orders, the correlation is R 2  = 0.84, d.f. = 6, t = 5.61, 
p  !  0.001).  Table 1  possesses data for EQ, and a plot of 
average relative sizes of areas versus EQ (not shown) 
shows that greater EQ tends to imply lower average rela-
tive sizes of areas, and thus a greater extrapolated total 

number of areas (A  �  EQ 0.65 , R2 = 0.61). (Note that the 
extrapolated total number of areas divided by EQ0.65 – 
i.e., the number of areas ‘corrected’ by EQ – correlates 
signifi cantly with brain size: R 2  = 0.44.) This thereby pro-
vides support for the feeling that ‘smarter’ animals have 
more areas: functionally more complex animals have 
more areas compared to the base-line expectation for 
their brain size. But we cannot expect there to be an iso-
morphic map between functional specializations and cor-
tical areas: large network size may require parcelling one 
function into more than one area, and small networks 
may require lumping multiple functions into one area 
[e.g., Kaas, 1987]. 
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