
DAN RYDER

REVIEW ESSAY

MEDITATIONS ON FIRST NEUROSCIENCE: CRITICAL NOTICE OF

MARK CHANGIZI’S THE BRAIN FROM 25,000 FEET

Mark A. Changizi, The Brain from 25,000 Feet: High Level Explo-
rations of Brain Complexity, Perception, Induction and Vagueness,
Kluwer Academic Publishers, Dordrecht, 2003, Hardcover, $115.00.

Neuroscience today is burdened by a massive accumulation of data,
and a relative paucity of high-level theory relating brain to mind. One
of the reasons for this may be the average neuroscientist’s conviction
that the brain must be studied from the bottom-up. One must first
uncover the structural and causal details of the mechanism at the
molecular, cellular, and network level. Gradually this will reveal what
the mechanism does – but we are only getting the first glimpses of
this.

In The Brain from 25,000 Feet, Mark Changizi argues that the
average neuroscientist has it all bass-ackwards, or at least that this
methodology is bound to miss something essential for understanding
the brain. The mechanistic details, he suggests, won’t make any sense
in the absence of a ‘‘high-level’’ understanding of the brain, by which
he means an understanding of the principles and constraints that
must apply to any brain-like object, i.e., any thinking thing.

It would be lovely if Changizi could, in neo-Cartesian form, derive
the function and structure of the fundamental cortical circuit from
a priori mathematical truths. Of course, he does nothing of the sort,
but I think he is successful in demonstrating how high-level under-
standing can enrich the sciences of the mind, often in surprising ways.
I think he is less successful in illuminating neuroscience in particular,
but that is perhaps the minor failing of a misleading title rather than a
serious failure to support his main thesis. Chapter 1 is primarily
neuroscientific, but the remainder of the book is about the brain only
in the weak sense that any branch of cognitive science is ultimately
about the brain, at least in part. Chapter 2 (on ‘‘perceiving the
present’’ and optical illusions) could potentially be useful as a guide to
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mechanistic discovery, but I fear that Chapters 3 (on induction) and 4
(on vagueness) would leave the practicing neuroscientist regretting
the time spent reading them. (I don’t mean to question their value in
general, just their value for neuroscience.) Changizi makes a weak
attempt to show that these chapters fit the book’s title, but even he
doesn’t sound too convinced.

Changizi’s higher level approach manifests itself in rather different
ways in the four chapters. (I shall save my comments about the value
of the approach until the end.) In the first chapter, he presents what is
perhaps his best illustration of it. His basic strategy is to derive
conclusions about the functional importance of certain aspects of
complex systems, including the brain, merely by observing regular
changes (or failures to change) in these complex systems as they
‘‘scale up’’. In the case of the brain, this ‘‘scaling up’’ is the increase in
number of neurons in the brain’s network across animal types, as one
moves from small to large animals, and from simple to complex
animals.

The general method for deriving functional conclusions from
scaling laws can be illustrated by a simple game. Player One is
given a ball of wax,1 and is instructed to shape it so as to maxi-
mize, minimize, or keep constant some particular quantity. You
are Player Two, and you must divine the instructions given to
Player One by presenting them with further pieces of wax, and
observing what they produce. First, Player One hands you a very
flat circular piece of wax. At this point, it is impossible to tell what
their instructions were. To produce a cylinder of constant diameter
d? Or to minimize surface area? To distinguish these hypotheses,
you could present Player One with a piece of wax having a larger
volume. If they hand it back again very flat (with a larger diam-
eter), and continue to do so no matter what volume of wax you
present, you could reasonably infer that they were told to maxi-
mize surface area (for a given volume). This hypothesis would fully
explain how surface area scales with volume in their bits of wax. It
turns out that many properties of mammalian neocortex scale in
regular ways with one another (specifically, in accordance with
power laws). The properties Changizi considers include volume of
grey matter, number of areas, number of areas to which an area
connects (on average), neuron number, neuron density, cortical
thickness, surface area, soma radius, axon radius, and volume of
white matter. Just as your hypothesis that the instruction to
maximize surface area fully explains how surface area scales with
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volume in Player One’s bits of wax, Changizi argues that a handful
of simple hypotheses fully explain how these properties of neo-
cortex scale with one another. Perhaps the most interesting of
these hypotheses is:

The principle of economical well-connectedness–The number of areas to which a
cortical area connects, and the density of these connections, remains invariant as the

cortex scales up (this is ‘‘well-connectedness’’). Further, this is done using the min-
imum amount of tissue (i.e., wiring) necessary (thus economical well-connectedness)
(see pp. 11–15).

Surprisingly, this hypothesis can fully explain why, as cortex gets
bigger, it tends to have more areas. (Areas are individuated by their
dense local connections within them; areas interconnect via long dis-
tance connections traveling in the white matter.) Changizi infers that
‘‘the number of cortical areas increases in bigger brains, then, not
because of some kind of pressure to have more specialized areas, but
because by not increasing the number of areas the network would
become decreasingly well-connected, or would no longer be econom-
ically wired’’ (p. 17). The same principle can fully explain why cortex
becomes more convoluted and has more synapses per neuron. These
apparent signs of increased functional complexity are nothing of the
sort, says Changizi. They are simple consequences of the selective
pressure for a network to stay well-connected, cheaply (p. 26).

It seems, though, that Changizi slightly overstates his conclusion
here. Regular scaling relations among properties does not reveal
order of influence. Perhaps the reason that brains (or neocortices) get
bigger is precisely because of the advantages in functional complexity
conferred by having more areas and/or synapses per neuron. This is
not to deny that economic well-connectedness is a driving force,
Changizi is quite convincing on this point. He is just a bit hasty to
conclude that it is the only driving force (or perhaps just a little sloppy
in stating his conclusion).

However, he does independently address increase in brain com-
plexity, understood as the number of types of things a system can do
(‘‘expression types’’ of the system). How can a system increase its
number of expression types? Well, it could start de novo at each
increase, building a brand new expression type from scratch. More
economically, it could adopt some compositional method of expres-
sion construction, where expressions have (or are produced by
something which has) components. Starting from a number of basic
types of expression components, a system can increase its complexity
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by putting together those basic component types in longer, more
complex ways (the ‘‘universal language’’ approach), or it can increase
its complexity by increasing the number of basic component types
(the ‘‘invariant length’’ approach), or some combination of these two
approaches.

Appealing to a large and varied class of systems (both naturally
and socially produced), Changizi shows that as selectionally evolving
systems scale up, they tend to follow the invariant length approach.
Again, this can be determined by observing scaling regularities. The
number of expression types E, is proportional to the number of
component types C, raised to the power of how many component
‘‘slots’’, d, there are in an expression:

E � Cd

If a network uses the invariant length approach, simultaneous in-
creases in the number of expression types and component types will
be describable by the above equation, where d, the ‘‘combinatorial
degree’’, will be a constant (and greater than 1).

The English language is an example of a system that has increased
its expressive power over time at least in part through the creation of
new component types (namely words). It turns out that English obeys
the power law above, and its constant combinatorial degree is around
5 (or a bit higher, taking word extinction into account, p. 32). This
means that in an average English sentence, there are about five slots
for basic expression components. (The slots, or degrees of freedom,
therefore do not correspond to words–Changizi provides some evi-
dence that they correspond to content words, as opposed to function
words like prepositions, conjunctions, auxiliary verbs, etc.) By
contrast, birdsong has a combinatorial degree not significantly dif-
ferent from 1, i.e., it is not combinatorial at all. (This fundamental
disanalogy, Changizi points out, calls into question attempts to draw
lessons about language from birdsong–see, e.g., Doupe and Kuhl
1999.)

Taking neurons to be the equivalent of words in a language,
Changizi shows that the neocortex most likely uses the invariant
length approach in increasing complexity, and that its combinatorial
degree is about 5. This is an exciting result, which could serve as an
important test for mechanistic proposals of the cortical alphabet, as
well as a guide to the discovery of such proposals. (Changizi specu-
lates that these 5 degrees of freedom in the construction of functional
cortical behaviors correspond to the 5-cell-rich layers in cortex.)
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In Chapter 2, Changizi defends a non-standard Bayesian approach
to perception. In the standard Bayesian approach, it is assumed that
the perception generated by a stimulus represents the most probable
cause of that stimulus. Changizi points out that, due to transmission
and computation delays, this would result in our perceiving the past.
What the perceptual system ought to do instead is use the stimulus to
predict the present, i.e., what the scene is likely to be after trans-
mission and computation is finished. (Indeed, why stop at the pres-
ent? No doubt it would often be useful for a perceptual system to
anticipate the future.) On the basis of this idea that our visual systems
perform ‘‘latency correction’’, he is able to explain a large class of
visual illusions (mostly the classical geometrical illusions like the
Müller–Lyer and the Poggendorff), and, in ideal philosophy of sci-
ence form, even predict some novel illusions (pp. 130, 146). In each
case, the stimulus contains cues that the visual system reasonably
construes as indicating the perceiver is moving forward, and infers
that the scene will change in the next moment in accord with that
forward motion. (There are alternative accounts of these illusions,
which Changizi criticizes, most effectively on p. 85, where he shows
that they fail to generalize.)

Just as in Chapter 1, Chapter 2 illustrates the higher level ap-
proach by demonstrating the fruitfulness of hypotheses of opti-
mality. Given the physical impossibility of instantaneous
computation, the best way for a perceptual system to operate is for
it to ‘‘predict the present’’ (in accordance with good Bayesian
principles). Supposing that our brains are in fact ideal in this way
can explain facts about perception, and generate testable predic-
tions. It could possibly even help guide the neuroscientific search
for perceptual mechanisms.

In Chapter 3, Changizi defends ‘‘paradigm theory’’, which he
describes as a ‘‘best we can hope for’’ solution to the riddle of
induction (p. 231). The riddle of induction says that there is no ra-
tional way to choose among inductive policies, and thus no rational
way to decide what we ought to believe given our evidence. Bayes’
theorem decomposes this variability in inductive policy into a fixed
component and a variable component. The fixed component is an
a priori rule for modifying your beliefs about the world, given the
evidence plus your prior beliefs about the world. Variability in
inductive method is due to variability in these prior beliefs (prior
probabilities). Thus the riddle of induction becomes: there is no ra-
tional way to choose among these sets of prior probabilities.
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Changizi’s goal is to push the variability in inductive method back a
step further, so that the variability is accounted for, not by variability
in undefended assumptions that are, like prior probabilities, about the
world, but undefended assumptions that are not about the world. Sets
of such undefended assumptions that lack empirical content he calls a
‘‘paradigm’’, and he presents some a priori rules, analogous to Bayes’
theorem, for generating prior probabilities given any paradigm. The
benefit is supposed to be in having an a priori method for deciding
what we ought to believe, given our evidence, that does not rely upon
substantive assumptions about the world. We need only start with one
of the possible paradigms. (The riddle of induction survives, though,
since there is no rational method for choosing a paradigm.)

What are these paradigms, such that they lack empirical content?
Changizi compares them to conceptual frameworks; he also says that
a paradigm is or determines the kinds of similarities and differences
one allows among hypotheses. As far as I can tell, a paradigm is
something that divides objects and states of affairs into kinds; alter-
natively, it describes what properties one is allowing into one’s
ontology. Only an extreme nominalist or conceptualist about prop-
erties would claim that this does not amount to a substantive
assumption about the world. So whatever the value of the rules he
proposes as analogous to Bayes’ theorem, I don’t think he’s made the
progress on the riddle of induction that he claims to.

But suppose that Changizi is right to maintain that paradigms are
not substantive assumptions about the world. What does paradigm
theory have to do with the brain? Changizi makes a rather weak
connection here to innateness. It opens up the possibility, he suggests,
that what is innate to a brain is a paradigm, rather than a set of
substantive assumptions about the world (p. 169). (He regards the
latter possibility as ‘‘a little preposterous’’ [p. 231], though it is not
clear why. After all, most computational theories of perception take it
to be obviously true.) He leaves it entirely open whether brains
actually do have innate paradigms (plus a suite of principles of
rationality). Besides, the notion of a paradigm is so abstract, it is not
clear how it could carry any implications about the mechanism. This
is a much less impressive demonstration of the higher-level approach
than we saw in Chapter 1, where Changizi derived a mechanistically
relevant hypothesis about the brain that was not merely possible, but
probably actual.

In Chapter 4, Changizi tries to show that any thinking machine is
bound to have vague lexical concepts. Concepts are construed as
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decision procedures, or programs, for classifying inputs, and learning
the semantics of a language is construed as assigning such programs
to substantive terms. Changizi assumes that the language learner is
capable, at least in principle, of choosing from any of the programs
that halts, as well as from ones that don’t. Since there is no higher-
level program for choosing only classificatory programs that are
guaranteed to halt (i.e.,the halting problem is undecidable), the lan-
guage learner is doomed to risk choosing classificatory programs that
don’t halt. (In fact, the language learner is vastly more likely to
choose such programs.) Changizi takes the borderline regions of
vague predicates to be inputs where the corresponding classificatory
program does not halt. Higher-order vagueness arises because it is
not in general possible to determine whether a program will halt on
some given input, so it is not in general possible to determine the
boundaries of these borderline regions. This chapter is interesting,
but its relevance to the brain is hard to discern.

What, in the end, is the value of the higher-level approach? There
are at least two ways in which Changizi takes it to prove its value.
One way makes its first appearance in an extended analogy with
which the book begins. In a post-apocalyptic future, some cavemen
happen upon an entire working city, whose residents have disap-
peared. While they might learn the low-level causal patterns char-
acterizing the various complex objects they find, this would leave
them with a very poor understanding of those objects: traffic lights,
cars, houses with their climate control and gadgets, and computers.
True understanding of these things requires the understanding that
the designers had – from physics, mathematics, and theoretical
computer science, to specialized branches of engineering and princi-
pals of architecture (p.xiii).2 Similarly for understanding the brain.

However, it’s far from clear that the analogy carries over. Engi-
neering design and natural design (by evolution) tend to be quite
different. First, nature designs by trial and error, whereas the engineer
designs through planning. As a result, there is a sense in which nature
need not rely upon general principles as much as the engineer; rather,
she can make use of incidental properties of the materials available.
We can see this when human engineers adopt nature’s approach, and
design real robots using genetic algorithms (Clark 2001). Navigation
robots ‘‘evolutionarily engineered’’ from real electronic circuits can
rely on the transient dynamics or subtle output delays of these
components, ‘‘incidental’’ features that a human engineer would
never make use of. Indeed,
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it can be expected that all of the detailed physics of the hardware will be brought to

bear on the problem at hand: time delays, parasitic capacitances, cross-talk, meta-
stability constraints and other low-level characteristics might all be used in gener-
ating the evolved behaviour. (Thompson et al. 1996)

Understanding how these robots work requires little appreciation for
higher-level general principles, and much knowledge of the mecha-
nistic details, unlike Changizi’s vision of the brain. Since the brain is
naturally designed rather than engineered, we might expect it to be
similarly opaque to higher-level conceptual tools.

That said, Changizi has made it clear that, at least sometimes, a
higher-level understanding is crucial for understanding some aspects
of the mechanism. Without a higher level understanding of economic
well-connectedness, for instance, we would be in the dark about the
significance of the number of cortical areas in different sized brains.
By both drawing our attention to principles like economic well-
connectedness, and showing clearly how a higher-level methodology
can provide evidence for their truth, Changizi has done us a great
service. No matter if he is a little over-enthusiastic about how much
the higher-level approach is likely to reveal.

A second respect in which it seems Changizi takes the higher-
level approach to exhibit its value is as a source of fruitful
hypotheses, in particular optimality hypotheses. Disanalogies be-
tween engineering and natural design ought to temper our enthu-
siasm here as well. Like MacGyver,3 nature is very limited in the
materials she has available. She must make do with what she is
given: for example, the lung was built by tinkering with the swim
bladder of a fish (Jacob 1977). By contrast, the engineer is much
less limited in this respect. The result is that nature tends to cobble
together multiple subsystems which perform multiple tasks rela-
tively poorly, and overcome their imperfections only through
redundancy, where available. Engineering solutions tend to be
streamlined and elegant by comparison (though not necessarily
more effective, in the end).

So optimality hypotheses will often fail in the face of naturally
designed systems, especially as guides to mechanistic discovery (since
even if a natural system performs ideally, it will likely be composed of
multiple, poorly performing redundant subsystems). Again, this is
not to say that Changizi’s project is fundamentally flawed. On the
contrary, in the first two chapters at least, he provides substantial
evidence that the brain is ideal in the respects he considers. He is just

REVIEW ESSAY284



a bit over-optimistic about how often the idealization hypothesis is
likely to pan out. (He is less convincing about applicability in
Chapters 3 and 4, but I repeat, this may be more of a problem with
the title than the book. Officially, his strategy is to use his conclusions
about the limits of all possible brains to understand our brain, but in
practice he often doesn’t seem to care much about our brain except
qua possible brain.)

This is a very rich and exceedingly well-written book. I learned a
lot. While I hesitate to recommend anything beyond the first chapter
to neuroscientists, most philosophers with a tolerance for technical
material will read it with pleasure.

NOTES

1 Note the Cartesian symbolism.
2 It also requires an understanding of the function of each object and its parts.
Changizi calls this a ‘‘higher-level’’ approach, but if so, it is a ubiquitous one.

Anyone engaged in a biological science is interested in function, whether they work
on the lowest mechanistic level (e.g., the function of the parts of the glutamate
receptor), or higher levels like Changizi. So the value of this so-called ‘‘higher-level’’

approach is not news.
3 MacGyver was the eponymous hero of a 1980s television show who was constantly
making serviceable gadgets from everyday items, like a defibrillator from candles and

an electric cord, or a fuel line from a ballpoint pen case.
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